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Abstract In this paper, we analyse patterns in face shape
variation due to weight gain. We propose the use of persis-
tent homology descriptors to get geometric and topological
information about the configuration of anthropometric 3D
face landmarks. In this way, evaluating face changes boils
down to comparing the descriptors computed on 3D face
scans taken at different times. By applying dimensionality
reduction techniques to the dissimilarity matrix of descrip-
tors, we get a space in which each face is a point and face
shape variations are encoded as trajectories in that space.
Our results show that persistent homology is able to identify
features which are well related to overweight and may help
assessing individual weight trends. The research was carried
out in the context of the European project SEMEOTICONS,
which developed a multisensory platform which detects and
monitors over time facial signs of cardio-metabolic risk.

Keywords Image processing · Feature measurement ·
Feature representation, size and shape

1 Introduction

Overweight and obesity represent a major risk factor for a
large spectrum of diseases, including cardiovascular; dia-
betes; musculoskeletal disorders; and some cancers [24].
According to the World Health Organization (WHO) [39],
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in 2014 around 39% of adults aged 18 and over were over-
weight, and 13% were obese. Moreover, overweight and
obesity are increasing at a rapid rate in most of the Euro-
pean member states and in the Americas. On the other hand,
individuals are increasingly motivated to play an active role
in managing their own health [34]. Thus, a key issue is the
development of personal health monitoring systems able to
support people in estimating and tracking over time their
health status and offering tailored guidance towards lifestyle
improvements [1,50]. These systems have to extract and
analysemeaningful features connectedwith health status and
disease risk. In this paper, we focus on weight gain as a risk
factor for cardio-vascular disease and study amethod to quan-
tify patterns in face shape variation due to weight gain.

This research was carried out in the context of the
European project SEMEOTICONS [25], which developed a
multisensory platform in the form of a mirror. The platform
detects and monitors over time facial signs of cardio-
metabolic risk, cardio-vascular diseases being one of the
leading causes of mortality worldwide. The guiding prin-
ciple behind the design of the mirror is that it should easily
fit into daily-life settings (the home, the gym, the pharmacy),
bymaximizing non-invasive andunobtrusive interactionwith
the users. Therefore, it requires contact-less data acquisition
and non-invasive sign detection and analysis. According to
a semeiotic model of the face for cardio-metabolic risk [11],
the face signs include 3D morphological face descriptors of
overweight and obesity, to be computed on a 3D face model
reconstructed from range data acquired by a 3D scanner, pos-
sibly low cost.

We propose to detect and track face changes connected
with overweight and obesity usingPersistentHomology [17],
a computational topology technique for analysing shape, and
shape changes in particular [4]. Given a 3D face scan labelled
with a set of landmarks, we compute persistence intervals,
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a shape descriptor which gives information on the geometry
and topology of the face. Then, evaluating face changes over
time boils down to comparing the persistence intervals com-
puted on3D face scans taken at different times.Our algorithm
develops in three steps:

– Represent faces trough the simplicial complex given by
the Delaunay triangulation of 23 soft-tissue facial land-
marks (Sect. 4.1);

– Filter the simplicial complexes by assigning to each edge
the Euclidean or geodesic distance between the corre-
sponding landmarks (Sect. 4.2);

– Compute and compare the persistence intervals on the
filtered complexes to track face changes (Sect. 4.3).

Comparing the persistent intervals on a set of faces produces
a dissimilarity matrix. By applying dimensionality reduction
techniques to the dissimilarity matrix, we get a metric space
inwhich each face is a point, and face shape variations are tra-
jectories in that space (Sect. 5).We experimented on a dataset
of synthetic 3D faces simulating weight changes, generated
using a parametric morphable model [40], with promising
results. By analysing the position of thin and fat people in
thismetric space, we show that persistent homology is able to
identify features which are well related to overweight. Also,
by analysing the shape patterns of single individuals as tra-
jectories, we show that our technique helps assessing trends
in weight change on individuals.

In addition, we performed a preliminary study on a set
of real data. A set of proper methods for the automatic 3D
reconstruction of 3D faces, registration and labelling of facial
meshes were studied and implemented (Sects. 6.1 and 6.2).
A key point is that the automation in the acquisition of the 3D
scan and in the processing, preliminary to the computation
of persistent homology, is a must for a system non-invasive
and unobtrusive, able to trace over time the features related
to overweight. Nine volunteers were enrolled, and an acqui-
sition campaign was organized to collect for each volunteer
the 3D scan of the face, the bodyweight and the BMI, so as to
compare our descriptors with standard physical parameters
measuring overweight and obesity. The results demonstrate
the feasibility of our approach in real settings, in terms of
effectiveness and computational cost (Sect. 6.3).

