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Abstract—In the present work, SPH formulae of the Finite-Time 
Lyapunov Exponents for the detection of Lagrangian Coherent 
Structures are presented for the analysis of vortical flows with 
violent fluid material transportation, exchanging and mixing. 
The Lagrangian Coherent Structures, detected by the ridges of 
FTLE field, reveal the hidden impenetrable inner boundaries 
inside the flow, which supplies a useful way for revealing the 
features e.g. vortices, flow trends etc. especially when moving, 
deforming or breaking boundaries exist. Thanks to the 
Lagrangian characteristic of SPH, the trajectory of each fluid 
particle is explicitly tracked over the whole simulation, which 
allows for a direct evaluation of the FTLE field implemented 
during the runtime or conducted as a post-processing. In this 
paper, δ-SPH method is applied for the numerical simulation and 
a particle splitting technique is adopted to improve the local 
accuracy and reduce the total amount of computation. With the 
scalar fields of FTLE, some representative complex free surface 
flows with strong vortical motions in naval and ocean engineering 
are analysis in the section of numerical results. Especially in the 
last case, the submerged vortical tunnels induced by the splashing 
bow wave are successfully captured using the proposed method.  

I. INTRODUCTION 
When considering a complex flow field, the use of the 

primary variables (e.g. pressure, velocity, etc.) to analyze the 
flow features can be not enough. This applies a fortiori 
especially when treating three-dimensional viscous flows 
where wakes shed by solid objects are involved. To overcome 
this limit secondary derived quantities are used in the literature  
to detect Coherent Structures (CSs), which partition the flow 
based on the instantaneous distribution of a scalar field, such as: 
vorticity, Q-criterion [1], ∆-criterion [2], λ2-criterion [3], etc. 
These variables are defined mainly based on the instantaneous 
velocity gradient tensor. However, the advection property of 
the flow (material transport, exchanging and mixing) cannot be 
revealed effectively with these definitions. In addition, as 
stated in Haller [4], under certain conditions most of the 
definitions of a vortex cannot be objective or not so suitable for 
an analysis of the flow-data (especially in a 3D context).  

The Lagrangian approaches to the CSs are related to the 
advection of the passive tracers in a finite time interval and 
therefore it supplies a new way for analyzing and 

understanding the transport property behind the instantaneous 
velocity data. Recently a so-called Lagrangian Coherent 
Structures (LCSs) defined as skeletons of the most repelling or 
attracting material surfaces (see e.g. [5, 6]) are applied for the 
flow-data analysis. The LCSs act as inner boundaries that 
organize the flow trend of the rest fluid material and they 
clearly show up the flow features like: vortex motions, material 
transportation, exchanging and mixing, etc., supplying a 
practical way to explore and understand the underlying 
mechanisms.  

Finite-time Lyapunov Exponent (FTLE) is an objective 
diagnostic quantity applied by Haller (see e.g. [7, 8]) to detect 
LCSs. FTLE measures the rate of separation of the nearby fluid 
particles over a finite time interval. In the forward-time, the 
ridges (i.e. hypersurfaces along which the variation of the 
quantity is smaller than transverse to them [6]) of the FTLE 
scalar field visualize the most repelling material surfaces; 
conversely in backward-time, the FTLE ridges reveal the most 
attracting ones. These previously mentioned most repelling or 
attracting material surfaces constitute the boundaries of the 
repelling or attracting LCSs.  

The main advantages of the FTLE with respect to other 
quantities as vorticity, Q-surfaces, λ2-surfaces, etc. can be 
summarized in:  

(i) FTLE is a quantity integrated in time and therefore local 
fluctuations of the velocity field do not induce much numerical 
noise on it.  

(ii) FTLE is formulated in the Lagrangian framework 
allowing for a better identification of the LCSs with respect to 
quantities derived from the velocity gradient.  

(iii) The locations of the LCSs are independent of user-
defined threshold in a FTLE field while for Eulerian coherent 
structures, the size and shape change a lot for different quantity 
thresholds.  

(iv) FTLE is able to identify LCSs with an accuracy that in 
some cases resemble the one obtained by using advanced 
experimental technique.  
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Figure 1. Viscous flow past a circular cylinder at Re = 100. Top: attracting 
FTLE contour plot through an SPH simulation. Bottom: experimental 
visualization by Zdravkovich [9].  

