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ABSTRACT

The recent push towards test automation and test-driven develop-

ment continues to scale up the dimensions of test code that needs

to be maintained, analysed, and processed side-by-side with pro-

duction code. As a consequence, on the one side regression testing

techniques, e.g., for test suite prioritization or test case selection,

capable to handle such large-scale test suites become indispensable;

on the other side, as test code exposes own characteristics, specific

techniques for its analysis and refactoring are actively sought. We

present JTeC, a large-scale dataset of test cases that researchers can

use for benchmarking the above techniques or any other type of

tool expressly targeting test code. JTeC collects more than 2.5M

test classes belonging to 31K+ GitHub projects and summing up to

more than 430 Million SLOCs of ready-to-use real-world test code.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

Test automation has been actively pursued since the 90’s [17] as a

solution to reduce the high costs of software testing and improve

product quality [12]. In more recent years, the advent of test driven

development [10], and the following broad industrial take-up of

continuous integration [5] and DevOps [20] practices, with their

promise of faster time to market and improved maintainability, are

further pushing companies into test automation. A recent study by

Zion Market Research [18] estimates that the software test automa-

tion market will grow from the 16 Billion Dollars of 2016 up to 55

Billion Dollars by end of 2022.

However, this insurgence of test automation also comes with

challenges and risks, which several researchers have been prompt

to identify and face. One of the most evident issues is related to

the growing scale of the test code that needs to be maintained,

analysed, and processed side-by-side with production code. Indeed,

as a result of promoting the practice of testing often and contin-

uously, the sizes of test suites that have to be managed grow to

limits that make traditional testing methods and tools not applica-

ble anymore [14]. Therefore, a thread of software testing research

is addressing expressly the challenge of finding more efficient and

scalable approaches [4, 14, 15]. In [15] we coined the term big test-

sets to denote test suites whose dimensions go beyond the capacity

of existing testing tools.

On the other hand, many of the problems that Software Engi-

neering research has been facing for decades in handling large scale

software applications re-propose themselves for tackling such big

testsets. However, studies have shown that test code exposes differ-

ent characteristics than production code [6, 19] and hence needs

ad hoc methods. As a consequence several researchers analyse the

quality of test code, propose metrics to assess test code quality, and

try to identify useful patterns for good test code.

All the above research efforts demand availability of a large

dataset of test code, to which the proposed methods and tools can

be applied. However there does not yet exist such a collection for

ready usage by the community. Therefore, most studies search in

databases of Open Source projects, for example from GitHub, to

collect a proper amount of test code: we did this recently in [3]

for challenging the efficiency of a scalable test reduction approach,

while Gonzales and coauthors [7] made the same for studying test-

ing patterns that can affect maintainability. In the above and many
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Figure 1: Overview of the JTeC composition steps and intermediate outputs

similar studies a consistent amount of effort has to be spent by the

authors for setting up the experimental subjects. Moreover, as each

team makes its own selection, it is difficult to make a comparison

across similar studies.

As we ourselves are going to need such a dataset for validating

our scalable approach to test prioritization [15], we would like to

make available for the usage of the community the test classes

dataset that we collected. At the time of submission, the dataset,

called JTeC (Java Test Classes), provides 2.5M+ test classes collected

from a set of 31K+ projects in Github, which from now on the

community working on test code analysis and processing can reuse

without spending further effort. The JTeC dataset, and the quality

filtering script which is provided as complement to the dataset, are

available online in the JTeC bundle.1

In the remainder we describe themethodology followed to collect

the dataset (Section 2), its structure (Section 3), and how it can be

used for research (Section 4). We conclude the paper hinting at

envisaged future JTeC developments.

2 METHODOLOGY

In this section we report the methodology we use to gather the data

of our dataset. The process, illustrated in Figure 1, consists of six

main steps: (i) GitHub repository filtering, (ii) Java repository iden-

tification, (iii) test classes identification, (iv) repository selection,

(v) local storage of test classes, and (vi) preliminary quality filtering.

In the reminder of this section we document the specifics of each

step. For lower-level implementation details, we refer the reader

to our replication package, containing the entirety of the scripts

utilized to generate the dataset2 for the sake of the verification of

the dataset, its replication and extension.

