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Equilibrium to off-equilibrium crossover in homogeneous active matter
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We study the crossover between equilibrium and off-equilibrium dynamical universality classes in the Vicsek
model near its ordering transition. Starting from the incompressible hydrodynamic theory of Chen et al. [Critical
phenomenon of the order-disorder transition in incompressible active fluids, New J. Phys. 17, 042002 (2015)],
we show that increasing the activity leads to a renormalization group (RG) crossover between the equilibrium
ferromagnetic fixed point, with dynamical critical exponent z = 2, and the off-equilibrium active fixed point,
with z = 1.7 (in d = 3). We run simulations of the classic Vicsek model in the near-ordering regime and
find that critical slowing down indeed changes with activity, displaying two exponents that are in remarkable
agreement with the RG prediction. The equilibrium to off-equilibrium crossover is ruled by a characteristic
length scale, beyond which active dynamics takes over. The larger the activity is, the smaller is such a length
scale, suggesting the existence of a general trade-off between activity and the system’s size in determining the
dynamical universality class of active matter.
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Despite several similarities with equilibrium statistical
physics systems, active matter is known to display numerous
off-equilibrium traits that make it qualitatively different from
its nonactive equilibrium siblings [1,2]. In a certain class
of systems, off-equilibrium effects are due to the interplay
between an effective alignment interaction and a dynamical
rewiring of the interaction network, which can give rise to a
non-Hamiltonian coupling between the density and velocity
fields [2,3]. A classic example of such coupling is given by the
Vicsek model [1,4,5] and its coarse-grained counterpart, the
Toner-Tu field theory [6–8], in which heterogeneous density
structures emerge due to the density-velocity feedback [9,10].
Density-velocity coupling is crucial in turning an equilibrium
second-order transition into an off-equilibrium first-order one
[11–13]. It would therefore seem reasonable to assume that
the coupling between density and velocity stays at the very
core of off-equilibrium dynamics in active matter.

In fact, active motion and density-velocity coupling are
related but distinct phenomena. The fact that particles contin-
uously enter and exit the alignment interaction range of any
given particle could violate detail balance also in a system
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with homogeneous density. Therefore a question arises: Can
activity lead to relevant off-equilibrium dynamics even in
the absence of any significant coupling between velocity and
density, and therefore in the absence of heterogeneous density
structures? If the answer to this question is positive, a second
problem consequently emerges, namely, that of the equilib-
rium to off-equilibrium crossover. In a system with strong
feedback between velocity and density, switching off activity
may freeze the interaction network into a variety of complex
patterns (bands, droplets, accumulation points, etc.) [14,15];
dynamics may strongly depend on such specific configura-
tions, thus voiding the very notion of universality class. On
the other hand, in an active yet homogeneous system the limit
of zero activity gives rise to an equally homogeneous interac-
tion network, making the dynamics uniquely converge to an
equilibrium universality class. In this second case, assessing
how activity changes the equilibrium universality class is a
well-defined problem.

Here, we approach these two issues in the Toner-Tu field
theory and in the Vicsek model [4], focusing on its scaling
region just above the ordering transition. The near-ordering
phase of the Vicsek model (as opposed to the deeply ordered
“ferromagnetic” phase that describes bird flocks) has been
shown to be a very sound theoretical candidate to describe
natural swarms of insects [16,17], for which experiments are
starting to provide quantitative characterizations of dynamical
universality classes [18], thus making a comparison between
theory and experiments compelling. The near-ordering phase
is also the ideal arena in which to investigate the questions
above: This regime is less prone to developing heterogeneities
than the ordered phase [15,19], so that if velocity-density
coupling were crucial to active phenomenology, in this regime
the Vicsek model should behave like an equilibrium liquid.
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However, experiments on real swarms give dynamical crit-
ical exponents far from their equilibrium counterpart [18],
suggesting that activity is in fact relevant in this phase, despite
its homogeneity.

Our strategy will be the following: First, we will perform
a renormalization group study of the hydrodynamic theory of
active ordering under the assumption of incompressibility, in
such a way as to inhibit the coupling between density and
velocity fluctuations from the outset, and check under what
conditions activity is relevant in this case. Secondly, we will
perform numerical simulations of the Vicsek model in the
near-critical phase and verify that the theoretical results about
the incompressible case apply also without imposing incom-
pressibility in the simulation. We will find that activity-driven
off-equilibrium effects are significant also in the absence
of velocity-density coupling, giving rise to an equilibrium
to off-equilibrium crossover between two different dynami-
cal universality classes. The Vicsek model is certainly very
simple, yet it is arguably the prototype model for dry ac-
tive systems [1,20], capturing the essential ingredients of
alignment and mutual imitation in active behavior, with few
parameters and a simple dynamical rule. This bare-bones sim-
plicity makes it ideal for the numerical part of our study, with
emphasis on universal features. The Vicsek model has been
extensively studied numerically [9]. The dynamical critical
exponent has been studied in d = 2 [19,21] and d = 3 [18],
and in the flocking phase [22,23], but the kind of crossover
we describe below has not been reported before.