2 State of the art

Back in 1942, D’Arcy Wentworth Thompson expressed the
importance of investigating biological form in a fully quan-
titative manner [47]. We may say that D’Arcy Thompson’s
vision has come true: in the last century,morphometrics came
of age, as the discipline dealing with the quantitative study of
form [42]. This was mainly accomplished by applying uni-

variate and multivariate statistics to measures such as linear
distances, angles and ratios. In the 1980s, it became clear
that a more complex approach to the study of shape was
needed, which had to be able to capture the geometry of the
morphological structures under study and retain its infor-
mation through the analysis. It was the birth of Geometric
Morphometrics [13], which quantifies the variation in the
shape of anatomical objects using the Cartesian coordinates
of anatomical landmarks, after the effects of non-shape vari-
ations (translation, rotation, scale) have been factored out. A
rich statistical theory for shape analysis supported the anal-
ysis of shape variation [5,16].

Advances in statistics, computer vision and computer
graphics provided large body of tools for shape represen-
tation and quantification, including formalization of the sta-
tistical shape analysis, shape descriptors and similarity mea-
sures [4,44,54]. Among others, these include: deformable
templates [51], geometric descriptors [52], geodesic repre-
sentations [6], and level sets [55]. Due to a simplicity of the
representation and the explicit form inwhich objects aremea-
sured, shapes are often represented by finite sets of points.
For this type of representation, by far the most popular way
to describe shapes andmodel shape variations is to use active
shape models (ASM) [10]. Although the ASM has well-
known limitations, the method is still frequently used in real
applications. The Kendall shape analysis (KSA) [29] allevi-
ate some of the ASM limitation, by constraining shapes to lie
on a unit sphere rather than on a linear subspace. A different
approach to shape representation is provided by the elastic
shape analysis (ESA) framework [43,53], where shapes are
represented by functions rather than point sets. This approach
removes a fundamental weakness of the ASM and KSA, i.e.
their dependence on the adopted shape sampling scheme.
Effective methods for applying ESA methodology for sur-
face representation have been proposed in [30,31,48].

In the literature, computer vision tools have been applied
to body analysis to estimate height, weight and other param-
eters enclosed in the body appearance, and most of the
methods proposed are based on computing body measure-
ments. Velardo andDugelay proposed amodel for the weight
estimation based on geometric bodymeasurements extracted
from the 2D silhouette of the human body [49]. Giachetti
and colleagues [21] used heterogeneous body scans to auto-
matically extract geometrical parameters related to body fat.
Their research was focused on parameters not depending
on the precise location of anatomical landmarks, and robust
against pose and mesh quality, so as to be used in healthcare
applications. They found a high correlation between several
parameters with total body less head (TBLH) fat and trunk
fat (acquired by Dual-energy X-rays Absorptiometry).

Though it is well known that the face is involved in the
process of fat accumulation, there is no consensus in the
literature about which are the facial morphological corre-
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lates of body fat. An increase in some facial dimensions was
observed in a study about the face morphology of obese ado-
lescents [19].Moreover, there are interesting studies showing
that some geometrical facial features may be related to both
attractiveness and body mass index (BMI) [8]. Also, Lee et
al. [33] found that facial geometric features measured on 2D
images include Euclidean distances, angles and face areas
defined by selected soft-tissue landmarks are related to both
BMI and waist circumference. We argue that shape changes
cannot be attributed to single, local variations in the posi-
tion of individual landmarks. Also, shape changes involve
shifts in the position of landmarks relative to other landmarks.
Therefore, we need techniques that enable one to globally
analyse the landmark configuration on a face.

3 Basics in persistent homology

This section recalls the main mathematical concepts behind
our method. Section3.1 defines simplicial complexes and
their filtration, which serve as an input to the computation
of persistence intervals, summarized in Sect. 3.2.

3.1 Simplicial complexes and filtrations

A simplicial complex K is a collection of simplices (faces)
such that:

– Any face of a simplex of K is in K ;
– The intersection of any two simplices in K is either a face
of both or empty.

One can think of K as a complex which grows from an initial
state K 0 to a final state Kn = K : the complex growing is
formally encoded in the definition of a filtration of K .

A filtration of a simplicial complex K is a nested sequence
of simplicial complexes

∅ ⊂ K 0 ⊂ · · · ⊂ Ki ⊂ · · · ⊂ Kn = K . (1)

An example is the Rips filtration: if a space X is known
through a finite number of samples, for a real number ε > 0,
the Rips complex Rε(X) is the complex whose k-simplexes
are the subsets {x0, x1, . . . , xk} of X such that d(xi , x j ) ≤ ε

for all pairs xi , x j with 0 ≤ i, j ≤ k. Whenever ε < ε′, there
is an inclusion Rε(X) → Rε′(X) that reveals a growing
complex.

We compute the Delaunay complex of the configuration
of the anthropometric landmarks on 3D faces and filter the
complex using the Rips filtration guided by the Euclidean
and geodesic distances among the landmarks (Sect. 4.2).