Top plot of Figure 1 shows an example of the use of 
attracting FTLE contour plot for capturing the attracting LCSs 
of a von Karman street shed by a flow past a circular cylinder 
at Re = 100. The SPH FTLE field has been calculated with the 
algorithm proposed in Section Ⅲ. On the bottom plot of the 
same figure a photo from experiments conducted by 
Zdravkovich [9] is depicted. One may find that the shape of the 
attracting LCSs resemble the experimental smoke lines. 
Moreover, the flow structure in the vortex is shown up more 
clearly by using FTLE than using the smoke line visualization 
in the experiment.  

The present work is dedicated to explain the algorithm for 
the detection of LCSs in viscous flows through Finite-Time 
Lyapunov Exponents (FTLEs). A novel numerical technique is 
presented for the evaluation of the FTLEs in the context of the 
SPH models. Thanks to the Lagrangian characteristic of SPH, 
the trajectory of each fluid particle is explicitly tracked over the 
whole simulation. This allows for a direct evaluation of the 
FTLE field supplying a new way for the analysis of the 
scattered flow-data in SPH.  

Problems arise in the cases with inflow and outflow 
boundaries that the particles flowing out on the outflow 
boundary will be reused again on the inflow boundary, which 
makes the FTLE calculation in trouble. Therefore, we propose 
a treatment to update the particle information for the reused 
particles in the inflow buffer to overcome this problem. In 
addition, in order to improve the accuracy in some local 
regions while save the total computational effort, a particle 
splitting method is also applied, which shows that the present 
FTLE algorithm is applicable for the simulations with multi-
resolutions.  

This paper is arranged as follows: in Section Ⅱ , basic 
principles of FTLE are described; Section Ⅲ is dedicated to the 
evaluation of FTLE within the SPH framework. Section Ⅳ 
briefly recalls the SPH scheme used in the present study. 
Finally, in Section Ⅴ FTLEs are applied to detect the repelling 
or attracting LCSs in specific numerical test cases. It is 
demonstrated that FTLEs are fairly suitable in SPH to reveal 
the main flow features. Conclusions and further development 
will wrap up the paper.  

II. DEFINITION OF THE FINITE TIME LYAPUNOV EXPONENTS 
IN CONTINUUM MECHANICS 

A. Brief recall of continuum mechanics fundamental concepts 

 

Figure 2. Sketch of the repelling motions of material points in backward time.   

In the present section the theory of continuum mechanics is 
considered in order to define the deformation of elementary 
fluid volumes when evolving through a flow field. With the 
flow map , we have  

    
00; , t

tt t x X X   (1) 

The position x  at time t  of a generic material point is 
linked to a spatial position X  at a past time 0t t . Due to the 
properties of the flow map, this function can always be 
reversed, so that the flow map in the backward time 0t t  
becomes:  

      0

0

1

0 ; , t t
t tt t  


    X x x x  (2) 

As depicted in Figure 2, the material points attracting in the 
forward time 0t t  equates to a repelling motion in the 
backward time 0t t .  

 

Figure 3. Sketch of the repelling motions of material points in forward time. 

Besides the configurations at the past time 0t  and the 
present time t , for the following analysis, we introduce also a 
future time configuration at ft t  with positions fx . Using 
the map   we get that:  

    ; , ft
f f tt t x x x   (3) 

As depicted in Figure 3, the material points are repelling 
during the forward time ft t . In order to identify univocally 
the repelling or attracting pathline configurations, the 
deformation gradient F  is defined as:  

  
 

0

0

t
tt

t


 
 

XxF X
X X

  (4) 

277



11th international SPHERIC workshop Munich, Germany, June 14-16, 2016 

 
 

The first property of this tensor can be derived through its 
determinant. Indeed this Jacobian measures the ratio between 
the elementary volumes 0dV  at times 0t  and dV  at time t  
related to the material point having a past position X :  

  
0

0

det t
t

dV
J

dV
 F X   (5) 

If the flow map   describes an incompressible flow, J  is 
always equal to 1 for each time t  and for each material point 
(i.e. X  ).  