Inspired by the classic calculation of Ref. [24] on stirred
turbulence, the incompressible hydrodynamic theory of the
Vicsek model near its ordering transition was developed in
Ref. [25], whose results we briefly summarize here. Incom-
pressibility implies constant density; hence one can work
solely with the velocity field v(x, t ), which is governed by
the equation [25]

∂v

∂t
+ λ0(v · ∇)v = �0∇2v + J0v

2v + f + ∇P, (1)

where f is a white noise with variance 2�̃0; at equilibrium
the kinetic coefficient �0 would be equal to �̃0, but the self-
propulsion term, (v · ∇)v, can violate this condition. The
pressure P enforces incompressibility, ∇ · v = 0 [24]. The
coupling J0 governs the Landau-Ginzburg ferromagnetic in-
teraction [26], while the linear mass term has been set to zero
as we work at criticality. The renormalization group (RG)
analysis of Ref. [25] showed that the theory has two effective
coupling constants that become irrelevant above the upper
critical dimension, dc = 4; the first one encodes the strength
of activity, α0 = λ2

0(�̃0/�
3
0 )�−ε , while the second is pro-

portional to the ferromagnetic coupling, u0 = J0(�̃0/�
2
0 )�−ε ,

where ε = 4 − d and � is the cutoff. The RG equations at
order ε (one loop) are [25]

αl+1 = αl b
ε[1 − (3/4)αl ln b − (10/3)ul ln b],

ul+1 = ulb
ε[1 − (1/2)αl ln b − (17/2)ul ln b],

(2)

where b > 1 is the RG rescaling factor [27]. The RG flow
and fixed points are displayed in Fig. 1. The fixed point with
α∗ = 0 and u∗ �= 0 (green square) describes an equilibrium
ferromagnet, and it has the classic dynamical critical exponent

FIG. 1. RG flow and crossover. Top: The system admits four
fixed points: The free theory, α∗ = 0, u∗ = 0 (black circle), and
the incompressible stirred fluid, α∗ = 4/3ε, u∗ = 0 (purple triangle
[24]), are of no interest to us. On the other hand, the equilibrium
ferromagnet, α∗ = 0, u∗ = 2/17ε (green square), and the Vicsek
active-ferromagnetic fixed point, α∗ = 124/113ε, u∗ = 6/113ε (red
circle), give rise to the equilibrium to off-equilibrium crossover. If the
initial value of the activity, α0, is small, the flow quickly approaches
the equilibrium fixed point (red dots) and remains around it for many
RG iterations, before crossing over to the Vicsek fixed point. Bottom:
The crossover is evident when plotting the running parameters over
an RG streamline with small α0. The running critical exponent z
flows from its equilibrium value z = 2 to its off-equilibrium value,
z = 1.7 (in d = 3).

z = 2 (at one loop) [28]; this equilibrium fixed point is stable
along the axis α = 0, but as soon as activity is switched
on, the unstable direction leads the flow to the only stable
fixed point, where both ferromagnetism and activity are rel-
evant, α∗ �= 0, u∗ �= 0 (red dot). At this off-equilibrium fixed
point the dynamical critical exponent changes significantly,
z = 2 − 31ε/113 ≈ 1.7 in d = 3, defining a new dynamical
universality class [25].

The idea that we develop in this paper is that the interplay
between the equilibrium and the off-equilibrium RG fixed
points contains the key to understanding to what extent ac-
tivity is relevant in realistic systems, with finite size and finite
activity. An analysis of Eqs. (2) shows that if the initial RG
value of the activity coupling constant, which is the physical
value α0, is small, the flow quickly reaches the equilibrium
fixed point and it remains in the vicinity of it for a large
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number of RG iterations, before eventually crossing over to the
active, off-equilibrium fixed point (see Fig. 1). Accordingly,
the running value of the dynamical critical exponent along
the flow (zl = 2 − 1/4 αl ; see the Appendix) abruptly changes
from its equilibrium value (z = 2) to its off-equilibrium value
(z = 1.7, in d = 3). To understand how this RG crossover
impacts on the critical dynamics of the system, we must turn
our attention to the correlation length.

Close to criticality, the physical correlation length ξ is
large, but it gets reduced by a factor b at each RG iteration,
ξl+1 = ξl/b = ξ/bl . Once the running correlation length
ξl+1 becomes of order 1/�, the system is no longer near
critical, and the flow must stop; this condition implies
blSTOP = �ξ [26]. If, when the RG flow stops, we are still in
the neighborhood of the equilibrium fixed point, the exponent
z = 2 will rule the critical dynamics of the system, even
in the presence of active terms in the equations of motion.
By expanding Eqs. (2) in the vicinity of the equilibrium
fixed point, we find that the activity coupling evolves as
αl+1 = αl bκ = α0bκl , with scaling dimension κ = (31/51)ε.
Because the off-equilibrium fixed point has α∗ = O(ε),
asking whether activity is still irrelevant when we have left
the critical region amounts to asking whether αSTOP � ε,
which gives α0bκlSTOP = α0(�ξ )κ � ε. If we now define the
crossover length scale,