3.2 Persistent homology

Simplicial homology plays a central role in topological data
analysis: it accounts for the number of holes (of given
dimension) of a topological space X , and it can be readily
computed on any abstract simplicial complex K associated
with X , depending only on X . For example, on a 3Dmanifold
0-homology classes correspond to connected components,
1-homology classes to tunnels, and 2-homology classes to
voids. Persistent homology essentially looks at homology
at different resolutions, analysing how topological attributes
change through the filtration: new connected components
appear or connect to the old ones, tunnels are created and
closed off, voids are enclosed and filled in, etc. For example,
as for 0-homology, each homology class corresponds to a
connected component, and a homology class is born when
a point is added, forming a new connected component (a 0-
cycle). A homology class dies when two points belonging
to different connected components are connected by a 1-
chain, thus becoming a boundary. The lifespan of topological
attributes is encoded in a simple descriptor called persistence
interval. The aim is to furnish a scale to assess the relevance
of topological attributes, under the assumption that longevity
is equivalent to significance [17]. Formally, the j -persistent
homology group of Ki counts howmany homology classes of
Ki still survive in Ki+ j . Persistence represents the lifetime
of cycles in the growing filtration. Given a filtered simplicial
complex {Ki }i=0,...,n , the j -persistent k-th homology group
of Ki is defined as a group isomorphic to the image of the
homomorphism

η
i, j
k : Hk(K

i ) → Hk(K
i+ j ) (2)

induced by the inclusion of Ki into Ki+ j .
In order to evaluate and visualize the persistent homol-

ogy of a filtered complex, persistence intervals are used: a
persistence interval is a pair

(i, j), with i, j ∈ Z ∪ {+∞} and 0 ≤ i < j,

such that there exists a cycle that is completed at level i of
the filtration and becomes a boundary at level j . Persistence
intervals can be represented in a barcode, a collection of hori-
zontal line segments in a plane whose vertical axis represents
an (arbitrary) ordering of homology generators, and the hori-
zontal axis corresponds to the filtration parameter. The length
of each segment is the lifespan of the associated cycles in the
growing filtration, that is, the length of the interval (i, j):
the start-point and end-point of each segment correspond to
the cycle birth and death, respectively. An equivalent rep-
resentation is the persistent diagram. A persistent diagram
Dgmd(K ) of the persistent homology of the complex K in
dimension d is given by a set of points in a plane: each point
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Table 1 Short description of the
computation of the persistence
intervals of a face mesh, using
the Euclidean filtration

Algorithm: PH computation on a 3D face, Euclidean filtration

1. Λ = {li , i = 1, .., 23} extract landmarks from face_mesh

2. Dist = pdist (Λ) compute pairwise Euclidean distances on Λ

3. DT K = DelaunayTri(Λ, Dist) build simplicial complex

4. mSpace = expMSp(DT K , Dist) explicit the metric space

5. Kstream = createStream(mSpace) define the Vietoris Rips stream

6. I = computeIntervals(Kstream) compute persistence modules and intervals

(i, j) is a generator of the d-homology with birth at i and
death at j . Persistence intervals (diagrams) can be compared
using the Bottleneck distance.

We use persistence intervals as descriptors for 3D faces,
and the distance between persistence intervals as a measure
of the difference between different faces (Sect. 4.3).

4 Face description and comparison

The proposed method for the representation and analysis of
3D faces develops in three steps:

a. Representation of faces using the Delaunay complex of
23 landmarks {l1, . . . , l23}, li ∈ R3. The landmarks are a
subset of Farkas’ landmarks, picked up according to the
findings in [33]. Figure1 shows the set of landmarks on
a template face model [40] (Sect. 4.1).

b. Filtering of the simplicial complexes by assigning to each
edge the Euclidean or geodesic distance between the cor-
responding landmarks (Sect. 4.2).

c. Computation and comparison of persistence intervals
(Sect. 4.3).

The algorithm for the computation of persistence intervals
(with Euclidean filtration) of each 3D face is summarized in
Table1.

4.1 The simplicial complex

A first choice for the representation of facial 3D data could
be the flag complex obtained from the landmarks restricted
to three dimensions, in which every pair of landmarks has
an edge between them, and triangles and tetrahedra are con-
sequently included. As suggested in [23], the drawback is
that the flag complex would not generally have a geometric
realization, whereas we do know that our data are inherently
three-dimensional, since the landmarks come from human
faces which live in the 3D Euclidean space. To preserve the
Euclidean nature of data, we preferred a geometrically realiz-
able subcomplex of the flag complex, namely the Delaunay
triangulation of the 23 landmarks. We decided to compute

the Delaunay triangulation on a template face, namely the
Basel Face Model [40], rather than computing it on individ-
ual faces. We do this so that the abstract complex is fixed
across all possible subjects, since we want to compare the
absolute structure of the landmark configuration, common
to all faces. Indeed, if the Delaunay triangulation was cal-
culated separately for each face landmark configuration, the
Delaunay triangulations could be slightly different, due to
differences in the distances between landmarks for each sub-
ject.