The so-called forward-in-time Right-Cauchy–Green strain 
tensor can be evaluated through the relation:  

      
0 0 0

Tt t t
t t t   C X F X F X   (6) 

being [ ]T  the transpose operation. The determinant of C  is 
equal to 2J . In a similar way the above equations can be used 
to define forward-in-time tensors using the configuration x  
and fx  at time t  and ft :  

      f f f
Tt t t

t t t
   C x F x F x   (7) 

B. Polar decomposition 
In order to better understand the physical meaning of the 

tensors C , the polar decomposition of the tensor F  is used in 
the following. The latter consists in the definition of two new 
tensors R  and U  such that:  

 Orth Sym   F R U R U   (8) 

being R  the rotating tensor, U  the right stretching tensor, 
Orth the set of the rotation tensors and Sym the set of the 
symmetric tensors.  

Using Eq. (8) on the definition of the Right-Cauchy–Green 
strain tensor (6) together with the properties of the tensor R  
and U  we get: 

 2T T T   C F F U R R U U   (9) 

Therefore the tensor C  is linked just to the stretching 
deformation of the fluid elementary volumes. From Eq. (9) 
results that the tensor C  is symmetric (like U ) and positive 
defined (i.e. C    Sym+) therefore its eigenvalues are always 
positive real numbers. The multiplication of the three 
eigenvalues (in a 3D framework) of C  gives:  

 2
in 2 detM Max J    C   (10) 

being Min  and Max  the smallest and largest eigenvalues of 
the tensor C , respectively. If an incompressible flow is 
considered the above relation becomes:  

 in 2 1M Max      (11) 

Therefore Max  is always a number greater than or equal to 
1 measuring an elongation of the fluid volume in the specific 

direction identified by the related eigenvector. Similarly Min  
is always less than or equal to 1 measuring the contraction of 
the fluid volume.  

C. Evaluation of the FTLE  
Thanks to the above properties the forward-in-time FTLE(+), 

ft
t  in the time range  , ft t  can be evaluated as 

 
   

     

max
( )

1
lnf f

f f f

t t
t t

f

Tt t t
t t t

C
t tFTLE




      
    

x x

C x F x F x

  (12) 

The physical meaning of  ft
t x  is the rate of separation of 

the trajectories of nearby material points in the present 
reference positions x  when moving backward in time ft t .  

Conversely, using the backward-in-time deformation 

gradient 0t
tF  and the related backward-in-time Right-Cauchy–

Green 0t
tC , a backward-in-time FTLE(-)  0t

t x  in the time 

range  0,t t  can be evaluated through:  

 
   

     

0 0

0 0 0

max
( ) 0

1
lnt t

t t

Tt t t
t t t

C
t tFTLE




       
    

x x

C x F x F x

  (13) 

The physical meaning of  0t
t x  is the rate of separation of 

the trajectories of nearby material points in the present 
reference positions x  when moving backward in time 0t t .  

Eqs. (12) and (13) are the key points for the identification 
of the LCSs as already shown and discussed in the recent 
literature [5]. Thanks to the use of a future and a past 
configuration references, both FTLE(+) and the FTLE(−) have 
been defined on the material points x  at the time t .  

III. EVALUATION OF THE LYAPUNOV EXPONENTS WITHIN 
THE SPH FRAMEWORK  

A. SPH approximation formulae 
In the SPH method, the spatial derivatives of the primary 

variables (i.e. velocity u and pressure p ) are evaluated 
through the formulae: 

 
 
 

( ; )

( ; )

i j i j i jj

i j i j i jj

W h V

p p p W h V

       

       




u u u x x

x x
  (14) 

where jV  is the volume of particle j  and ( ; )j iW hx x  is 

a kernel function with a finite support. The smoothing length h  
is a reference length of its support. When h  goes to zero the 
kernel function W  tends to be a delta Dirac function. For the 
ease of notation, hereinafter we denote the kernel simply 
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through ijW . In this work a Wendland C2 kernel function is 

used with a compact support with a radius equal to 2h  which 
remains constant in space and time. The ratio h x  is set equal 
to 2, corresponding to a number of interacting neighbours equal 
to 50 in a 2D framework.  