Rc = (ε/α0)
1
κ �−1, (3)

we conclude that for ξ � Rc, equilibrium dominates and z =
2; conversely, for ξ � Rc, dynamics is ruled by the active off-
equilibrium fixed point and z = 1.7 (in d = 3). The crossover
length scale decreases for increasing activity, hence shrinking
the equilibrium regime; eventually, if α0 is so large that Rc <

1/� (the microscopic scale), one observes off-equilibrium
critical dynamics at all macroscopic scales. Conversely, when
activity decreases, the range over which the equilibrium
dynamics dominates broadens, and this has an interesting
implication in finite-size systems: If size and activity are such
that Rc > L, we cannot reach a scale where we observe the
effects of activity, so that equilibrium dominates critical dy-
namics at all physical scales. This finite-size crossover as a
function of activity is what we test in numerical simulations.

In the Vicsek model [4], all particles have the same speed,
v0; hence it is convenient to define the velocities as vi = v0ϕi
and write the equations in terms of the unitary orientations,
ϕi,

ϕi(t + 1) = Rη

(∑
j

ni j (t )ϕ j (t )

)
,

ri(t + 1) = ri(t ) + v0ϕi(t + 1),

(4)

where ni j (t ) indicates the metric interaction network [1,4],
which changes in time due to the active motion of the
particles. The noise operator Rη normalizes and rotates its
argument randomly within a cone of angle 4πη around
its original direction, with η ∈ [0, 1]. We simulate systems
in d = 3 with N = 128, 256, 384, 512, 1024, 2048 particles
with periodic boundary conditions (PBCs) and metric interac-
tion range rc = 1. Simulations are run at constant noise, η =
0.45, while the density is tuned in order to follow the ordering

transition at various N and therefore explore the near-critical
scaling regime (see the Appendix for details). We stress that,
although we will make a comparison with RG results on
the incompressible theory, we do not impose incompressibil-
ity in our numerical simulations: Incompressibility implies
homogeneity, but it also entails long-range interactions that
could significantly change the critical exponents. However,
the opposite implication does not hold: Homogeneity does
not imply incompressibility, let alone long-range interactions,
which are indeed not present in our simulations; interactions
in the Vicsek model are strictly short range, and we merely
monitor homogeneity by verifying the absence of significant
density fluctuations (see the Appendix). Therefore, although
we are motivated by the incompressible RG results, our nu-
merics explores a far more general scenario.

In the microscopic model (4) the equilibrium limit, v0 →
0, is transparent: The second equation reduces to ri(t + 1) =
ri(t ), so that the interaction network is frozen, ni j (t ) = ni j ,
and the first equation becomes that of an equilibrium ferro-
magnet. This suggests that we can tune activity by simply
tuning the speed. However, the coarse-grained equation (1)
and the effective coupling constant, α0 = λ2

0(�̃0/�
3
0 )�−ε , ac-

tually governing activity in the theory, have an unclear limit
for v0 → 0. To make progress, it is convenient to separate also
the coarse-grained velocity, as v(x) = v0ϕ(x), so that the mi-
croscopic speed v0 appears as an explicit parameter of the field
theory [note that ϕ(x) is not a unitary field] . By comparing
the microscopic with the coarse-grained parameters, one can
prove (see the Appendix) that the strength of the noise, �̃0,
is of order v2

0 in the limit v0 → 0, while the other parameters
are nonsingular; hence the activity coupling constant scales as
α0 ∼ v2

0 . Changing v0 in the microscopic model is therefore
equivalent to changing the activity coupling constant in the
hydrodynamic theory. In order to test the crossover, we run
simulations at v0 = 0.05 (low activity) and v0 = 0.2 (high
activity).

To determine the dynamical critical exponent z, we calcu-
late the dynamical correlation function [29]

C(k, t ) =
〈

1

N

∑
i j

δvi(t0) · δv j (t0 + t )
sin(kri j )

kri j

〉
t0

, (5)

where ri j = |ri(t0) − r j (t0 + t )|. Even though the bulk phase
transition in the classic Vicsek model is first order [9], in
finite-size systems a quasi-second-order phenomenology, with
large correlation length and scaling, gives rise to a near-critical
dynamics [17]. In this regime the normalized correla-
tion obeys dynamical scaling, Ĉ(k, t ) = C(k, t )/C(k, 0) =
f (t/τ (k); kξ ), where the k-dependent relaxation time is a
homogeneous function, τ (k) = k−zg(kξ ) ( f and g are scaling
functions) [30]. The first relation implies that when we select
k = 1/ξ , we have Ĉ(k, t ) = F (kzt ); namely, different corre-
lation functions collapse onto each other once plotted against
the scaling variable kzt . The second relation can be rewritten
as τ (k) = ξ zg̃(kξ ), so that the k = 0 (i.e., collective) relax-
ation time grows with the correlation length as τ = ξ z, the
phenomenon known as critical slowing down [30]. We employ
both relations to estimate z; results are reported in Fig. 2.

