
Physica Medica xxx (xxxx) 1–13

Contents lists available at ScienceDirect

Physica Medica

journal homepage: www.elsevier.com/locate/ejmp

Addressing signal alterations induced in CT images by deep learning
processing: A preliminary phantom study

Sandra Doria a, b, Federico Valeric, d, Lorenzo Lasagni c, d, Valentina Sanguineti e, f,
Ruggero Ragonesi e, f, Muhammad Usman Akbar e, f, Alessio Gnerucci c, d, Alessio Del Bue g,
Alessandro Marconi c, Guido Risaliti c, Mauro Grigioni h, Vittorio Miele i, Diego Sona e, j,
Evaristo Cisbani h, ⁎, Cesare Goric, k, Adriana Taddeucci l

a Istitu to di Ch imica dei Co mposti OrganoMeta llici, Co nsiglio Nazionale delle Ricerche, Florence, Italy
b European Laborato ry Fo r Non Linear Spectroscopy, Università degli Stud i di Firenze, Florence, Italy
c Dipartimento di Fisica e Astronomia, Università degli Stud i di Firenze, Florence, Italy
d Scuo la di Scienze della Sa lute Umana, Università degli Stud i di Firenze, Florence, Italy
e Pattern Analysis & Co mputer Vision , Istitu to Italiano di Tecnolog ia, Genoa, Italy
f Dipartimento di Ingegneria Navale, Elettrica, Elettron ica e delle Telecomunicazion i, Università degli Stud i di Genova, Genoa, Italy
g Visual Geometry and Mo delling, Istitu to Italiano di Tecnolog ia, Genoa, Italy
h Istitu to Superiore di Sanità , Centro Nazionale Tecnolog ie Innvat ive in Sanità Pubblica, Ro me, Italy
i Radiod iagnostica di Emergenza-Urgenza, Azienda Ospeda liero-Universita ria Ca reggi, Florence, Italy
j Fo ndazione Bruno Kessler, Trento , Italy
k Istitu to Nazionale di Fisica Nucleare - Sezion e di Firenze, Sesto Fiorentino , Florence, Italy
l Unità Operat iva di Fisica Sanita ria, Azienda Ospeda liero-Universita ria Ca reggi, Florence, Italy

A R T I C L E  I N F O

Keywords:
Artificial intelligence
Convolutional neural network
Computed tomogra phy
Image qual ity
Radiomic features

A B S T R A C T

Purpose: We investigate, by an extensive quality evaluation approach, performances and potential side ef-
fects introduced in CT images by Deep Learning (DL) processing.
Method: We selected two relevant processing steps, denoise and segmentation, implemented by two Con-
volutional Neural Networks (CNNs) models based on autoencoder architecture (encoder-decoder and
UNet) and trained for the two tasks. In order to limit the number of uncontrolled variables, we designed
a phantom containing cylindrical inserts of different sizes, filled with iodinated contrast media. A large
CT image dataset was collected at different acquisition settings and two reconstruction algorithms. We
characterized the CNNs behavior using metrics from the signal detection theory, radiological and con-
ventional image quality parameters, and finally unconventional radiomic features analysis.
Results: The UNet, due to the deeper architecture complexity, outperformed the shallower encoder-
decoder in terms of conventional quality parameters and preserved spatial resolution. We also studied
how the CNNs modify the noise texture by using radiomic analysis, identifying sensitive and insensitive
features to the denoise processing.
Conclusions: The proposed evaluation approach proved effective to accurately analyze and quantify the
differences in CNNs behavior, in particular with regard to the alterations introduced in the processed im-
ages. Our results suggest that even a deeper and more complex network, which achieves good perfor-
mances, is not necessarily a better network because it can modify texture features in an unwanted way.

1. Introduction

In the last decades Computed Tomography (CT) applications have
gained a fundamental role in the field of diagnostic imaging [1,2], gen-
erating an increasing demand for visual examination by the radiolo-

gist. This need, together with the evolution of Artificial Intelligence
(AI) technologies supported by the increasing availability of computa-
tional resources, has driven the scientific research towards the develop-
ment of AI-based tools. In particular, various Deep Learning (DL) mod-
els have been designed by researchers for relevant tasks applied to CT
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images and have been largely documented in literature because of their
potential support to the radiologist staff in the diagnosis from clinical
images [3–9]. Indeed, Convolutional Neural Networks (CNNs) have
shown remarkable effectiveness in several tasks, such as automatic lo-
calization and segmentation of low contrast objects and denoising of
clinical images [10,5,11,6,7,12–14,3,15–17].

Many studies have evaluated the impact of DL algorithms on image
quality by means of conventional image analysis, including estimation
of signal to noise ratio (SNR), noise power spectrum (NPS) and modula-
tion transfer function (MTF) ([18–29]). According to these image qual-
ity estimators, DL algorithms have shown the ability to decrease noise
and remove related artifacts [30], even if the preservation of a good
spatial resolution is still under debate ([19,21,24,26,27]). However, be-
yond the surprisingly good results in many domains, DL tools are black-
boxes, which interpretation remains still obscure. As a consequence the
images resulting from DL processing might present subtle alterations
that might impact further processing steps. As a matter of facts, the na-
ture and the extent of possible alterations of the information content in
output images after the CNNs processing remains mostly unexplored.