4.2 The filtration

Once the complex is fixed, what varies on individual faces
are the properties used for filtering the complex. We exper-
imented with different filtrations. The first choice is a Rips
filtration using the Euclidean distance between landmarks,
similar to what has been done in [23] to study the outcome
of clinical orthodontic procedures. All vertices enter at time
t0; the edge between landmarks i and j enters at time

ti, j = M − dE(li , l j ) (3)

where dE(li , l j ) is the Euclidean inter-landmark distance
between landmarks i and j and M = maxq,r dE(lq , lr ); tri-
angles and tetrahedra join the filtration when all of their faces
have. Differently from [23], we change sign to the Euclidean
distances. This is done so that landmarks that are far apart
will have a smaller entry time. Figure2 shows the process
of growth of the complex. Also, differently from [23], we
do not consider any normalization of the function across
different individuals, as we are not interested in compar-
ing inter-landmark distances within an individual with those
same inter-landmark distances in other individuals, but rather
on evaluating changes on the same individual in the process
of gaining weight.

Moreover, we experimented with another filtration, which
is similar to the one above butwith geodesic distances instead
of Euclidean ones:

ti, j = M − dG(li , l j ) (4)
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Fig. 1 The 23 landmarks used
to represent faces

Fig. 2 The growth of the
filtered complex associated with
a face mesh: a single vertices
associated with landmark points
(superimposed on a template
face model); b some edges and
the first face appear; c almost all
the simplices appear; d the
Delaunay complex of the face
mesh

where dG(li , l j ) is the geodesic distance (computed using
the Dijkstra algorithm, [12]) between landmarks i and j and
M = maxq,r dG(lq , lr ). Geodesic distances take into account
the intrinsic properties of faces, as they are bound towalks on
surfaces. Geodesic distances encode different shape features
than Euclidean distances: for example, the geodesic distance
between the two landmarks in Fig. 3 measures the length of
the path passing below the chin, whereas the Euclidean dis-
tance measures the horizontal distance between the points.
When facial soft tissues change with weight variations, the
geodesics on the face can substantially change passing even
through different parts of the face. Such a sudden change of
region for some paths is exactly why the geodesic case is
included in our study: this kind of phenomena produces a
different pattern in the associated barcode; hence, it could
represent an interesting clue on the weight variation. We
believe the filtered complexes above are a sensible choice
to study the structure of a landmark configuration. Filtra-
tions are defined in order to have descriptors invariant under
translation and rotation, but purposely not invariant under
scaling.

Fig. 3 Euclidean (left) andgeodesic (right) distance between two land-
marks

4.3 Computing and comparing persistence diagrams

We computed persistent homology for the complex of each
facemesh, using the filtrations described in Eqs. 3 and 4, with
homology of dimension 0, 1, and 2. That is, we computed
0-, 1-, 2-dimensional persistence intervals for each face. Fig-
ure4 shows a face, and its persistent intervals represented
as barcodes. Persistence intervals of dimension d were com-
pared via the Bottleneck distance, [14]. The computations
were performed in MATLAB, with code adapted from the
program JavaPlex [45].
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Fig. 4 Example of a face with its three barcodes. The barcode in the
dimension 0 (top) provides a visualization of persistence intervals rep-
resenting connected components: all vertices enter at time 0, and only
one connected component survives (being the face complex topologi-
cally equivalent to a ball in the 3D space). The barcode in the dimension
1 (center) provides a visualization of persistence intervals representing

loops: some loops appear while the complex growth, but all of them die
before the face complex is completed. The barcode in the dimension 2
(bottom) provides a visualization of persistence intervals representing
voids: two voids appear while the complex growth, but both die soon
after their birth

Fig. 5 A seed face deformed in ten steps, by increasing the weight parameter of a constant quantity (20 units). The unit used in the BFM for the
weight parameter cannot be related to standard measurement units (e.g. in kg)

Finally, the next section describes how the shape dissim-
ilarities are used to build a metric space in which each point
represents a 3D face. Trajectories in this space are used to
visualize patterns of 3D facial variations.

5 Analysis of patterns of shape variation

As a longitudinal study on real subjects to monitor weight
and 3D face changes was not available, a dataset of synthetic
3D faces simulating weight changes was generated using
a parametric morphable model [40] and used for the first
experiments.