For secondary variables f  a more accurate interpolation 
can be used, for example in this work the following formula is 
adopted:  

 
 

 
1

( )i j i i i ij jj

i j i i ij jj

f f f W V

x x W V


     



      





x L

L
  (15) 

which guarantees the first order completeness (see e.g [10]).  

B. SPH evaluation of the FTLE 
The proposed method for the evaluation of the FTLE is 

based on the calculation of the deformation gradient using the 
sets of the fluid particles X , x  and fx . The tensor F  can be 
discretized using the formulae presented in the previous section:  

   

   
0

1

( ) ( ; )

( ; )

t
t i j i i i j i jj

i j i i j i j

W h V

W h V


     
       

F X x x L X X X

L X X X X X
 

 (16) 

For the deformation tensor in the forward time ft t , a 
similar equation is given as follows: 

 
 

  1

( ) ( )

( )

ft
t i fj fi i i ij jj

i j i i ij j

W V

W V


    
      

F x x x L x

L x x x
  (17) 

Regarding the backward-in-time deformation gradient, this 
can be evaluated as: 

  0 ( ) ( )t
t i j i i i ij jj

W V    F x X X L x   (18) 

Here the kernel derivation is performed using the particle 
position x  at time t . Both Eqs. (16) and (18) can be 
implemented in an SPH solver or in a post-processing code 

giving as inputs the two configurations  ,j jVx  and 

 ,j jVX  while Eq. (17) can only be evaluated as a post-

processing since the particle position fx  is previously 
unknown.  

Substitute Eqs. (17) and (18) into Eqs. (12) and (13) one 
can evaluate the repelling or attracting FTLE field, in which the 
ridges constitute the repelling or attracting LCSs [5].  

IV. BRIEF RECALL OF THE ADOPTED SPH METHOD  

A. δ-SPH scheme 
The algorithm proposed in the previous section is 

applicable for different particle methods, e.g. SPH, MPS etc., 

since it is simply based on the particle positions at three 
different time instants: 

 0 0 0,  t V X ,  ,  t x V  ,  ,f f ft V x . 

In the present work, δ-SPH scheme [11-14] is applied to 
model some representative complex flows with strong vortical 
motions in naval and ocean engineering and FTLE is applied to 
analysis the flow features. A particle shifting technique 
proposed by Lind et al. [15] is combined with the δ-SPH to 
reducing the effect of tensile instability. The solid wall 
boundary is modelled through the use of the fixed ghost 
particles, see [14].  

B. Evaluation of FTLE in presence of inflow and outflow 
boundaries 

 

Figure 4 The sketch of the inflow and outflow boundary conditions. When a 

particle enters the inflow zone, the reference position iX will be assigned 

through Eq. (19). The physical variables for particles moving inside the inflow 
domain and out flow domain are kept constant.  

The particles exiting from the outflow boundary will be 
reused on the inflow zone. For the particles entering the inflow 
zone, it is needed to update their initial position X  with the 
following equation:  

  
0

inflow

t

t
x U t dt  X   (19) 

With Eq. (19), we can suppose that the reused particle is 
the particle starts from X  and at time 0t , it reaches the inflow 

boundary with the velocity  inflowU t  [5].  

C. Evaluation of FTLE in presence of particle spliting 
technique  

 

Figure 5. The arrangement for the daughter particles when a mother particle is 
split.  

This part is dedicated to introduce the particle splitting 
technique allowing for a relatively high particle resolution in 
the local region of interest and reducing the total computational 
effort. The algorithm is when a mother particle enters the 
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splitting region, it is split into four daughter particles on the
four vertices of a square centred on the mother one, see the 
sketch in Figure 5. For the daughter particles, except the mass 
and volume which are a quarter of the mother ones respectively, 
they inherit all the other general variables (density, velocity, 
smoothing length, etc.). It is worth noting that the reference 
particle positions needed for the FTLE evaluation is also 
inherited. Since on both sides of the splitting interface, we 
allow for an identical smoothing length, the SPH 
approximation there is still accurate and stable, even when 
particles are split on the free surface.  