The aim of this work is, therefore, to address the problem of possible
alterations induced by DL processing methods on CT images. We per-
formed such investigation by means of simplified images obtained from
a specially designed homogeneous PMMA phantom with inserts of vari-
ous diameters and contrasts. Indeed, one strength of this research con-
sists in having collected a large amount of labeled CT images necessary
to train and test the CNNs in highly controlled conditions.

We focused the analysis on two tasks: denoising and object segmen-
tation. Indeed these two tasks are exemplar of the two main issues in
the field of image evaluation: detectability preservation with increas-
ing noise and areas identification in low contrast environment. All ex-
periments were based on the adoption of two CNN architectures with
different complexity: a standard encoder-decoder and its extension, the
more powerful UNet model, largely applied in the field of medical
imaging for segmentation and denoising tasks [31–47]. The choice of
using these two models was guided by the intention to study how the
increasing computational power affects the structure of information in
the processed images. In addition, since there are some works reporting
increased performance of CNNs addressing multi-tasks learning [48,
49], we explored this solution modifying the models is such a way to
solve both denoising and segmentation in one shot.

CNNs outputs were assessed through various metrics. For the seg-
mentation results the Dice Similarity Coefficient (DSC) and the area
under Receiving Operating Characteristic (ROC) curves [50–57] were
adopted. Denoising results were assessed by means of conventional
metrics (SNR, NPS, MTF). In addition, since radiomics is attracting in-
terest because of its descriptive power [58–60], resulting images were
also assessed by means of relevant radiomics features of the first and
second order [61]. In this analysis we exploited the radiomics features
with a novel perspective, considering them as “radiomics properties”
characterizing the information structure. The comparison of images in
terms of these “radiomics properties” allowed us to identify the “sensi-
tive features”, i.e. the features affected by the CNN denoising process,
hence, more suitable for analyzing the alterations introduced by such
process. This analysis allowed to better characterize the image alter-
ations, adding further information to the one arising from conventional
metrics. On the other hand, the same comparison allowed us to identify
the “robust features”, i.e. those insensitive to the CNN denoise process.

The investigation procedure we adopted resulted efficient enough
to accurately detect and quantify the differences in CNNs behavior
both for the attained result and for the alterations introduced in the
processed images. Its sensitivity resulted also adequate to properly
quantify the differences in noise shape associated to the reconstruction
method (FBP or IR) [62–64].

2. Materials and methods

2.1. Phantom and CT acquisitions

We designed and manufactured a PolyMethyl MethAcrylate
(PMMA) phantom (Fig. 1) of ellipsoidal shape consisting of four adja-
cent blocks (size cm each); one block is homogeneous in
PMMA to produce background images; two blocks contain 5 cylindri-
cal inserts each, with increasing diameters (3 mm, 4 mm, 5 mm, 6 mm,
7 mm) and 5 cm high; the inserts were filled with iodinated contrast
media at two different concentrations to obtain signal differences of 80
HU ( contrast) and 70 HU ( contrast) with respect to background
(125 HU) at 120 kV. In the fourth block four solid cylindrical inserts of
different materials (acrylic, Teflon, polyzene, polyvinylchloride) and
variable diameters were placed, in order to measure low and high con-
trast spatial resolution.

Acquisition for CNNs training and optimization was carried out by
using a 128 slice CT scanner (Somatom Definition Flash, Siemens
Healthcare) and selecting the standard oncological protocol for ab-
domen 1. In Fig. 2 two pictures of the acquisition setup are shown.

CT scans of the entire phantom were performed at 8 + 1 different
current settings (Table 1), in order to vary the image noise and to ob-
tain clean (HD) reference images to generate ground truth for the
neural network training. Table 1 reports the volumetric CT dose index
(here named CTDI) for the current acquisition settings.

Reconstruction was performed by applying two different algo-
rithms: FBP (convolution kernel B41s) and IR (SAFIRE, strength 3, con-
volution kernel IF41s). For each block of the phantom, 24 slices each
2 mm thick were taken into account. In order to have only one contrast
object in each image, reconstructions were performed by setting Recon-
structed FoV (RFoV) equal to . Fig. 3 shows an image of the
entire phantom and two images at different radiation levels.

2.2. Deep learning approach

We describe here our CNN approach for CT images processing. The
relative background on machine learning (ML) and deep learning (DL)
can be found in S.I. material (Section S2). All the computational codes
were home-made developed using Pyhton programming language.

2.2.1. Data preprocessing
In order to set up the large number of images required both to train

and validate the CNNs, we reconstructed multiple independent
( RFoV) images from the CT acquisitions of the phantom by
positioning the RFoV, in HD images, in correspondence of each contrast
insert and then repeating the reconstruction by randomly varying the
center coordinates of the RFoVs (10 times for each insert) in order to
generate more images containing the contrast objects in different loca-
tions (see also Fig. S1 in S.I. - Supplementary Information - material).
Reconstruction of images from the acquisitions at the other 8 CTDI val-
ues was carried out by setting the same coordinates of the RFoV cen-
ters. Having selected a slice thickness of 2 mm, we were able to recon-
struct 24 images, for each insert along the z axis of the phantom with
the same coordinates as mentioned above, therefore totaling

images containing a contrast object. Same
amount of images was obtained without any contrast object, from the
homogeneous block of the phantom. At the end of this step each scans
contains subsequent slices where the insert is always in the same posi-
tion. In order to reduce overfitting (see Deep learning background Sec-
tion S2 in S.I. and Ref. [65–71]), data augmentation techniques were
then applied [68] to each slice, i.e. to the subset of 24 images recon-

1 (Helical, 120 kVp, 200 mAs ref, acquisition mm , collima-
tion mm , pitch , scan Field of View (FoV) cm , rotation time
0.5 s, CareDose 4D = on, Care kV = off)
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Fig. 1. Lateral view (a) and top view (b) of one of the two blocks containing 5 inserts filled with iodinated contrast media; (c) Picture of the fourth block, con-
taining 4 solid inserts for MTF evaluation.