The Basel Face Model (BFM) is a morphable face model
computed by applying PCA techniques to a large set of scans
(200 real faces, 100 female, and 100 male). The BFM can
be deformed controlling the regression coefficients extracted
through PCA, accounting for face shape variations related
to age, gender, height, and weight. Of course, such a model
cannot be deformed in any real face, because it depends on
the set of real faces used for its computation. Also, faces are
labelled with different sets of anatomical landmarks (Farkas
and MPEG4-FDP feature point coordinates and indices).
These characteristics make the Basel Face Model a natural
and effective choice for producing synthetic data to test the
technique we developed.

We first generate 25 seeds from the mean face, varying
randomly all the four parameters, in order to produce a syn-
thetic study population of 25 subjects. Then, only the weight
parameter of each seed is increased of a constant quantity
in ten steps. An example of the sequence of fattening faces
produced is given in Fig. 5.

This gives a dataset of 250 faces, divided into 10 groups
ordered according to increasing fatness. Computing per-
sistent homology on this dataset gives 250 × 3 persistent
intervals, one for each dimension (0-, 1-, 2-degree homol-
ogy).

5.1 Metric space from shape dissimilarities

In statistical shape analysis, the analysis of shape variation
is usually carried out in a feature space or in shape space
(space of concatenated landmarks coordinates with imposed
scale, translation and rotation equivalence class, i.e. simi-
larity transformation invariance), i.e. a Kendall space [29].
Since persistent diagrams are not vectors, we took a differ-
ent route and worked in the metric space in which points are
persistence diagrams, and the metric is given by the Bottle-
neck distance among them, as done in [20]. This approach
is general and flexible, in that it can be adapted to arbitrary
descriptors, other than feature based (e.g. graphs).
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Fig. 6 Dissimilarity matrices
between persistence intervals,
for the Euclidean (top) and
geodesic filtration (bottom).
Colour map, ranging from blue
to red, indicates increasing
values of dissimilarity; e.g. the
blue diagonal corresponding to
entries (i, i) correctly indicates
that the dissimilarity between
the persistence diagram
associated with the i-th face
with itself is zero
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Hence, the dissimilarity space built on the dataset yielded
three different dissimilarity matrices, one for each homology
dimension (0, 1, 2); each dissimilarity matrix is of dimen-
sion 250× 250. Then, a dimensionality reduction technique
was applied to these matrices. We experimented with clas-
sicMultidimensional Scaling (MDS, also known as principal
coordinates analysis [22]) to explore and visualize our set of
data and got three 250 × p matrices, with p < 250. In the
analysis that follows, we set p = 2. Each row in the matrices
represents the coordinates of a face in the lower-dimensional
embedding space. Note that different embedding techniques
could be used, possibly including nonlinear dimensionality
reduction techniques such as isometric feature mapping [46]
and Laplacian eigenmaps [37].

As expected, given the intrinsic characteristic of faces,
we found that homology of dimension 2 was not signif-
icant, whereas homology of degree 0 and 1 proved to be
more informative. This can be seen from the observation of
the dissimilarity matrices in Fig. 6. Therefore, in what fol-
lows we will only analyse data pertaining to homology of
degree 0 and 1. We first analyse visually the results sepa-
rately, that is, for 0- and 1-homology, and for Euclidean- and
geodesic-based filtration. This is done to study the different
information they provide (Sect. 5.2). Then, we analyse quan-
titatively the results of integrated distances, given by the sums
of matrices, in terms of classification rate (Sect. 5.3).

5.2 Qualitative analysis

The analysis of scatterplots in the embedding space seems
to confirm that the proposed technique is able to identify 3D
features which are well related to overweight and obesity.
Figures7(left) and 8(left) show the first two embedded MDS
coordinates, labelled by fatness level, from 1 to 10, for the
filtrations based on Euclidean and geodesic distance, respec-
tively, in dimension 0 and 1. It can be seen that in both cases,
the subjects are well distributed in the space according to
their fatness level. In other words, our technique seems to

be able to separate faces of people in different groups. This
can be better appreciated in Fig. 7(right) and 8(right), which
show the first two embeddedMDS coordinates for a subset of
faces, namely thinner people (red), medium people (green),
and fatter people (blue) in our dataset.

Since our essential task is the description of morpholog-
ical change over time on a subject, we must check whether
our technique enables us to discover a trend in a longitudi-
nal study. A way to do this is visualizing the shape patterns
of individuals as trajectories [9] in the dissimilarity space.
Each individual has a trajectory which is made of ten con-
secutive points. For a given trajectory, we can analyse four
attributes, namely location (the starting and ending points);
size (themagnitude of the vector between the endpoints); ori-
entation (the direction of the vector between the endpoints);
and shape. In our context, the location depends on the spe-
cific, initial traits of each individual. The size is a measure of
the difference in shape between the thinnest and the fattest
morphing of the individual. The orientation is crucial: a con-
sistent orientation would indicate that our technique is able
to detect and encode the process of getting weight. Figure9
shows the trajectories of three sample faces in our dataset in
the embedding space given by the first two coordinates. It
is clear that the orientation is consistent, from left to right
in accordance with weight gain, but the shape of trajectories
does differ, especially for 0-homology. Figure10 shows the
trajectories if only the first embedding coordinate is taken
into account. As the trajectories are more homogeneous, it
seems that the first coordinate alone is able to identify the
trend in fat variation better than the first two coordinates.