V. NUMERICAL RESULTS 

A. Flow a past fixed cylinder in a rectangualr box 
The first test-case concerns an ellipse with axis ratio 0.4 

moving forward with angle of attack α = 20 in a viscous fluid 
inside a rectangular box. The rectangular box is 40c  long and 
5c  wide where c  is the major axis of the ellipse. After a 
short-time acceleration, the ellipse is moving in straight line 
with a constant velocity U. The Reynolds number of the 
problem is / 500Re Uc   . No-slip boundary condition is 
applied on the ellipse while simple free-slip boundary 
condition is applied on the rectangular wall. The fluid domain 
is discretized with the resolution / 150c x   in order to 
accurately resolve the boundary layer region. An overall 
number of 4,500,000 particles is used.  

 

 
Figure 6. The repelling and attracting LCSs detected by the ridges of the 
forward time FTLE(+) and backward time FTLE(-) using Eq. (12) and Eq. (13) 
respectively.  

In order to show the most repelling and attracting LCSs 
in the flow field, Eq. (12) and Eq. (13) is applied to evaluate 
the backward time FTLE(-) and forward time FTLE(+) 
respectively in which three different time instants are used: the 
initial time 0t , a genetic t  and the future time 40 /ft c U  
seconds. Both FTLE(+) and FTLE(−) are evaluated as a function 
of the particle positions ix . In all the results presented the 
Lyapunov exponent is made non-dimensional using the time 

range 0T t t   for the FTLE(−) and fT t t   for the 

FTLE(+). For the sake of the simplicity both FTLE(−) and 
FTLE(+) are indicated with T  in the figure. 

In Figure 6, the two different T  fields at time 
/ =30.06tU c  give the loci for the most repelling and attracting 

LCSs respectively. On the top figure, the positions where the 
fluid material is subjected to the most stretching deformation 
is revealed with higher T , while on the bottom one, higher 

T  shows the material subjected to strongest attracting 
deformation. The ridges of the FTLE(+) and FTLE(−) 
distribution construct the repelling and attracting LCSs 
respectively.  

It is worth noting that the backward time FTLE(−)  reflects 
the shedding of a classical von Karman Vortex Street and it 
resembles the one obtained with numerical streaklines by [16].  

 

 

 
Figure 7. The plots of the Lagrangian tracers at time  /   18tU c   
according to their initial vertical coordinates.  

 

 
Figure 8. Viscous wake shed by a moving inclined ellipse: vorticity field (top) 
and second invariant of the velocity gradient Q (bottom) at time / 18tU c  . 

Based on the same case, we distribute some Lagrangian 
tracers at the beginning of the simulation and plot them at 
 /   18tU c   according to their initial vertical and horizontal 
coordinates. Compare the top and middle plots in Figure 7, we 
can find that attracting LCSs have the same shape of the inner 
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boundaries for the fluid material transportation, which means
that with attracting LCSs, the flow field is partitioned into 
several parts and the flow cannot penetrate the boundaries of 
these regions. However, through the bottom plot which is 
contoured according to the initial horizontal coordinates of the 
tracers, one can only observe the fluid material transportation 
in the horizontal direction. That means using the Lagrangian 
tracers, the physical phenomena is observed dependent on how 
the tracers are plotted, but with attracting FTLE(-), inner flow 
boundaries are revealed independent from the user effects. 
Therefore one can see clearly how the fluid material is 
transported or mixed after the elliptical cylinder passes in the 
rectangular box.  

The following part is dedicated to show the vortex 
structure revealed by the FTLE(-) ridges. Usually the vortex 
structure is shown by the Eulerian defined quantities. Here we 
plot the vorticity and second invariant of the velocity gradient 
Q in Figure 8. Compare Figure 7 and Figure 8, one may find 
that the whirling parts of the attracting LCSs locate the 
boundaries of the vortices shed from the ellipse. In addition, 
the flow structure inside the vortices is also shown clearly. 
However, by the vorticity or Q-definition, the information 
inside the cortex is hidden. Furthermore, the region of the 
vortex is also dependent by the artificial chosen threshold of 
the quantities as already emphasized. Considering the 
advantages of the FTLE(-) ridges in showing up the flow 
features, FTLE(-) is the main topic hereinafter.  

B. Rotating and sinking of a rectangular box 

    

    
Figure 9 The attracting LCSs detected with different time interval T  . 