Fig. 2. Pictures of the acquisition setup in the CT room.

Table 1
Current settings for CT acquisitions, and corresponding expected image
quality level (HD stands for High Dose index, the highest quality).

Curr ent x Rotation Time

Qual ity Reference Average CTDI

Level [mAs] [mAs] [mGy]

1 100 64 4.4

2 120 76 5.1

3 140 89 6

4 160 102 6.9

5 180 115 7.8

6 200 128 8.6

7 220 142 9.6

8 240 154 10.2

HD 600 390 26.3

structed over the depth of the phantom (therefore with the same co-
ordinates) consisting of 90 degrees rotation and flipping. These aug-
mentation operations add further variation on the inserts position from
one slice to the other, in order to reduce the number of images contain-

ing the object in the same position. By repeating the procedure for both
FBP and IR we obtained two separate dataset. We fed the neural net-
work with the described dataset divided between train and validation
data in ratio.

Ground truths for the denoise task were generated from the highest
CTDI scan by averaging all the slices over the entire depth of the inserts
(24 slices), in order to obtain very clean images with minimum noise.
Binary masks for denoise metrics computation were then obtained from
these ground truth images by means of a Gaussian adaptive threshold-
ing algorithm (Functions adaptiveThreshold() of the Imgproc class of
Open Computer Vision – OpenCV library [72]). Ground truths for seg-
mentation task were obtained from such binary masks: firstly the coor-
dinates of the center of the contrast object were determined and there-
after a binary image was generated locating in those coordinates the
center of a disk with a diameter equal to the corresponding nominal
one in the phantom.

2.2.2. CNNs architecture
We developed a neural network architecture to perform multiple

tasks, namely segmentation and denoise of the reconstructed phantom
CT images (input images). In order to get insight into the behavior of

Fig. 3. a) Image (IR reconstruction) of the entire phantom acquisition (RFoV= ); b) and c) IR reconstructions around an insert (RFoV )
of the phantom acquired at high dose index (CTDI ) and low dose index (CTDI ), respectively. The square in (a) identified the insert
represented in (b) and (c).
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the trained neural network in manipulating the input images, we imple-
mented and tested different models, based on autoencoder architecture
(Fig. 4), and then we evaluated their performances on the considered
tasks. The achievement of the two tasks simultaneously was obtained
by inserting two parallel branches (one for segmentation and one for
denoise) at the end of the decoder step of the model. In this way we re-
alized a double-task model, that recently have attracted interest in lit-
erature for the good performances reached in both the tasks trained
[49]. Detailed schemes of CNN models used can be found in S.I. (Sec-
tion S2).

Models implemented were:

• An encoder-decoder (Enc-Dec) consisting in 4 convolutional layers
for encoding, followed by 2 fully connected layers interposed with
dropout layers (dropout rate tuned to reach optimum at 0.1), after
which the model splits into two branches made of three
convolutional layers each, for optimization of the two tasks.

• A UNet model [31–33,47] adapted to the current tasks: a
combination of max pooling, convolutional and fully connected
layers for a total of 12 layers and 3 skip connections. Skip
connections concatenate high resolution features produced by
encoder to upsampled features of decoder to enable precise
segmentation. The two branches for the separated tasks consist of
three convolutional and two additional concatenation layer each.

• The UNet model was trained also separately in the two tasks of
segmentation and denoise, by minimizing only the corresponding
loss at one time. We will address these trained model as UNet-den
and UNet-seg.

Following [73,74,33,75–82,49,83], a linear combination of two
losses was implemented for the training: a mean square error loss and a
binary cross entropy loss to optimize denoise and segmentation tasks, re-
spectively. The relative weight of the two losses was tuned using vali-
dation set. Further details on loss tuning process and optimizer algo-
rithm (Adam) can be found in S.I. (Section S2).

Training was carried out from scratch. Model’s hyperparameters
were fine-tuned using validation set. We employed Tensorflow frame-
work [84] and GPU parallel programming to build and train the CNN
models. All experiments were run on a Nvidia GeForce RTX 2080 Ti
GPU with CUDA 10 support.

2.2.3. Performance metrics
We used the Dice similarity coefficient (DSC) to evaluate the spatial

performances of the trained models in localizing the inserts and their
shape. ROC (ROC) curves were computed to address the behavior of the
algorithms in radiological terms. Finally, the area under the ROC curves
(AUC) was computed as a function of CTDI for the two tasks to esti-
mate the overall neural network performance by means of such a com-

Fig. 4. A schematic version of our architecture inspired by UNet: a noisy im-
age is given as input and model tries to reconstruct the clean image (right,
down) and to highlight the position of the object (right, up).

mon metrics used in diagnostic imaging. Additional description of the
metrics implemented can be found in S.I. (Section S2.).