In the low-activity regime, v0 = 0.05, we find that criti-
cal slowing down is ruled by the equilibrium RG exponent,
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FIG. 2. Vicsek dynamics in three dimensions. (a) and (c) Normalized dynamical correlation functions, Ĉ(k, t ) = C(k, t )/C(k, 0), at k =
1/ξ for v0 = 0.05 and v0 = 0.20, respectively. (b) and (d) Correlation functions plotted against the scaling variable tkz; z = 2 in (b) and z = 1.7
in (d). (e) Relaxation time vs correlation length for the two different values of the speed v0. Lines are best fit to the RG results, z = 1.7 (blue,
high v0, high activity) and z = 2 (red, low v0, low activity).

z = 2.0, and that the dynamical correlation functions collapse
when time is rescaled as tk2 [Figs. 2(a), 2(b), and 2(e)]. This
is consistent with simulations performed at the same value of
v0 in Ref. [18]. On the other hand, when we change the speed
to v0 = 0.2, the system crosses over to the active dynamical
universality class, characterized by the off-equilibrium RG
critical exponent z = 1.7 [Figs. 2(c)–2(e)]. While similar val-
ues of z have been found numerically in the ordered phase
of the same model [22,23], we emphasize that the present
results correspond to the disordered near-critical regime, so
that the two results are not comparable. Given the limited
span in the correlation length and relaxation time, we have
run three different statistical tests to check the compatibility
between data and different fits; all three tests support the
validity of the RG exponents in reproducing the numerical
data (see the Appendix). As often happens with RG, such
a good agreement between experiments and theory is quite
astonishing, considering that results in d = 3 are obtained
by setting ε = 1 in an expansion for small ε. Fortunately,
more authoritative people have thoroughly discussed such a
miracle [31]. Yet, if we further reflect on the fact that here the
RG is perfectly capturing a crossover between two different
universality classes, one of which is out of equilibrium, we
cannot help being more than a bit nonplussed.

In conclusion, the crossover between equilibrium and off-
equilibrium universality classes found in the hydrodynamic
theory of active matter of Ref. [25] is not an artifact of incom-
pressibility. We have found such a crossover in simulations
of the standard Vicsek model, without enforcing incompress-
ibility. This demonstrates that activity is able to modify the
critical exponents even in the absence of a feedback between
density and velocity and in the absence of long-range forces.
At the moment, we cannot tell whether including this feed-
back would bring the system to yet another nonequilibrium
universality class or would merely impair the rule of RG,
thus leading the system far from any notion of universality.
More work is needed to settle that question. In any case, these

results are relevant to real biological systems: On the one
hand, since insect swarms (and bird flocks) display very weak
density fluctuations [32], the incompressible hydrodynamic
theory and the equilibrium to nonequilibrium crossover it en-
capsulates are an appropriate starting point for more complex
treatments, such as the inclusion of nondissipative terms cou-
pling velocity and spin, which seem necessary to match theory
with experiments [18,33]. On the other hand, our analytical
study of the crossover highlights the existence of a crossover
length scale, such that the off-equilibrium behavior is only
found when the correlation length exceeds this length. This
opens up the possibility of observing the crossover in actual
experiments, brought about not necessarily by changes in ac-
tivity, but by the much more natural occurrence of biological
groups of different sizes.
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APPENDIX

1. Fixed-point coupling constants and dynamical
critical exponent

The RG fixed points rule the critical dynamics of the sys-
tem; indeed, critical exponents can be derived using recursion
relations of the parameters and the fixed-point values of the ef-
fective coupling constants. At order ε (one loop) the recursion
relations are

�l+1 = �l b
zl −2

(
1 − 1

4αl ln b
)
, (A1)

�̃l+1 = �̃l b
zl −d−2χl , (A2)
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αl+1 = αl b
ε[1 − (3/4)αl ln b − (10/3)ul ln b], (A3)

ul+1 = ul b
ε[1 − (1/2)αl ln b − (17/2)ul ln b]. (A4)

The running dynamical critical exponent zl and the scaling
dimension of the field χl are fixed, imposing that both the
natural time scale of the model �l and the noise strength �̃l re-
main untouched by the RG flow; namely, imposing �l+1 = �l

and �̃l+1 = �̃l .

zl = 2 − 1

4
αl , χl = zl − d

2
. (A5)

It is possible to show that this quantity zl entirely rules
the critical dynamics of the system. The temporal correlation
function C(t, ξ , k,P ) satisfies the following RG recursion
relation:

C(t, ξ , k,P0) = b2lzlC(tb−lzl , ξ/bl , kbl ,Pl ), (A6)

where Pl represents the set of parameters of the model flowing
towards the fixed point. Using the RG flow stop condition
�ξlSTOP = 1, which implies blSTOP = �ξ , the scaling relation
(A6) becomes

C(t, ξ , k,P ) = (�ξ )2zlSTOP C(t/ξ zlSTOP ,�−1,�kξ,P∗). (A7)

At fixed kξ the correlation function depends only on the ratio
t/ξ zlSTOP ; hence the relaxation time τ , ruling the decay of the
temporal correlation function, must obey

τ ∼ ξ zlSTOP . (A8)

The value of zlSTOP depends on the fixed-point value of the
effective coupling αl reached when the RG flow stops, or more
generally, on which of the two fixed points is approached at
the end of the RG flow. If the RG flow stops in the neigh-
borhood of the z = 2 equilibrium fixed point, then τ ∼ ξ 2;
conversely, if the RG flow stops in the neighborhood of the
nonequilibrium z = 1.7 fixed point, we have τ ∼ ξ 1.7.