Step 1: GitHub repository filtering. The first step of our pro-

cess consists of indexing the public GitHub repositories, and is

carried out in order to execute efficiently the subsequent phases

of our process. In this step we first retrieve the name of the public

repositories and the username of their creators. This is achieved

via a query to the GitHub API3 specifying the unique identifiers

(ID) of the repositories in an incremental fashion (starting from

the repository with ID=1). As stopping criterion for the repository

indexing process we adopt the number of repositories required to

collect 2.5M test classes. This number is approximated via a pre-

liminary exploratory analysis, and amounts to approximately 31K

repositories. We chose to target 2.5M test classes as we deem such

number adequate in order to carry out studies requiring as input a

large scale amount of heterogeneous test source code.

1https://doi.org/10.5281/zenodo.3711509
2https://github.com/JTeCDataset/JTeC
3https://developer.github.com/v3

Subsequently, oncewe obtain the list of repository namesmapped

to the usernames of their creators, we can launch a second query to

the GitHub API in order to retrieve the programming languages as-

sociated with each repository. The final output of this step consists

of a local .csv file containing for each public repository indexed

the following fields: repository ID, username of repository creator,

name of the repository, and programming languages associated to the

repository.

Step 2: Java repository identification. Once obtained a local

copy of the indexed repositories mapped to their programming

languages, we can effortlessly retrieve the URLs of the repositories

developed in a specific language. In our case, we parse the .csv file

created in the previous step to isolate the repositories developed

exclusively in Java by inspecting the language tag of the indexed

repositories, and subsequently combine their name with the user-

name of their creators in order to identify the unique URL of the

repositories. By parameterizing in our approach the programming

language to be considered, we make the process effortlessly modifi-

able and extensible to take into account other languages, which are

not utilized for the creation of the current version of the dataset.

The final output of this step is the list of URLs corresponding to all

Java repositories out of the ones indexed in Step 1.

Step 3: Test classes identification.Once we isolated the repos-

itories developed in Java, we can identify the test classes of the

repositories to store them locally. This is achieved by leveraging

the standard naming conventions for Java test classes in Junit, the

most popular Java unit testing framework [13]. Specifically, we do

this by selecting the source code files of the selected repositories

whose name ends with “Test.java” and “Tests.java”.

More accurate methods could be used to select test cases, e.g.,

via static source code analysis [7]. Nevertheless, we opt for this

solution as, given the large scale nature of our dataset, more complex

solutions would potentially entail slower running times, hindering

our ability to build the dataset in a reasonable amount of time.

Moreover, by adopting a standard naming convention to select test

classes, we aim not to introduce any significant bias.

More in detail, this third step entails the recursive retrieval of the

file listing of the repositories4 by executing a query via the GitHub

API. Subsequently, the list of files per repository is parsed in order

to identify the files matching our specified naming convention.

The naming convention adopted is designed as a parameter in our

process, and can hence be adapted in order to consider a different

naming convention w.r.t. the one adopted to create the current

version of the dataset. The final output of this step consists of a

4We purposely design this step to consider the default branch and the most recent
commit of the repositories, as this will potentially lead to the identification of a higher
number of test cases.
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Figure 2: Distribution of dates of con-

sidered commits

Figure 3: Distribution of test classes

per repository

Figure 4: Distribution of SLOC per

repository

list of Java repositories mapped to the number of test cases they

contain, and commit hash considered (for replication purposes).

Step 4: Repository selection. Once we gather the list of Java

repositories, we select all the original repositories present in the list

for their subsequent inclusion in the dataset. In order to enhance

the dataset and enable a wider range of potential research studies,

we select among the forks of each original repository the one which

contains the highest number of test cases. We opt to include exclu-

sively the fork containing the highest number of test cases as this

option maximizes the efficiency and effectiveness of the crawling

process. Additionally, such a heuristic provides us a fitting criterion

to pick, among various forks of a repository, the one which is best

fitted to be included in our large scale collection of testing artifacts.

As further documented in Section 3, forked repositories can effort-

lessly be trimmed out the JTeC dataset through a post-hoc filtering

process (see Step 6).

Step 5: Local storage of test classes. Once we identify the

Java repositories to be included in the dataset, we proceed to store

locally the source code of the identified test classes. This is achieved

by taking advantage of the file listing of the repositories retrieved

in Step 3 to identify the test classes. For traceability purposes, the

filesystem hierarchy of the repositories is preserved while storing

locally the test source code. The output of this process is the entirety

of the source code of the identified Java test classes and a .csv file

specifying the repositories included, their considered commit hash,

and their number of test cases.