2.3. Conventional images analysis

Conventional image quality parameters quantifying detectability
(via SNR), noise frequency content (via NPS), spatial resolution
(through MTF) were evaluated on original and denoised images and
then compared. The ground truth images were used to automatically
define the insert region as the region of interest (ROI) by means of pixel
aggregation and adaptive threshold which maximize the SNR. Details
on the above mentioned quality indices and their extraction procedures
are reported in Section S3 of the S.I.

2.4. Radiomic features extraction

A Python based code was developed to extract features from every
image using the open-source package Pyradiomics [61] and taking into
account the standardization of the radiomics feature/biomarker initia-
tive [85]. All features are computed by setting a fixed bin width equal
to 25, after applying intensity normalization of the images in the pre-
processing step.

For the study of the denoise process we concentrated on second or-
der statistics features, which provide information on the texture of the
examined region (see Table S1 in S.I. section for the complete list of
these features). Both homogeneous images and those with insert were
considered and a square ROI of fixed size was defined for each image to
select a background region, not including insert; the size was equal to

pixels, the largest satisfying these conditions on all considered
images.

At first, we identified the features most relevant and indicative for
the characterization of noise and denoising process: these specific fea-
tures were selected in terms of repeatability and sensitivity [86]. Re-
peatability refers to features that remain the same for the entire dataset
of images acquired in the same CT acquisition conditions while the term
sensitivity refers to the variability of a feature in relation to different
image acquisition settings, or different reconstruction techniques.

Repeatability was quantified by means of the coefficient of varia-
tion (CV),i.e., the ratio of the standard deviation to the absolute value
of the mean, evaluated on each subset of original images at various
CTDI values (from 4.4 to 20 mGy): the smaller the CV the better the re-
peatability. We arbitrarily assumed as repeable those features with CV

% for all CTDI values, a threshold value halfway between 10 %
and 20 % that are often chosen to categorize features into groups ac-
cording to their coefficient of variation [41]. In order to investigate the
sensitivity to noise of radiomic features, we plotted their average val-
ues, evaluated on the subsets of original images, as a function of CTDI;
a linear fit was applied to the data (normalized by max) and the ex-
trapolated slope parameter was taken as an estimate of the sensitivity
to noise patterns.

We have also examined the sensitivity of each feature to different
reconstruction methods, defined as the mean percentage difference be-
tween the values extracted from the original images reconstructed by
the FBP and IR techniques: results show that, in general, those features
sensitive to noise are also the most sensitive to the reconstruction
method.

At last, all features were grouped in terms of their Spearman rank
correlation [87] evaluated on the entire image dataset. Features with
correlation larger than [88] have been considered redundant, and
therefore interchangeable.

The features representative of each redundant group, i.e. those with
the highest sensitivity to noise, have been selected as candidates of sen-
sitive characterization: ShortRunEmphasis and LongRunEmphasis are
features that respectively measure the distribution of the lengths of
short and long runs, i.e. those 1-dimensional (1D) structures of consecu-
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tive pixels with the same gray level value; decrease of ShortRunEmpha-
sis and/or increase of LongRunEmphasis are indices of coarser 1D noise
texture. The ZonePercentage is a feature which quantifies 2-
dimensional (2D) pattern and low values correspond to coarser 2D tex-
ture. Busyness belongs measures variations between adjacent pixels; as
the Busyness decreases the spatial frequency of intensity changes de-
creases. For the mathematical definition of the above features see [61].

For each feature the percentage difference between the values ex-
tracted by denoised and corresponding original images was computed;
feature varying on average by less than were considered “robust”
[89], i.e. noise insensitive.

Two unrelated shape features, Sphericity (that corresponds to
roundness in 2D) and MeshSurface, have been extracted for the spatial
and geometrical characterization of the denoising and segmentation
processing: the former is the ratio of the perimeter of the object under
analysis and the perimeter of a circle with the same surface area of the
object; the latter estimates the surface area of the object [61].

3. Results

3.1. Deep learning approach

An example of the neural network output for the Enc-Dec and UNet
models is shown in Fig. 5, in case of an original image, reconstructed
via IR technique, containing an insert of 5 mm diameter with con-
trast. Different background textures are produced by the two models,
and it is noticeable the better spatial accuracy of the UNet model re-
spect to Enc-Dec in segmenting the insert, probably due to the presence

of skip connections within the model architecture. Analogous examples
for FBP reconstruction, in case of input images containing insert or
background-only, are presented in Fig. S6 and S7 of S.I., respectively.

DSC was computed to estimate the performance of the trained mod-
els in the geometrical localization of the insert within the image. Figs. 6
a) and b) present plots of the computed DSCs as a function of CTDI, for
inserts of different sizes and contrasts, in case of both denoise and seg-
mentation tasks performed by the UNet model.

We combined signal detection theory (i.e. DSC metric) with ROC
analysis, this latter being the preferred method to assess image quality
in diagnostic radiology. AUC, computed from ROC curves, increases
with CTDI (Fig. 7), with saturation at around 8 mGy and values above
0.95.