5.3 Quantitative analysis

We have seen that persistence intervals based on both the
Euclidean distance and the geodesic distance between land-
marks are able to quantify shape variation and that they take
different properties into account. This suggests that sum-
ming up their information could be beneficial. We can define
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Fig. 7 Scatterplot of the first
two embedded MDS
coordinates, labelled by fatness
level, from 1 to 10, for the
Euclidean-based filtrations
(left). The scatterplot with only
a subset of faces shown (right)
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Fig. 8 Scatterplot of the first
two embedded MDS
coordinates, labelled by fatness
level, from 1 to 10, for the
geodesics-based filtrations (left).
The scatterplot with only a
subset of faces shown (right)
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Fig. 9 Trajectories of three
sample faces in the space given
by the first two embedding
coordinates

Fig. 10 Trajectories of three
sample faces in the space given
by the first embedding
coordinate
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Table 2 Classification rates for integrated distances and competitors.
The best rates are marked as bold

1st (%) 2nd (%) 3rd (%)

d0E,G 42 63 88.4

d1E,G 41.2 64 83.2

d0,1E 30.8 54.4 77.2

d0,1G 42.4 72.2 83.6

SD 22.4 44.8 65.6

SH 38.4 65.6 88.0

the distance between two faces as the sum of the Bottle-
neck distances between their persistence intervals in different
dimensions, or with different filtrations.

Let us denote d0E,G (d1E,G) the sum of distances in dimen-
sion 0 (dimension 1) obtained with the Euclidean and the
geodesic filtration, and d0,1E (d0,1G ) the sum of distances
with the Euclidean (geodesic) filtration in both dimensions 0
and 1.

The classification rate on our dataset for the integrated dis-
tances above defined was assessed and is reported in Table2.
We also evaluated two popular state-of-the-art shape descrip-
tors, namely Shape Distributions (SD) [38] and Spherical
Harmonics (SH) [28].

The classification rate refers to the number of subjects
correctly attributed to their group, out of the 10 groups in
the dataset, in a leave-one-out experiment. Notice that the
classification task is very challenging, since the variation
among consecutive groups, in terms of fat gain, is rather
small. Therefore, we considered three classification rates, for
correct prediction within the first, second, and third choice.
It can be seen that integrated distances perform better than or
comparably to Spherical Harmonics, and significantly better
than Shape Distributions.

The best performance seems to be provided by the fil-
tration based on geodesic distances, with distances summed
over homology dimensions.

6 A preliminary study on real data

Themethodwas applied on a small set of real data for extract-
ing from the morphological analysis of the subject’s face the
information about body weight. The sample used is made
of 9 adult subjects: 3 women and 6 men. The characteris-
tics of the sample are listed in Table3. The 3D facial data
are acquired with a low cost depth sensor; then the 3D faces
are automatically reconstructed and labelled, as described in
Sects. 6.1 and 6.2. Finally, the results obtained with real data
are described in Sect. 6.3. Of course, the analysis carried out
for the large, synthetic dataset cannot be applied as it is to the

Table 3 Characteristics of the studied sample, subjects sorted by BMI
ascending

Id Gender BMI Weight (kg)

1 F 20.3 57.8

2 F 20.8 57.2

3 F 20.9 48.9

4 M 21.9 64.1

5 M 22.2 68.8

6 M 24 78.1

7 M 24.6 71.2

8 M 27.4 78.15

9 M 28.5 79.6

set of real data, due to the fact that powerful tools, such as
the multidimensional scaling, are no more appropriate with
a so different sample size.

6.1 3D face reconstruction

This section describes a system for a 3D geometric face
reconstruction based on inexpensive, readily available depth
sensors such as Kinect or Asus Xtion. The requirement is
to produce a 3D manifold mesh, representing face surface,
accurate enough to enable an extraction of informative facial
features.

The 3D reconstruction method recovers points cloud from
a sequence of depth frames and merges them into a single
consistent global object. This is achieved using a structure
from motion algorithm [36]. The data fusion is performed
by tracking the global model using a coarse-to-fine iterative
closest point (ICP) algorithm with the reconstructed surface
estimated using a truncated signed distance function (TSDF)
and a Poisson meshing algorithm [27].