Step 6: Preliminary quality filtering. To ensure the quality

of the data contained in JTeC, we carry out a preliminary quality

filtering process on the collected raw dataset. This process is carried

out by excluding potential “toy” test suites, and entails identifying

test suites comprising less than 5 test cases, and subsequently re-

moving such instances from the dataset. The final output of this

step is the final JTeC dataset, which is available online as part of

the JTeC bundle [2]. In order to make the dataset further tunable

according to specific quality requirements which JTeC users may

have, we provide the quality filtering script as complement of the

JTeC dataset. Such script, taking as input several variables accord-

ing to the dataset schema, enables the effortless execution of ad-hoc

trimming operations on JTeC, as further documented in Section 3.1.

3 DESCRIPTION

The dataset is provided in compressed format and contains the

entirety of the collected test source code (JTeC-Bundle.tar.gz).

The total data storage space of the dataset amounts to 15 GB, and

comprises 2.5M+ Java test classes distributed over 31K repositories,

summing up to 431M source lines of code (SLOC). As the hierarchi-

cal tree structure of the GitHub repositories is preserved, the first

two folder levels of JTeC consist of the repository creator username

followed by the repository name. Further nested into the filesys-

tem tree reside the test classes collected, according to the original

ordering of the test files as reported in the GitHub repositories.

In addition to the complete collection of gathered source code,

we provide an overview of the JTeC metadata in the file JTeC.csv.

Such a file contains the most relevant information for each of the

included repositories, in order to provide an eagle-eye overview

of the data constituting the JTeC dataset. Specifically, each row of

JTeC.csv corresponds to one of the repositories contained in JTeC,

while the columns represent the following attributes:

• user: repository owner,

• repository: repository name,

• id: repository unique incremental identifier provided by

GitHub API,

• fork_id: unique incremental identifier of the original repos-

itory provided by GitHub API (value not empty only for

repository forks),

• hash: repository commit hash of the version in JTeC,

• date: date of the commit considered in JTeC,

• n_tests: number of identified test classes,

• SLOC: total SLOC of the test classes,

• size: total data storage space (Bytes) of the test classes.

An overview of the distribution of the date attribute of the repos-

itories stored in JTeC is depicted in Figure 2. From the distribution

we can observe that the median commit is dated to late-2012. This

trend has to be attributed to the adoption of the repository ID in

Step 1 to index repositories. We expect the distribution to be more

skewed towards more recent dates if the dataset is expanded in the

future, as more recent and active repositories would potentially

be included. By inspecting more in depth the data, we can con-

clude that most of the outliers on the left hand side of the diagram

correspond to commit dates modified manually a posteriori by the

authors, as they are prior to both the creation git and GitHub. We

opted not to remove such occurrences, as such process falls outside

the scope of our dataset.

The distribution of the n_test attribute of the repositories stored

in JTeC is depicted in Figure 3. From the figure we can observe that

the number of test classes varies highly across repositories, ranging

from 5 test cases to more than 12 thousands, with a median of 14 test

classes per repository and a mean of 85. Given the heterogeneous

nature of this attribute, JTeC constitutes an encompassing dataset of

testing artifacts, which enables via the filtering script to effortlessly

retrieve source code according to specific ranges of test suite sizes,

from small suites to big ones containing thousands of test classes.

In Figure 4, the distribution of SLOC per test suite is reported.

As we can observe, the SLOC vary from a few lines per test suite to

test suites containing more than 2M test SLOC (including test suites

belonging to some projects of popular open source foundations, e.g.

Apache and Eclipse). As for the number of test classes collected in
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JTeC, the variability of the SLOC attribute points to the heterogeneity

of the source code collected, which encompasses small test suites

as well as the ones of prominent open source projects.