2. Microscopic speed tunes hydrodynamic activity

To reproduce in the microscopic model the crossover from
equilibrium or inactive dynamics to off-equilibrium or active
dynamics that we have discovered in the coarse-grained the-
ory, we have to tune some microscopic parameter whose effect
is to change the activity coupling constant, α = λ2(�̃/�3)�−ε

(to lighten the notation, we drop here all the 0 subscripts
from the bare parameters). The intuitive candidate to tune is
the speed v0, since for v0 = 0 the Vicsek model reduces to
an equilibrium ferromagnet. However, it is unclear what the
effect of the limit v0 → 0 is in the hydrodynamic theory. We
develop here a method to find the dependence of the coarse-
grained parameters on microscopic speed in the limit of small
v0.

The original Vicsek model [4] is formulated in terms of the
microscopic velocities

vi(t + 1) = Rη

(∑
j

ni j (t )v j (t )

)
,

ri(t + 1) = ri(t ) + vi(t + 1),

(A9)

with the constraint of fixed speed, |vi| = v0. The correspond-
ing incompressible hydrodynamic theory is [25]

∂v

∂t
+ λ(v · ∇)v = �∇2v + (a + Jv2)v + f ,

〈 f (x, t ) f (x′, t ′)〉 = 2�̃δ(d )(x − x′)δ(t − t ′),
(A10)

where we have reinstated the mass term, av, for the sake
of generality. The coarse-grained parameters of the hydrody-
namic theory (λ, �, J, a, �̃) depend in complicated ways on
the microscopic parameters v0, η, rc, and also on the specific
coarse-graining procedure. Working out the precise connec-
tion between the two sets of parameters is highly nontrivial
(see, however, Refs. [12,34]). Even the simpler task of de-
termining the dependence of the coarse-grained parameters
on the microscopic speed, v0, is difficult, because the limit
v0 → 0 is hard to handle in Refs. (A9) and (A10). To get
around this difficulty, we rewrite the microscopic equations
of the Vicsek model in terms of the unitary orientations, as we
did in the main text,

ϕi(t + 1) = Rη

(∑
j

ni j (t )ϕ j (t )

)
,

ri(t + 1) = ri(t ) + v0ϕi(t + 1).

(A11)

To write a hydrodynamic equation for this model, we write the
coarse-grained velocity field as v(x, t ) = v0ϕ(x, t ), where we
have introduced the coarse-grained “orientation” field ϕ(x, t ).
It is important to note that, while ϕi are unitary vectors, the
field ϕ(x, t ) is not, as an effect of the coarse graining; this
is why we write “orientation” in quotes. The coarse-grained
velocity can be zero for two reasons: (i) because the system is
misaligned, so that the local average gives a zero value, or (ii)
because the microscopic speed v0 is zero. By decomposing the
velocity as v(x, t ) = v0ϕ(x, t ) we decouple these two effects,
so that ϕ(x, t ) can be zero only for the first reason. By using
the same exact arguments that lead from (A9) to (A10), we
can say that (A11) leads to

∂ϕ

∂t
+ λ′(v0ϕ · ∇)ϕ = �′∇2ϕ + (a′ + J ′ϕ2)ϕ + f ′,

〈 f ′(x, t ) f ′(x′, t ′)〉 = 2�̃′ δ(d )(x − x′)δ(t − t ′).
(A12)

In this last theory, apart from the usual implicit dependence
of all parameters on the microscopic ones, there is also an
explicit dependence on v0, coming from the fact that the ma-
terial derivative must contain a term (v · ∇) irrespective of the
field that gets transported, be it v or ϕ. We can now connect
the parameters of the two hydrodynamic theories, that for the
velocity and that for the orientation. To do so, let us multiply
by v0 both sides of equation (A12) and recall that v0ϕ = v,
thus yielding

∂v

∂t
+ λ′(v · ∇)v = �′∇2v +

(
a′ + J ′

v2
0

v2

)
v + v0 f ′. (A13)

This equation must be equal to (A10), because coarse-graining
the microscopic orientations ϕi and then multiplying by v0

must give the same field theory as coarse-graining directly the
microscopic velocities, vi, as long as v0 does not fluctuate.
Hence we can read the parameters of the hydrodynamic theory
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for v in terms of those of ϕ,

λ = λ′,

� = �′,

a = a′,

J = J ′/v2
0,

�̃ = v2
0�̃

′.