In order to better understand the CNNs behavior in addressing the
two tasks and their mutual influence on the processed images, we car-
ried out two separate training by minimizing a single loss, thus optimiz-
ing one single task at one time. Comparison between the UNet double
task and single tasks (UNet-den and UNet-seg), and quantification of
the superior performances of the UNet respect to the Enc-Dec, were car-
ried out by evaluating AUC as a function of CTDI (Fig. 8).

3.2. Conventional image analysis

SNR was computed for all original images, reconstructed via FBP
and IR techniques, and for the denoised images produced by the trained
CNN models. The results are summarized in Fig. 9 where SNR mean val-
ues are reported as a function of CTDI.

Fig. 5. Example of results from Enc-Dec and UNet trained models in denoising and segmenting the same original image (from validation dataset), recon-
structed via IR technique and containing an insert of 5 mm diameter filled with contrast.

5
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Fig. 6. DSCs as a function of CTDI, computed (a) on binary masks generated from UNet model denoised images and (b) from UNet model segmented im-
ages. Solid and dotted lines refer to inserts of and contrast respectively. Insert diameters range from 3 to 7 mm . Average error bars (equal to the stan-
dard deviation of the average) for each curve are shown in the bottom, indicating larger errors for small inserts diameters.

Fig. 7. Area under ROC curves for UNet segmentation and denoise, com-
puted separately for FBP and IR reconstructions.

NPS was evaluated for original and ground truth images and for the
corresponding denoised images produced by the trained CNNs, within a
background region ( pixels) where no insert is present. The re-
sults are shown in Fig. 10 for original images at CTDI = 4.4 mGy (no
signicative difference has been found as a function of noise level).

MTFs were evaluated from the inserts in the ground truth images
and from the images containing the solid inserts (no remarkable differ-
ences were found, as shown in Fig. S12 of S.I. section); we verified that
the average operation to obtain ground truth from single slices didn’t
degrade spatial resolution (Fig. S.13 of S.I. section). These reference
MTFs were then compared to those obtained from the same inserts in
the denoised images produced by the UNet and UNet-den models. The
MTF curves from the 7 mm diameter insert and C1 contrast are shown
in Fig. 11; very similar results were obtained for all the other inserts of
different size and contrast.

The circular-edge technique for the extraction of MTFs is not gener-
ally applicable to the Enc-Dec denoised images since therein inserts
roundness is not well preserved, as discussed in the next section (see Fig.
15a).

Fig. 8. AUC as a function of CTDI, computed on the images output of the trained models: UNet (blu curves) and Enc-Dec (green curves) are the double-task
models, and in the parenthesis it is indicated the output images subset used to compute AUC (denoised -solid line- or segmented -dashed line- images);
UNet-den and UNet-seg are the single task models, which produce, respectively, denoised (red solid line) and segmented (red dashed line) images used to
compute AUC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. SNR as a function of CTDI, calculated on original images (FBP recon-
struction) containing the inserts with contrasts C1 and on denoised images
produced by the different models. Lines are linear fits to emphasize the data
trends. Note that a break is introduced on y axis, to better show the origi-
nal’s values. The errors bars, barely visible, are the Standard Deviation of
the represented mean values. SNR in case of IR method is presented in Fig.
S11 of S.I.

Fig. 10. NPS curves of the ground truth -GT- (green), original (blue) and
denoised images produced by the trained CNNs: Enc-Dec (orange), UNet
(black) and UNet-den (pink). A break on y axis is used to show the UNet
and UNet-den remarkable peak near zero. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web ver-
sion of this article.)

3.3. Radiomic features analysis

The repeatable and sensitive radiomic features selected by mean of
the procedure discussed in Section 2.4 are listed in Table 2, along with
the corresponding repeatability and sensitivity indices. The distribu-
tions of the four selected features are shown in Fig. 12, in case of origi-
nal images (FBP reconstruction at the lower dose index), ground truths
and corresponding denoised images.

In Fig. 13 the values of ShortRunEmphasis feature, extracted from
the denoised images and from the original images, are plotted as a
function of the CTDI.

In Fig. 14 is reported the mean percentage difference between de-
noised and original images for all the radiomic features with respect to
the denoising process. The values of all the standard features [85] were
calculated from each subset (8 different dose indices) of input images
and compared to those extracted from the corresponding CNNs

Fig. 11. MTF curves computed from the ground truth (GT) images (black)
and the denoised output images of the CNN UNet (red) and UNet-den
(pink). The error bars represent the Standard Deviation of the mean values.
The test images used have insert with 7 mm diameter and C1 contrast. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
List of features sensitive to denoise process. The maximum correlation co-
efficient between these features is 0.58 . Coefficient of variation mea-
sured from the sample of ground truth images reconstructed by FBP
method. Slope parameter of the line fitted to the average values of the
single feature as a function of CTDI for FBP method. Mean percentage
difference between FBP and IR reconstruction methods for images ac-
quired with quality level 8.

Repeatabil ity Sensitivity to
noise

Sensitivity to
reconstruction

CV (a) (%) Slope(b) ( ) Percentage difference(c)

(%)

ShortRunEmphasis 5.7 1.01 11.7

Lo ngRunEmphasis 6.4 −0.62 4.4

Busyness 6.7 0.30 −1.2

ZonePercentage 11.2 0.13 0.8

processed images. In this way the features less sensitive to noise and to
the denoise process (i.e. more robust) were identified (Fig. 14). Different
robust features were identified depending on the CNN models, based on
the criterion described in 2.4 section. A summary table with the overall
results is reported in S.I. (Table S2).