3.1 Quality filter

As integrating part of the JTeC dataset, we make available in the

JTeC bundle [2] the filtering script adopted to carry out the prelim-

inary quality filtering (see Section 2 – Step 6). Through such script

we provide JTeC users with the capability to effortlessly explore

the dataset and trim it according to their needs by applying further

quality filters. The quality filter script, in fact, allows the user to

generate a refined version of the dataset that only contains projects

and test classes that adhere to user-defined constraints. The user,

through a configuration file (config.json) provided in the JTeC

bundle, can define a range of values for the following criteria (prefix

MIN_/MAX_):

• TS_Size: test suite size (measured as number of test classes),

• TS_Bytes: total number of Bytes of test suite,

• TS_SLOCs: total number of SLOCs of test suite,

• TS_Year: test suite year (based on the last commit date).

Additionally, the user has the ability to (prefix BOOL_):

• TS_Clone: generate a cleaned copy of the dataset in folder

JTeC-Clean/, with the same structure as that of JTeC/,

• TS_Index: create JTeC-Clean.csv, an index of the cleaned

dataset (in the same fashion of JTeC.csv),

• TS_Original: include original projects in the cleaned dataset,

• TS_Fork: include forkswith the highest number of test classes

(at the moment of download) in the cleaned dataset.

4 PURPOSE AND APPLICATIONS

4.1 Our motivation

In our previousworkwe have been investigating scalable approaches

for test case prioritization [15] and test suite reduction [3]. In [15],

for answering our research question related to scalability, we looked

for datasets of big test suites (our aim was to have at least one mil-

lion test cases) but because such a dataset was not available, we had

to rely on the generation of synthetic test cases for carrying out our

studies. Similarly, we also evaluated the scalability of the approach

proposed in [3]. This time, however, for minimizing possible threats

to the validity associated with the use of synthetic tests, we down-

loaded 500K real test cases from multiple GitHub projects (without

following any systematic approach, though). These experiences led

us to realize it was time for us to create a curated dataset of test

cases that could be used in our own research and shared with the

community.

4.2 Potential applications

Beyond our own motivation, we consider JTeC could be used to the

benefits of researchers in several areas, including:

• Static analysis: static analysis of test code has been applied

for many purposes, including, for example, the identifica-

tion of test smells [16], the study of test patterns [7], and

recommendations for test code refactoring [9, 19]. JTeC can

support such analyses by providing a ready-for-use large

dataset of test classes.

• Regression testing: JTeC can be used as a benchmark to

assess efficiency and scalability of regression techniques that

use only test code as input, e.g., black-box similarity based

techniques of our own recent work [3, 15].

• Test case generation: within the ElasTest project [1], a

recommender engine developed by the IBM partner uses

machine learning techniques to generate new test cases

based on the knowledge acquired by analyzing the exist-

ing ones [11]. Supported by JTeC, similar studies can be

applied from a per-project perspective, where the idea is to

analyze the existing test cases to generate new ones for the

same project, as well as for inter-project learning, where the

idea would be to learn from multiple sources to generate

new test cases to a target project.

5 CONCLUSIONS AND FUTUREWORK

We have presented the JTeC dataset that makes ready available to

the community of software testing researchers a large collection

of Java test classes useful for several potential purposes related to

test code analysis and processing. Our aim goes beyond the current

version of the dataset: we strive towards the establishment of a

continuously updated dataset, collecting together in a single source

the test code belonging to the vast majority of test cases publicly

available.

In the future the dataset can be expanded in several directions:

as a first step, we intend to augment the test collection by including

test code written in other programming languages. Such varia-

tion, which is relatively easy to implement (for example by using

GHTorrent [8]) will allow the community to answer interesting

research questions not applicable to a purely Java repository. For

example, what are the characteristics of test cases written for projects

with different size, complexity, development history, programming

languages, etc? What are the common practices of developers/testers

when writing test cases in a particular programming language?

Another important improvement we envisage is to compute and

provide test related measurements with the test classes, for example

code coverage information. Given the large scale, obtaining such

information is clearly highly effort-intensive, and we consider that

coarse criteria such as function coverage would be enough. Having

this type of information could support benchmarking other regres-

sion testing techniques beyond black-box similarity-based ones.

Additionally, to broaden the capabilities of JTeC, we envision to

include in future versions also fault information of the identified

test classes. Providing this latter type of information, would enable

researchers to have at disposal a large-scale real-world dataset

containing the most important information related to test suites,

enabling them to conduct a vast range of studies related to the

research field of software testing.

As a final word, we of course welcome the maintenance support

and more ideas for improvement coming from the community over

which JTeC is now handed.
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