(A14)

The great advantage at this point is that the primed parameters
have a simple, well-defined limit for v0 → 0, because in this
limit the microscopic model (A11) becomes an equilibrium
ferromagnet [35] and therefore in this same limit the corre-
sponding hydrodynamic theory, Eq. (A12), becomes that of an
equilibrium ferromagnetic field theory, normally called model
A, which can schematically be written as [26,28]

∂ϕ

∂t
= −�eq

∂H
∂ϕ

+ ζ, 〈ζζ〉 = 2�eq, (A15)

where �eq is the equilibrium kinetic coefficient and H is the
classic Landau-Ginzburg Hamiltonian,

H =
∫

dd x (∇ϕ)2 + reqϕ
2 + ueqϕ

4, (A16)

where req is the equilibrium (square) mass and ueq is the
equilibrium non-Gaussian coupling constant. By comparing
(A12) with (A15) and (A16), we can determine the v0 → 0
limit of the parameters of the coarse-grained theory for the
“orientation” field ϕ,

a′(v0 = 0) = �eqreq,

J ′(v0 = 0) = �equeq,

�′(v0 = 0) = �eq,

�̃′(v0 = 0) = �eq.

(A17)

This means that the coarse-grained parameters of the hydrody-
namic equations for the “orientation” field reach a nonsingular
well-defined value in the equilibrium limit v0 → 0. The only
exception is the material derivative coupling constant λ′,
which remains undetermined, as it should, due to the fact
that the explicit v0 factor in front of it drives it to zero in the
v0 → 0 limit. We can now use (A17) and (A14) to work out
the small-v0 behavior of the original coarse-grained coupling
constants in terms of the speed and the equilibrium parame-
ters,

a ∼ �eqreq,

J ∼ �equeq/v
2
0,

� ∼ �eq,

�̃ ∼ v2
0�eq.

(A18)

The last equation is the most important to us: The noise vari-
ance in the hydrodynamic theory of the velocity field, �̃, must
go to zero as v2

0 when the speed goes to zero, in order to pro-
vide the correct equilibrium limit of the microscopic model.
The RG activity coupling constant is α = λ2(�̃/�3)�−ε , and

therefore its small-v0 behavior is given by

α = λ2v2
0

�2
eq

�−ε ∼ v2
0, (A19)

where we have simply assumed that the material derivative
coupling constant λ does not diverge in the v0 → 0 limit, as
there is no physical reason for that to happen.

We conclude that in order to tune activity in the coarse-
grained field theory, we can indeed tune the speed of the
microscopic theory; the nonlinear exponent 2 in (A19) also
shows that activity grows rather rapidly with v0, and hence
small changes in the speed can have great effects on critical
dynamics, as our simulation confirms. Notice that this appar-
ently intuitive link between activity and speed goes through
a not entirely trivial mechanism, namely, the dependence on
speed of the noise intensity in the original hydrodynamic
theory for the velocity.

One final consideration is in order. From (A18) we learn
that the ferromagnetic coupling constant, J , of the hydrody-
namic theory for the velocity, diverges for v0 → 0, which
may seem troubling, if not outright wrong. In fact, we should
remember that the effective ferromagnetic coupling constant,
namely, the parameter truly ruling the RG flow and fixed
points, is u = J (�̃/�2)�−ε . From (A18), we see that the
v0 → 0 limit of this effective coupling constant is

u ∼ �equeqv
2
0�eq

v2
0�

2
eq

�−ε = ueq�
−ε, (A20)

which is exactly the (finite) non-Gaussian effective coupling
constant of the equilibrium Landau-Ginzburg theory, as it
should be. Hence all is in order in the v0 → 0 limit. Phys-
ically, what happens is that the ferromagnetic term in the
hydrodynamic theory for the velocity is multiplied by an extra
v2, compared with mass and Laplacian terms, so that when
v0 → 0, the coupling J must diverge as 1/v2

0 to keep finite the
ferromagnetic interaction of the equilibrium theory.

3. Hydrodynamic breakdown for large speed

In this paper we consider two values of the speed, v0 =
0.05 (low activity) and v0 = 0.2 (high activity). As we have
seen, the activity coupling constant grows as the square of
the speed; hence this change of a factor of 4 is sufficient to
produce the crossover we wanted to test. However, 0.2 may
seem still quite a low value; hence one may ask what hap-
pens by increasing the speed even more and why we did not
consider very large values of v0 to test our theoretical results.
The answer is that although one is of course entitled to run the
microscopic theory at any value of v0, the hydrodynamic de-
scription of such a theory breaks down when v0 becomes too
large. More precisely, in order for hydrodynamics to hold, one
must have v0 � L (remember that the time step is set equal
to 1 in the model, which accounts for the weird dimensional
nature of this relation), which, given our systems’ sizes, limits
the highest values of v0 to the range 0.2–0.3. The reason for
this is the following.

In general [36], the continuum description of a microscopic
theory is applicable only if the Knudsen number Kn, which is
the ratio between the mean free path σ and the macroscopic
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length scale L, is small,

Kn = σ

L
� 1. (A21)

In the RG context, the main idea is that particles must undergo
many interactions within the coarse-graining volume, in order
for coarse graining to make sense at all; because such a vol-
ume must be much smaller than the entire system, Eq. (A21)
is a necessary condition for the field theory to make sense. In
the case of the Vicsek model, due to the time-discrete nature of
the dynamics with �t = 1, the mean free path for large speed
can be approximated as σ ∼ v0�t = v0, so that the range of
validity of a hydrodynamic description of the Vicsek model is
limited by the condition

v0 � L. (A22)

If we violate this condition, the continuum description breaks
down, starting with the very concepts of correlation length
and relaxation time. At the intuitive level, it is clear that
when v0 ∼ L, the very notion of local interaction disappears,
and the complete rewiring of the interaction neighborhood
of each particle at each time step makes a standard, albeit
off-equilibrium, statistical description of the problem quite
difficult.