The distributions of the shape features, Sphericity and MeshSurface,
for the different trained models are summarized in Fig. 15, while the de-
tailed variation of the Sphericity respect to dose index, inserts size and
contrasts for the UNet segmentation is shown in Fig. 16.

3.4. Test on dataset from a different CT scanner

The UNet model trained on Siemens dataset was finally tested in the
denoise and segmentation tasks of images from a different dataset, ac-
quired on the same phantom with a different CT scanner from Philips,
to estimate the capacity of generalization of the trained model and to
open new discussion about the complex interplay of factors involved in
the CNNs optimization process and therefore in the quantitative evalu-
ation of CNNs behavior. The description of the acquisition method and
data preprocessing, as well as a full overview of the metrics evaluation
computed on the UNet output images is reported in S.I. (Section S7).

The comparison between the performances of the trained CNN on
validation (Siemens) and test (Philips) dataset, in terms of AUC, are
shown in Fig. 17 as a function of CTDI.

7
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Fig. 12. Distributions of features listed in Table 2, corresponding to dose index mGy and reconstruction method FBP. The line spanning the full
width of the box corresponds to the median of the distribution while the square box extends from 25 to 75 percentile values and the vertical bars represent the
range of distribution not including outliers (matplotlib.pyplot.boxplot function) [90].

Fig. 13. ShortRunEmphasis feature mean values versus the CTDI, normal-
ized to the maximum, from original and denoised images. Lines are fits of
the corresponding data. The error bars represent the Standard Deviation of
the mean values.

4. Discussion

4.1. CNNs characterization

The results of the deep learning experiments were very promising, in
terms of both the capacity of trained CNN models to correctly locate
the contrast objects within the background pattern, and the quality of
the denoised images produced. As it can be inferred by looking at Fig. 5,
UNet model learned to discriminate the presence of the inserts even in
condition of high noise level, where by eye it is difficult to identify the
edge of the object, or even to recognize the presence of the object itself.

Fig. 14. Mean percentage difference between denoised and original images
for all radiomic features and for three neural networks. The values are
sorted in decreasing order on UNet. The four features displayed correspond
to those listed in Table 2 and the robust features are listed in Table S2 in S.I.

Different alteration of the background region are observed between
the denoised imaged produced by Enc-Dec and UNet model: the Enc-
Dec seems to partially preserve the noise texture of the ground truth im-
ages, while the UNet model strongly flatten the homogeneous region
around the insert. These alterations have been attributed to the mean
square error loss function [33,75,76,78,80,82]. However, we found
substantial difference between the two models, and we believe that be-
yond spatial performances, also this kind of alterations must be taken
under consideration when dealing with CNNs image processing, and
should influence the choice of the model. Therefore we can state that
even a complex network, which achieves good performances, is not
necessary a better network because it can modify texture features in an
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Fig. 15. Distributions of Sphericity (a) and MeshSurface (b) features extracted from segmented images, corresponding to CTDI = 4.4 mGy and 7 mm diame-
ter insert with C1 contrast, FBP reconstruction: comparison among different models output. The horizontal dashed line in panel represents the MeshSur-
face value computed on the ground truth images for segmentation task. See fig. 12 for the graphical representation of the values.

Fig. 16. Sphericity as a function of noise from trained UNet model, computed on segmented images. Solid lines indicate inserts of C2 contrast of different di-
ameters while dotted lines indicates inserts of C1 contrast. Average error bars (equal to the standard deviation of the average) for each curve are shown in the
bottom, indicating larger errors for small inserts diameters.

unwanted way. A quantitative explanation of this result is found in the
NPS evaluation and in the radiomic features analysis reported below.

AUC as a function of CTDI (FIg. 7) in case of UNet model show, as
expected, increased performances as a function of CTDI, with satura-
tion trend observed above 8 mGy. It is worth noticing that slightly bet-
ter performance were obtained with IR reconstruction technique rather
than with FBP. This last results is of particular interest considering that
the quantification of CT image quality has become a non-trivial issue
after the introduction of IR techniques, which alter the images in non-
linear way and have shown noise dependent spatial resolution
([91–95]) respect to the more traditional FBP technique.

Comparison between different models allows to understand the in-
fluence of the architectures on their behavior and to address the contri-
bution of the model layers in the training performance. Even if the au-
toencoder scheme is the starting point for both the Enc-Dec and the
UNet model (see schemes in Fig. S2 of S.I. section), in the first case the
low variability of the layers types (only convolutional and fully con-
nected) and the small number of layers were the main reasons for the
lower performance observed. Furthermore, the Enc-Dec suffered from

overfitting, and its generalization ability was not satisfactory (Enc-Dec
losses trend in Fig. S4 in S.I.).

On the contrary, in case of the UNet model, the greater depth (i.e.
the large number of concatenated layers) and the presence of multiple
skip connections, which prevent the losses of fundamental information
during the encoding step, give rise to enhanced performances (see met-
rics comparison in Fig. 8) and and reduce the overfitting issue (UNet
losses trend in Fig. S3 in S.I.). The trained UNet model not only locates
the insert correctly in most cases, but also associates the correct diame-
ter and shape, as deductible from Fig. 6, where DSC scores are plotted
as a function of CTDI and confirmed by the Sphericity feature analysis
in Fig. 16. DSC curves also indicate, as expected, that the trained neural
network performs better in case of low noise and for images containing
inserts with larger diameters and more pronounced contrast.