In the calculation of FTLE, the magnitude of the time 
interval T  is less discussed in the literature. In this part, based 
on the case of the rotating and sinking of a rectangular box 
with the length of L  and width of 0.5L , we investigate the 
effect of T  on the distribution of the backward time FTLE(-). 

In the setup of the present simulation, the density of the 
rectangular box is twice as the one of the fluid. The box center 
is horizontally located at (0.5 ,7.5 )L L initially. The gravity 

center of the box is shifted by 0.25L  from the box center to 
the right side. On the rectangular box, no-slip boundary 
condition is applied while on the outside boundary which is 
4L  wide and 10L  high, simple free-slip boundary condition 
is applied.  

Due to the density difference, after the release, the box 

starts to rotate and sink. Finally, at  1 2 9.87t g L  , the box 

is about to touch the bottom. The backward time FTLE(-) field 
is calculated using Eq. (13) with different time interval T , 
which is decreasing gradually from left to right and top to 
bottom, as is shown in Figure 9. When T  is larger than 6.75, 
the distributions of the LCSs are similar. That means 
increasing the time interval makes negligible effects on the 
shape of the LCSs. However, when the time interval is 
decreased, it is found that the vortex structures at the end of 
the LCSs are gradually lost. Finally, when 1.83T   is used, 
there remains very few vorticities close to the box. The reason 
is when a small time interval is used, the fluid deformations 
before the reference time 0t  are lost. However, even the time 

interval is changed; the shape of the LCSs remains similar. 
That means the detection of the LCSs with FTLE is free from 
the user-defined threshold of the time interval T . 
Nevertheless a large time interval is necessary to reveal 
complete LCSs inside the whole flow field. Therefore in the 
present work, we use the initial fluid configuration as the 
reference one, i.e. using presentT t  for FTLE(-). 

C. Flow past an ellipse beneath a free surface  
In this part, the flow past an elliptical cylinder beneath a 

free surface is numerically investigated. The axis ratio of the 
ellipse is 0.4 and it is placed at 0, 0x y   with the angle of 

attack 20  . The inflow boundary is positioned at / 6x c    
and outflow one at / 24x c  . The undisturbed fluid surface 
lies at / 1y c   and the fluid bottom lies at / 5y c   . In order 
to reduce the total amount of calculation, the particle splitting 
technique introduced in Section Ⅳ is applied. For the fluid 
particles flowing after / 1.5and / 2x c y c      , it is split into 
four daughter particles.  

The distributions of the attracting LCSs (ridges of FTLE(-)) 
at different time instants are shown in Figure 10. Near the 
cylinder, in the region /   5x c  , the vortex street is still 
similar to the traditional Karman Vortex Street. However, as 
the wake propagates further and expands in the vertical 
direction, the free surface yields a repelling effect on the 
vortices, which finally pair forming a horizontal pattern (see in 
the region /  > 5x c ). Furthermore, because the fast current 
originated above the elliptical cylinder, plunging breakings are 
forced in the upstream direction and some vortex structures are 
created, see the figures at 1/2(g/ c) 6.48t   and 1/2(g/ c) 9.72t   
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in Figure 10. At 1/2(g/ c) 12.96t  , these vortex structures 
originated from the breaking surface are absorbed by the 
underlying von Karman street because of their downward 
motions. Finally at 1/2(g/ c) 18.36t  , the flow reaches a steady 
stage. The attracting LCSs show up the inner boundaries of the 
fluid material transportations. In the region of /   10x c  , 
some part of the LCSs touches the free surface, that means as 
the fluid flow past the ellipse, the deeper fluid is gradually 
transported to the fluid surface and the fluid material initially 
on the surface is carried downward by shed the vortices.  

 

 

 

 
Figure 10. Flow past an elliptical cylinder beneath a free surface: FTLE(−) 
contour plots for four different time instants showing the interaction between 
the Karman vortex street and the free surface. 

For such a case FTLEs supply an effective way to reveal 
these vortex structures, the material exchanging between the 
surface fluid and deeper one and show the interesting process 
of the interactions between vortices and the free surface.  

D. Breaking wave pattern generated by fast ships 
The last test case studied is the breaking and splashing of 

bow waves for high speed ships. In order to make this case 
easier for the readers to reproduce, we adopt a simplified ship 
configuration as shown in Figure 11.  