4. Static correlation function and correlation length

When the Vicsek model presents a continuous phe-
nomenology, it is possible to compute the usual quantities
in classical statistical physics to describe the phase transition
[26]. However, due to the out-of-equilibrium nature of the
self-propelled particles, all the correlation functions involve
fluctuations of the order parameter velocity at time t computed
with respect to the velocity of the center of mass at the same
time [29], namely,

δvi(t ) = vi − 1

N

N∑
i=1

vi. (A23)

This definition implies the sum rule∑
i

δvi(t ) = 0. (A24)

Therefore, when we compute the spatial correlation func-
tion in k space as

C(k) = 1

N

〈∑
i j

sin(kri j )

kri j
δvi(t ) · δv j (t )

〉
, (A25)

where the brackets 〈 〉 indicate an average in time, we have
to take into account the fact that the correlation function
computed at k = 0 is null and thus the usual definition for
the susceptibility χ = ∫

dd rC(r) = 0 loses its meaning. As a
consequence, we identified as a measure of χ the maximum
of the correlation C(k) which occurs at a specific value of
wave number kc. This same value of wave number gave us an
estimate of the correlation length kc = 1/ξ . Indeed, when we
compute the correlation functions, we start considering very
large k, or equivalently short distances and averaging over all
the correlated pairs inside this region. It is clear then that the
correlation function C(k) increases when the wave number k

decreases since larger correlated regions are involved in the
average and it reaches its maximum value when the length
scale includes all the correlated pairs, namely, at the corre-
lation length ξ = 1/kc. Decreasing the wave number more,
the average starts to include not-correlated regions, and the
function decreases till reaching the zero at k = 0, as a conse-
quence of the sum rule (A24). The inverse of kc is, therefore,
a good estimate for the correlation length, while the value of
the correlation function computed at the same point can be
interpreted as the susceptibility χ = C(kc) [29].

5. Running simulations in the scaling region

For every size of the system with N particles, we identified
a finite-size critical point leaving the noise fixed at η = 0.45
and varying the density of the system. For every value of the
control parameter studied, we computed the susceptibility χ ,
and we recognized as the critical point the value of density ρc

for which the susceptibility reached a maximum. At this value
of density, we computed the correlation length ξ as described
above, and we studied the dynamics at k = 1/ξ . We consid-
ered systems of size N = 128, 256, 384, 512, 1024, 2048, and
we let the length of the box vary in order to span the transition
changing the mean nearest-neighbor distance r1. For each set
of parameters, we run from 105 to 106 steps (close to criti-
cality) to equilibrate the system, and then we collected eight
independent samples of 5 × 103 steps to compute the required
quantities. The metric interaction range is fixed to rc = 1.

6. Estimate of the relaxation time

The dynamical correlation function is defined as [29]

C(k, t ) = 1

N

〈∑
i j

sin[kri j (t, t0)]

kri j (t, t0)
δvi(t0) · δv j (t0 + t )

〉
t0

,

(A26)

where ri j = |ri(t0) − r j (t0 + t )|, 〈 〉t0 = 1/(Tmax − t )
∑Tmax−t

t0=1 ,
and Tmax is the length of the simulation. Normalizing
these functions at their value at t = 0, we define Ĉ(k, t ) =
C(k, t )/C(k, t = 0). Averaging over different independent
samples, we obtain the average correlation functions; hence
the characteristic time scale of these is determined from the
condition

1

2π
=

∫ ∞

0

1

τ
sin

( t

τ

)
Ĉ(k, t ). (A27)

The value of τ is, therefore, the time scale that realizes that
half of the total integrated area of the dynamic correlation
function in the frequency domain comes from the interval
−ωc < ω < ωc with ωc = 1/τ . This definition comes from
dynamic critical phenomena literature [30], and it is partic-
ularly handy since it is able to compute the relevant time scale
of systems in different scenarios: both when the relaxation is
dissipative and when it includes propagating modes.

7. Tests of homogeneity

For all the simulations collected, we looked at the temporal
series of the polarization φ = 1

N | ∑ vi|, monitoring jumps in
its average value as a trace of higher-density structures in the
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FIG. 3. Numerical simulations: test of homogeneity. Analysis of
homogeneity for data sets with v0 = 0.05 (red) and v0 = 0.2 (blue).
(a) Temporal series of polarization φ for both activities and for size
N = 2048 at the critical point. (b) The mean first-neighbor distance
is computed for each size N = 128, 256, 384, 512, 1024, 2048, and
it scales as x ∼ ρ

1/3
0 as predicted for homogeneous systems. (c) Tem-

poral series of nt : the number of particles entering into a box of size
l0 = L/7 that is centered in the middle of the bigger box of size L for
N = 2048. (d) Average in time of nt for all the sizes N and speed:
This quantity scales linearly with N , as predicted for homogeneous
systems 〈nt 〉 = N/73.