The experiments performed by training one task at a time (either de-
noise or segmentation), by minimizing the two losses separately, allows
to evaluate the reciprocal influence of the two branches during train-
ing. The comparison of AUC (Fig. 8) shows that denoise performances
of the UNet model, when optimized for both tasks, are slightly superior
respect to the model trained for the denoise task (UNet-den) alone. On

9



S. Doria et al. Physica Medica xxx (xxxx) 1–13

Fig. 17. AUC as a function of CTDI computed to compare the performances
of the UNet model in the processing of images from two different datasets.
One (acquired on CT scanner of Siemens vendor - green lines) used for vali-
dation after training, and a second one (acquired in a CT scanner from
Philips vendor - red lines) used only to test the domain generalization. The
plots indicate the performance in the denoise (solid line) and segmentation
(dashed line) tasks. (For interpretation of the references to colour in this fig-
ure legend, the reader is referred to the web version of this article.)

the contrary, segmentation performances improve with the single task
training: this means that in our experiments segmentation task is useful
to improve denoise but denoise doesn’t help segmentation, contrary to
previous studies ([49,96]). The reciprocal reinforcement of the two
tasks is confirmed by the evaluation, shown in Fig. S10 of S.I., of the
performances of the UNet-den and UNet-seg in the task for which they
were not trained, i.e. denoise for UNet-seg and segmentation for UNet-
den.

The tuning of the relative weights seem to confirm the previous re-
sult. The evaluated AUC as a function of (cross entropy loss for
segmentation) weights (Fig. S4 of S.I.) suggests that the two tasks are
correlated: the denoise performances indeed are strongly quenched not
only at large weight, which is expected considering that
(mean square error loss for denoise) becomes negligible, but also at very
low weights, indicating that the optimization of model weights to
improve segmentation is useful also to achieve better denoise perfor-
mance.

Interesting results were found when testing the deep learning algo-
rithm on a dataset of images acquired by a different CT scanner. The
metrics evaluated, reported in Section S7 of S.I., evidence DSC score
mostly above 50%, except the smaller inserts (3 mm diameter), where
the model lacks of spatial identification ability. AUC values are also
above 50%. This is a surprisingly good result when considering the lack
of specific training of the CNN. It is noticeable that CNN performances
increase with CTDI until 10 mGy (the largest CTDI of the training
dataset), then they start to decrease even if the larger SNR should facil-
itate the inserts detection, possibly because no training at all was per-
formed in that range of CTDIs. This behavior confirms a well-known
generalization issue associated to CNNs: their optimization involve a
combination of multiple factors. Disentanglement of such factors is a
complex subject that is often overcome by increasing the dataset vari-
ability in the training step.

In order to perform a proper comparison between the performances
of the trained CNN on such different datasets, several factors should be
taken into account. First of all, SNR, noise intensity and texture are in-
fluenced not only by CTDI, but also by the reconstruction algorithm,
proper of each CT scanner, and by the concentrations of the iodinated
contrast media. The complexity of the generalization aspects requires a
dedicated, extended, investigation which is outside the goal of the pre-
sent paper.

4.2. Quality evaluation of the CNNs performance by means of
conventional metrics

The results shown in Fig. 9 demonstrate the very high performance
of the CNNs in reducing the images noise. Actually in the processed im-
ages the SNR increases by factor 20–30 respect to the original ones,
well above , the reference value of the Rose detectability crite-
rion [97] and therefore providing a quantitative explanation of the
sharp visual detectability of the low SNR insert shown in Fig. 5. While
the SNRs computed on original images increase with CTDI and con-
trast, as expected, in almost all the denoised images, the SNRs are es-
sentially independent from CTDI and contrast. This can be considered a
further valuable performance of the CNNs. Both UNet and UNet-den
perform better than the Encoder-Decoder, the latter showing however
a little lower dependence from the contrast of the inserts. The SNR of
the single task UNet-den slightly overtakes the one of the combined de-
noise-segmentation UNet.

The NPS curves (Fig. 10) show the expected shape when computed
on original images. A very high zero-frequency peak is clearly visible in
the NPS obtained from the UNet and UNet-den output images, while
the ones obtained from Enc-Dec output images (as well as from ground
truth images) show a smaller zero peak according to its weaker capa-
bility of reducing noise (see also Fig. 5 and Fig. 12). This result is in
agreement with the already stated behavior of the considered CNNs.

UNet denoised images provide an MTF curve almost identical to the
ground truth images unlike common noise reduction methods that can
result in a loss of spatial resolution (e.g. a typical smoother kernel)
[98–102]. This ability to preserve spatial resolution has already been
observed in case of UNet-based models and it has been attributed to the
presence of global skip connections ([33]), that we have employed in
our UNet model as well. Despite Ref. [33], we avoided using max pool-
ing not to lose details, implementing instead stride in convolutions to
reduce feature maps size in the contracting path. In the expanding path
features of contracting path are concatenated. This improves recon-
struction, mostly the concatenation of first layers features to the last
ones, that has been shown to preserve in a better way spatial resolu-
tion.