The first, preprocessing step before applying the recon-
struction procedure is the face segmentation. This step
prevents background objects and body parts from interfering
in the reconstruction process. The segmentation technique
used to extract the person’s face from the depth image is
based on a face pose estimation method [18] and application
of a bounding box segmentation around the estimated head
centre. The face pose estimation [18] calculates, based on a
random forest, the head position in a 3D space (x, y, z). The
3D head centre is then projected into the 2D depth frame
and used as the centre of a rectangular bounding box of
180 × 180 pixels. All the depth points inside the defined
bounding box will remain in the segmented face, and the rest
will be discarded as well as the pixels with bigger z values
than zc + 15cm, where zc is the estimated distance of the
head centre from the sensor.
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The segmentation process is applied to a depth frame
sequence where the user has rotated the head to the left and
then to the right. Subsequently, the segmented depth data are
passed to the reconstruction system in order to obtain the
fused 3D model and the corresponding mesh.

The average area of the triangles forming the 3D face
reconstruction meshes is 2.8mm2. The volume which is
captured with the depth sensor is a cube of 512 × 512 ×
512 voxels which represents a volume of 1.5 × 1.5 × 1.5
m (3.375m3) on average. The reconstructed faces occupy
0.3×0.3×0.2meters volume, which corresponds to approx-
imately 715, 827 voxels from the captured volume, with each
voxel representing around 25mm3 volume.

6.2 3D face labelling

Different landmark detectionmethods in depth or 3Ddata can
be found in the literature, such as [2,15,26,35]. Numerous
approaches have been used to tackle this problem; for exam-
ple, the work described in [2] proposed a heuristic method
combined with a SIFT detector applied to local search win-
dows to locate 9 landmarks automatically. In the approach
presented in [26], 11 fiducial points are automatically located
on a pair of range and portrait images using a search over
an area centred at the average location of the fiducial point
location in the training data. The technique explained in [35]
selects 3 feature points by determining the local shape index
at each point within the 2.5D scan.

The landmarking problem presented in this paper requires
the automatic location of 23 landmarks (Farka’s model [32],
Fig. 11), and some of them are very difficult to detect using
the methods described above. In order to detect this chal-
lenging landmarks arrangement, a method similar to the one
described in [15] is needed. This approach enables detection
of landmarks in the areas with no significant facial features.

The method used in this work to produce the approxi-
mate positions of the predefined 23 landmarks is based on a

non-rigid registration of a deformable model [41]. Such 3D
facial representation canmodel wide variety of faces. The 3D
faces are represented by a low-dimensional shape space vec-
tor (SSV) of the statistical shape model (SSM). As explained
in [41], the SSM is trained using different faces with 83 land-
marks selected manually in each face of the training dataset.

The process of labelling a 3D face reconstruction starts
with the fitting of the deformable model to the reconstructed
point cloud. This algorithm involves the estimation of the
pose and shape parameters, which allow adapting the model
to a new personalized model. The shape and the pose are
iteratively estimated in turn. The iterative closest point algo-
rithm is used to estimate the pose, and the projections on
the estimated SSM are used to estimate the shape parameters
encoded in the SSV.

Once the model has been matched to the 3D reconstruc-
tion, the previously selected 23 landmarks of interest are
transferred to their corresponding closest point on the recon-
structed 3D surface (see Fig. 11). The results obtained with
the proposed labelling method were compared to a manu-
ally obtained ground truth of 22 reconstructions. The manual
labelling was only based on shape data; no texture informa-
tion was used in the process. The average from three manual
annotations performed by two observers was used as ground
truth. The average error of the landmark identification is
6mm. This should be compared with the corresponding cal-
culated annotation error between the two observers of 2mm.

The face deformable model used for this work contains
5832 points (see Fig. 11 on the top left), covering a volume
similar to the reconstructed faces. Variations in resolutions
and number of points used for the deformable registration
could significantly influence landmarking accuracy. In pre-
vious works, it has been shown that using a smaller number
of landmarks located around eyes, nose, and mouth with a
3D deformable model representing only central part of the
face could provide better results for landmarks on the mouth.
Additionally, it has been also demonstrated that using 3D

Fig. 11 Labelling process.
Inputs: manually labelled
deformable model (top left) and
3D reconstruction (bottom left).
The model registered to the
reconstruction (centre). Outputs:
deformed model (top right) and
labels transferred from the
model to the 3D reconstruction
(bottom right)
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Fig. 12 Barcodes: subject 2
(first row) and 9 (second row);
both Euclidean (first column)
and geodesic filtration (second
column)

reconstruction with significantly higher number of vertices,
when compared with the number of the model vertices, can
lead to the model converging to a local minima resulting in
an incorrect labelling. This was solved by down-sampling
the reconstructed surfaces. For the described problem, the
resolution of the adopted low cost depth sensor is suitable
for the 3D reconstructions being labelled by the deformable
model from [41]. Although position accuracy of the land-
marks around mouth, cheeks, and ears could be improved,
they are the most challenging landmarks for detection as the
mouth is the part of the face with the biggest deformations
and the Farkas’ landmarks on the cheeks and close to the
ears do not have significant distinctive features to be robustly
identified.