ensemble [Fig. 3(a)]. Moreover, we did additional basic tests
to check the spatial homogeneity condition: First, we analyzed
the mean first-neighbor distance x = r1/rc, which turns out to
properly scale as x ∼ 1/ρ1/3, as it should in a homogeneous
system [Fig. 3(b)]; second, we localized a box of size l0 = L/7
inside the bigger box of the system, and we counted how many
particles nt entered into the small box during the simulations.
We looked at its temporal series, and then we averaged it in
time obtaining 〈nt 〉 [1]. We expected, for systems without
traveling bands or aggregates of particles, 〈nt 〉 to fluctuate
around a mean value and to scale in size as

〈nt 〉 ∼ ρ0l3
0 , (A28)

where ρ0 is the average density [1]. In Fig. 3 we report data
for the two values of activity and the sizes N analyzed: In
Fig. 3(c) we show two temporal series of nt for N = 2048, and
in Fig. 3(d) we see that 〈nt 〉 follows very well the prediction
of (A28). Indeed, using information on l0 and of ρ0 = N/L3,
we obtain a linear trend in size as 〈nt 〉 ∼ N/73.

8. Statistical tests about the fit of the critical exponent

To carefully discriminate between the dynamic critical ex-
ponents of the two different fixed points, we performed three
basic statistical tests on our simulations.

Test 1. We rescaled the dynamic correlation functions for
low speed with z = 1.7 and the ones for high speed with
z = 2, reversing the scaling procedure showed in the main
text. The result is reported in Fig. 4, where we compare the

FIG. 4. Numerical simulations. (a) and (c) Scaling of dynamic
correlation functions Ĉ(k, t ) using values of z extrapolated by the
linear fits of Fig. 2: (a) v0 = 0.05 with z = 2.0 and (b) v0 = 0.20
with z = 1.7. (b) and (d) Same correlation functions reversing the
scaling procedure: (c) v0 = 0.05 with z = 1.7 and (d) v0 = 0.05 with
z = 2.0. The scaling hypothesis is not well verified for (b) and (d).

rescaling of Ĉ(k, t ) using the value of z obtained by the best
fit in the plane (ln ξ, ln τ ) with the scaling realized using the
exponent of the other fixed point. A discrepancy is visible,
and this confirms that dynamic correlation functions for speed
v0 = 0.05 scale better with the exponent z = 2 while the func-
tions for higher speed v0 = 0.2 scale properly for z = 1.7.

Test 2. We examined the consistency of the values of z
extrapolated by linear fits of the data with the theoretical
expectations. First of all, for each value of speed v0 we fit the
data on the plane (ln ξ, ln τ ) with the simple linear function
f (x) = mx + c. Since we know that τ ∼ ξ z, the slope m is the
value of z we are looking for. We obtained the following.

(i) v0 = 0.05: zsim = 2.10 ± 0.04.
(ii) v0 = 0.20: zsim = 1.65 ± 0.03.
The value of the exponent zsim is affected by an uncertainty

σ , which is computed assuming that data on correlation time
belong to a Gaussian distribution and that their standard devi-
ation can be determined with the least-squares method. Then,
we performed a basic hypothesis test to verify the compatibil-
ity with the expected theoretical values zth. We computed the
variable

t = zsim − zth

σ
, (A29)

which measures the distance between the theoretical and the
simulation value of z in units of uncertainty. If |t | > 3, the
probability that the value extracted from simulations is com-
patible with the theoretical one is less than 1%. We tested the
following.

(i) v0 = 0.05:

zth = 2.0 → t = 2.5, consistent,

zth = 1.7 → t = 10.0, not consistent.

(ii) v0 = 0.20:

zth = 2.0 → t = −11.7, not consistent,

zth = 1.7 → t = −1.7, consistent.
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This result validates the thesis that we found the dynamic
crossover in the Vicsek model.

Test 3. We evaluated the goodness of the linear fits of Fig. 2
using theoretical values of the dynamic critical exponents as
the fixed slope. To achieve this, we carried out a χ2 test.
For each data set with activity v0, we performed a linear re-
gression using both values of zth = 2.0, 1.7 and extrapolating
only the intercept c of the linear function from data. With
uncertainties in ln τ derived by the least-squares method, as
in the point above, we computed the standard χ2 for N − 1
degrees of freedom for both the analyses. If this results in χ2

larger than 11, we can say that the probability that the fit is
compatible with data is less than 5%; hence we obtained the
following.

(i) v0 = 0.05:

zth = 2.0 → χ2 = 9.98, consistent,

zth = 1.7 → χ2 = 415, not consistent.

(ii) v0 = 0.20:

zth = 2.0 → χ2 = 131, not consistent,

zth = 1.7 → χ2 = 7.04, consistent.

Once again, this analysis confirms the result of this paper,
namely, that increasing the activity of the self-propelled parti-
cles in the standard Vicsek model, we can numerically verify
the dynamic crossover from the equilibrium to the out-of-
equilibrium dynamic universality class.
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