In the single task UNet-den processed images the spatial resolution
is slightly negatively affected, confirming that denoise can benefit from
the presence of the simultaneous segmentation task. For the Enc-Dec
the calculation of spatial resolution is obfuscated by the noticeable
geometrical distortion of the edge of the inserts as previously discussed.

4.3. Quality evaluation of the CNNs performance by means of radiomic
features

The 1D and 2D texture features, listed in Table 2 and reported in
Fig. 12, show that for all the trained models the noise reduction process
does not produce a texture similar to that of the ground truth images
(especially for the UNet models). In addition, such alteration is depen-
dent on the CNN model.

The values of the four selected features computed on the denoised
images suggest a finer noise texture and a greater spatial frequency of
intensity changes, respect to the ground truth images.

Furthermore, the distributions of the features values obtained from
the denoised images are much wider than those obtained from the
ground truth and original images, suggesting that CNNs produce vari-
ability in the properties of the noise texture.

The denoising process of Enc-Dec is very different from that of the
UNet, since alteration of the texture is less pronounced and the values
of all the estimated features are more similar to the ground truth im-
ages respect to UNet (see Fig. 14). On the other hand, UNet greatly re-
duces noise by producing a much more homogeneous texture: this result
reflect the NPS analysis and it is apparent also by looking at Fig. 5. This
characteristic should be taken under consideration when dealing with
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the applications of CNNs processing to clinical images: such remarkable
alteration of the background pattern could produce unusual images for
the experienced eye of the clinical staff which may compromise their in-
terpretation and therefore may not be easily accepted.

UNet and UNet-den behave very similarly to each other, with a
slightly more pronounced alteration of the texture for the first model,
as shown in Fig. 12 for ShortRunEmphasis and ZonePercentage features.

The dependence of the ShortRunEmphasis feature on CTDI (Fig. 13)
is less significant for CNNs denoised images respect to original images:
this suggests that the background noise pattern in the denoised images
remains quite the same regardless of the dose index of input images, in
analogy with the trend found for the SNR (Fig. 9).

The features that are not altered by the CNNs images processing,
identified by the robustness analysis reported in Fig. 14, should be taken
under consideration for a potential clinical application of the AI algo-
rithms: those features are indeed the best suitable for radiomic texture
investigation of CT images under different acquisition conditions.

The distributions of the geometrical features (Fig. 15) suggest that
both denoise and segmentation processes alter the shape of the contrast
object. The Enc-Dec neural network alters the shape of the inserts more
than the UNet does, by decreasing their area and by degrading their
roundness, which makes it difficult to evaluate the MTF curve, as al-
ready discussed in Section 3.3. No significant performance differences
were observed between the UNet and the UNet-den, that presents
slightly lower performances at high noise level.

The Sphericity feature, computed on UNet segmented images and
plotted in Fig. 16 as a function of CTDI for different inserts, indicates
that for small objects diameters less than 4 mm the performances signif-
icantly worsen.

5. Conclusions

We developed, trained and tested two CNNs, namely a standard en-
coder-decoder and its extension, the Unet, in the tasks of segmentation
and denoise of simple CT images obtained by scanning a specifically de-
signed PMMA phantom, with the aim of determine in a quantitative
way the different behavior of the two models and, at the same time, the
different textures they induced into the processed images.

The alterations produced by the CNN algorithms on the original im-
ages was thoroughly studied by combining deep learning metrics, such
as Dice Similarity Coefficient (DSC) and area under Receiving Operat-
ing Characteristic (ROC) curves, conventional metrics (SNR, NPS,
MTF) and radiomics features.

As expected UNet attains superior results in the segmentation task
however in the denoise task, in spite of an apparent much higher defini-
tion of the test object, it introduced also evident alterations of the
background, whereas the enc-dec was able to reproduce the ground
truth more faithfully.

It is worth noticing that when ideally extrapolating this proposition
towards the clinical applications of images denoised via CNNs, an alert
occurs, that is to pay attention to the selection of the appropriate CNN
not to introduce heavy alterations into the noise texture that could mis-
lead the proper judgment of the radiologist.

The highly controlled conditions of our experiment allowed us to
give some reliable contribution to the sometimes debated problem of
the possible reciprocal influence of the model branches, each designed
for one individual tasks, when combined them together for multi-tasks
learning. We reported a slight increase in denoise performance, con-
trary to what previously reported [49,96], suggesting that there is still
space for additional experiments in this field. In any case, either in the
single or in the multi-task learning, images denoised by means of the
UNet model preserved the original spatial resolution, despite the trade-
off between denoise and spatial resolution commonly reported in litera-
ture [98–102].

The evaluation approach we adopted resulted effective, even if in
simplified images, to accurately detect and quantify the differences in
CNNs behavior for both the attained result of the tasks and for the al-
terations introduced in the processed images.

On the other hand by using the radiomic approach we were able to
select a number of robust features, i.e. features insensitive to the CNN
images processing with both models. For this reason they constitute po-
tential candidates for a conventional radiomic analysis of images
processed with diverse CNNs.

The extremely good results of the UNet model in the segmentation
task of the CT images of the phantom persuaded us about the actual
feasibility of a CNN based model observer [103,27,104–108,57,29] be-
having like a human observer for the highly needed task of optimizing
(detectability vs patient dose) current CT protocols.
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