6.3 Results on real data

Three-dimensional facial data acquired through low cost sen-
sors, such as in Fig. 11, make clear that the aim claimed in
the paper’s title is quite hard to reach. The very low require-
ments about the acquiring conditions, the number of points
used for the shape description (only 23 landmarks), and the
strong automation of the whole system, desirable for a day-
life implementation (e.g. at home, by not skilled people)
imply having data with low resolution and low accuracy;
thus, any subsequent processing may be negatively affected
by them.

Nevertheless, the persistent homology keeps carrying a
certain amount of information about body weight. As in the
synthetic dataset, we found that homology of dimension 2

was not significant, whereas homology of degree 0 and 1
proved to be more informative. Then, barcodes in dimension
0 and 1 of each subject have been analysed; barcodes of
two subjects, with quite different BMI values, are shown in
Fig. 12).

A further analysis focused on the persistent intervals com-
puted in dimension 0, both Euclidean and geodesic filtration,
and on the persistent intervals computed in both dimension
0 and 1, with the geodesic filtration; this choice is motivated
by the results obtained in the larger dataset of synthetic faces,
already presented in Table2. Let us denote d0E,G the sum of
distances in dimension 0 obtained with the Euclidean and
the geodesic filtration, and d0,1E the sum of distances with
the Euclidean filtration in both dimensions 0 and 1. Then the
dissimilarity matrices between the persistent intervals corre-
sponding to d0E,G and to d0,1E are computed to assess if any
discriminative value is maintained in the case of real data.

The sample has been sortedwith increasingBMI.Thus,we
expect that a dissimilarity matrix, able to encode differences
among the subject in the set, should be a matrix with a blue
diagonal, with the two corners up-right and down-left being
red, and with the other cells in the middle going from blue
to red accordingly to the distance from the diagonal. And in
Fig. 13 we discover dissimilarity matrices showing a colour
pattern similar to the ideal good one.

Table4 shows average processing time for different stages
of the algorithm, including 3D reconstruction, labelling, and
the persistent homology computations (reading the data,
building the complex, computing persistence barcodes in dim
0 and1, for bothEuclidean and geodesic filtration, computing
the dissimilarity matrix).
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Fig. 13 Dissimilarity matrices
computed on the set of real data.
Colour map ranging from blue
to red, according to increasing
dissimilarity

Table 4 Average processing
time of the different stages of
the proposed method when it is
run using a 3.6 GHz i7
processor. Twenty-three subjects
from the dataset were used for
these measurements

Stage Time (s)

Segmentation 12

Reconstruction 14

Meshing 3

Labelling 1

PH computation 1

Total 31

7 Conclusions

We described an ongoing work in the European project
SEMEOTICONS, which is developing a multisensory plat-
form which detects and monitors over time facial signs
correlated with cardio-metabolic risk and gives personalized
guidance to individuals to improve their habits. Our contri-
bution to the project is the automatic assessment of weight
gain via 3D shape analysis, being obesity and overweight
one of the main factors of cardio-metabolic risk. We used
persistent homology, which offered a tunable framework for
face description and comparison. We qualitatively and quan-
titatively described the behaviour of our descriptors, and the
results seem to be promising.

In the literature, different choices of simplicial complex
and filtration are possible, such as the Clique, the Witness
and LazyWitness, the Rips–Vietoris, the Delaunay, the Tidy:
each of them has specific features and an optimal setting of
application. A first direction of future research is the usage of
a different filtration, defined on the whole face rather than on
the landmark configuration, for example, using Morse filtra-
tions based on curvature or distances from reference points.
A landmark-free approach would also give the advantage of
not having to pre-compute face landmarks. Although land-
marks can be identified with different strategies [7], locating
landmarks with the desired accuracy could be difficult on
bad-quality face scans.

The future work also include the use of hybrid descrip-
tors which analyse both shape and texture, as, for example,
the hybrid geodesic distance in [3]. Finally, an advantage
of our framework is that it is flexible, meaning that it can
be adapted to the study of face properties other than weight

accumulation, by defining a different, ad hoc filtered com-
plex. Therefore, we plan to investigate on the study of other
signs, including facial asymmetry.

Concerning the application of the morphological analy-
sis based on the persistent homology in day-life settings, the
experimentation described in Sect. 6 proves that the method
implemented provides a valid tool to analyse very peculiar
3Dobjects, such as human faces even in real settings.Weplan
to enlarge the sample size and to better manage the inaccu-
racy in the landmarks’ location, in order to take advantage
of statistical tools for the analysis of the results, and improve
the discriminative power of the proposed method.
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