 
 

(a) (b) 
Figure 11. (a) The three view drawing for the simplified ship model; (b) the 
pictorial drawing of the simplified ship model. 

In [17] the breaking wave pattern of a fast ship has been 
studied in detail for different forward ship speeds. In that work 
a 2D + t SPH model has been used and the vortical structures 
due to plunging of the bow wave are tracked using passive 
markers initially positioned on the undisturbed free surface. 
The same technique has been also adopted in [18] combining 
with vorticity contour plots. In the present work a similar case 
is conducted to show the benefits of using the FTLEs for 
capturing the bow breaking wave features. In this section the 
FTLE(−) is calculated to detect the submerged vortical tunnels 
entrapped by the breaking phenomena. In this study, the water 
depth of the fluid domain is 5 times deeper than the ship 
draught, which avoids the shallow water effects. 

This test-case is an attempt to extend the detection of 
LCSs from a 2D to a 3D framework and to show its potential 
application in naval engineering. The ship Froude number 
considered is 0.41Fr U gL   with L is the ship length 
and U the forward ship speed. For this case an intense 
plunging breaking is generated by the bow wave with the 
entrapment of two vortex tubes running along the whole ship 
length.  

Top plot of Figure 12 depicts a panorama view of the 
simplified ship. The particle belonging to the free surface are 
identified through the algorithm presented in [19] and plotted 
in blue. The other particles are plotted with a colour contour 
plot of the FTLE(−) indicated with T . Only the particles 
having a T larger than 2, which detect the LCSs related to 
the two submerged vortex tubes, are plotted. This clearly 
shows that through the FTLE(−) it is possible to reduce the 
amount of data for representing the LCSs, which is a 
remarkable advantage for the analysis and for the storing of 
3D data. In middle plot of Figure 12 a detail of the flow in the 
bow region is depicted. Two submerged vortex tubes, 
originated by the first and second plunging jet is shown up by 
the FTLE(-) plot. In addition, in the downstream of the ship 
shoulder, another vortex tunnel is generated. This vortex is 
caused by the sharp corner at the bilge of the simplified ship 
model. However, for a ship with a round bilge, this vortex is 
not created, see in [5]. In bottom plot of Figure 12, a rear view 
from right astern shows the height of the splash-up of the free 
surface and the depth of entrapped vortex tunnels. The vortex 
tunnel carries the fluid material from the water surface to the 
inner region and the vortex boundary reaches even deeper than 
the draught of the ship. It is highlighted that for fast surface-
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piercing ships, the disturbing to the fluid is not only confined
to the surface region, but also deep into the water even deeper 
than the ship draught and FTLE(-) supplies a practical way to 
reveal the fluid material transportation generated by the 
entrapped vortices.  

 

 

 

Figure 12. Breaking wave pattern generated by the simplified ship model at 
0.41Fr U gL  . Top: FTLE(−) contour plots, only particles with λT 

greater than 2 are plotted. The particles belonging to the free surface are added 
and plotted in blue. Middle: a detail of the bow wave released from the ship 
shoulder. Bottom: a rear view from right astern shows that the vortical tunnel 
reaches even much deeper than the draught of the ship. 

VI. CONCLUSION 

In this work the Finite-Time Lyapunov Exponents 
(FTLEs) are formulated in the SPH framework for the 
detection of Lagrangian Coherent Structures (LCSs). From the 
continuum mechanics theory and using the Polar 
Decomposition it is shown that the FTLEs represent a measure 
of attraction and repulsion of pathlines during the flow 
evolution. Then, the theory of the Lyapunov Exponents has 
been introduced in the Smoothed Particle Hydrodynamics 
context allowing for a direct evaluation of the FTLE fields. 

The novel formulations introduced for the FTLEs 
calculation within the SPH method have been finally tested on 
four different test-cases of increasing complexity. It is shown 
that the attracting LCSs revealed by the ridges of FTLE(-) plot 
gives the boundary of the fluid material transportation and 

further the vortex positions. The combination of SPH and
FTLE is applicable for free surface problems with serious free 
surface splash-up. Especially for the naval engineering 
problem the proposed algorithm has been successfully applied 
to capture the submerged vortical tunnels caused by the 
splashing bow wave. In future the present technique will be 
extended to the 3D framework.  
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