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Chalcogen bonding interactions (ChBIs) have been widely employed Chalcogen bond
interaction

to create ordered noncovalent assemblies in solids and liquids. Yet, their ability to

engineer molecular self-assembly on surfaces has not been demonstrated. Here, we gy
report the first demonstration of on-surface molecular recognition solely governed by
ChBIs. Scanning tunneling microscopy and ab initio calculations reveal that a pyrenyl
derivative can undergo noncovalent chiral dimerization on the Au(111) surface
through double Ch--N interactions involving Te- or Se-containing chalcogenazolo  sypramolecular dimer o Te, Se - N
pyridine motifs. In contrast, reference chalcogenazole counterparts lacking the pyridyl

moiety fail to form regular self-assemblies on Au, resulting in disordered assemblies.

chalcogenazoles, chalcogen bonds, surface self-assembly, supramolecular chemistry, scanning tunneling microscopy,
density functional theory, ab initio calculations

More recently, there has been a notable surge of interest in
employing secondary bonding interactions (SBIs),”’ which
have a dual nature. Notably, from an electrostatic point of
view,”"** highly polarizable atoms are involved in effective

. . 23
molecular interactions, H-bonding interactions have been SBIs through regions of depl.etlon of el.ecFrons. called o-holes.
extensively harnessed to foster the formation of highly The second aspect that drives flourishing interest for SBIs

; ; ; 8=12 oy lies on the orbital mixing,”* described as n*(Y) — o*(E—X)
organized two-dimensional (2D) networks. This has re &

been followed by examples reporting coordination bond- donation involving nonbonding electrons of the electron-rich Y

ing13—17 and dipole—dipole'®'? interactions (Figure la—c). atom, and the antibonding 6 x on the E atom (with X being

its covalent substituen_t). Within the category of SBIs, halogen
bonding interactions™~>” have demonstrated their efficacy in

The manipulation of organic nanostructures on surfaces
through the supramolecular approach has garnered substantial
attention in recent decades.'”’ Among the various supra-

A Hydrogen Bonds!*®! B Metal Coordination bonds!*! ) 3031
creating regular supramolecular networks on surfaces,”””" as
AR Oy_ Ay Ay iy revealed by scanning tunneling microscopy (STM) studies
A SN A ] I'NI./\N/\!;I . highlighting intermolecular Br---O,*** Br---Br,***° and Br---§*¢
—$N—H ..... O»" R A halogen bonds (Figure 1d) governing the self-assembly.
1 However, chalcogen bonding interactions (ChBIs)*” have
C Dipole-dipole interactions!®® D Halogen Bonds[*®! not yet demonstrated comparable effectiveness on surfaces as
y s they have in crystal engineering’®~** for developing functional
Ni'_©" 1/7—& """ = materials,”> such as supramolecular semiconductors.****
"@_-N %) Intermolecular Ch--N ChBs acting as the driving force for
{ { self-assembling chalcogenazole derivatives on surfaces, have
E Chz%z ;vr;—’é—lsn s . only been theoretically explored in two recent studies.*”*” To
the best of our knowledge, the role of ChB interactions in
EIN\)—Pyrene driving self-assembly on surfaces remained largely under-
N N,ch investigated experimentally when compared to hydrogen
Pyrene—<i:Ij
April 11, 2024
Figure 1. Schematic representations of the first examples of May 17, 2024
noncovalent molecular self-assembly at surfaces, respectively driven May 20, 2024
by (A) hydrogen bonds,*®* (B) metal coordination bonds,* (C) June 5, 2024

dipole—dipole interactions,”” (D) halogen bonds,** and (E) ChBIs
investigated in this work.
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bonds,*® metal coordination bonds,” and dipole—dipole
interactions,” with only two reports suggesting the presence
of ChB interactions and other noncovalent contacts.'*>"

In this Letter, we combined bond-resolved STM (BRSTM)
measurements with quantum chemistry calculations to
elucidate the first example of ChB-driven molecular self-
assembly on Au(111) using tailored recognition motifs that
undergo self-assembly solely through ChB interactions. If one
excludes the use of cationic heterocycles, one can note that
outside a crystalline environment, the formation of such dimers
is unprecedented. Indeed, even in solution, conclusive data
demonstrating such self-assembly of neutral heterocycles have
yet to be reported thus far.>>* Building on earlier studies at
the solid state, in which we have shown that chalcogenazolo
pyridine (CGP) moieties persistently undergo self-assembly
into dimers through double Ch-N interactions,”* ™" we
conjectured that the Se- and Te-bearing CGP motifs could also
be exploited to govern molecular assemblies on surfaces
(Figure le).”® With this aim, we designed and prepared
pyrene-based CGP modules that could undergo dimerization
through ChB-driven molecular recognition. Reference benzo-
chalcogenazole congeners have also been investigated in which
a C—H moiety has substituted the N-pyridyl atom and is, thus,
not expected to establish any ChBIs (Section S1).

A constant-current STM image of a Au(111) crystal after room
temperature deposition of CGP-Te in vacuum is shown in
Figure 2a. Isolated, straight structures with a length of 2.5 +
0.1 nm, displaying 6-fold rotational symmetry as exemplified by
the three white rectangles, are usually found on the face-
centered cubic (fcc) regions of the reconstructed Au(111)
surface. Given the inherent asymmetry of the molecules on
surfaces, two enantiomers for each dimer were found (R and L,
inset in Figure 2a) with a relative distribution of around 50%
(see Section S4). A close-up view of one of these structures
highlights the presence of two bright-contrast spots in the
middle region 4.9 & 0.2 A from each other (Figure 2b). The
simulated STM image (Figure 2c), obtained by density
functional theory (DFT) calculations of the adsorbed dimer
in its most stable geometry (see below), is in perfect agreement
with the experimental images. Thus, it is reasonable to
conclude that the observed structure is a dimer (CGP-Te),, in
which the two middle bright-contrast spots correspond to the
Te atoms belonging to the CGP-Te moieties. Notably, the two
monomers are oriented head-to-head with the Te atoms facing
the N-pyridyl atom of the neighboring molecule, supporting
the presence of the ChB-driven association. As observed in the
STM images of CGP-Se (Figures 2d,e and SS), dimeric (CGP-
Se), structures are also formed. Dimers are also observed when
CGP-Te molecules are deposited on a Ag(110) held at room
temperature, which generalizes our findings (Figure S4). On
the other hand, when reference benzo-Te molecules are
deposited on Au, only irregular aggregate-type species are
observed (Figure 2f,g). This confirms our hypothesis that the
absence of the N-pyridyl atoms prevents dimer formation since
the double ChBIs can no longer be established. Similarly,
reference benzo-Se modules do not undergo dimerization;
only individual molecules are observed (Figure S2).

To unequivocally disclose the chemical structure of the self-
assembled (CGP-Te), and (CGP-Se), dimers, constant-height
STM experiments with a CO-functionalized tip were
performed. Figure 3 reports so-called bond-resolved
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Figure 2. (A) STM image of (CGP-Te), dimers on Au(111). The
herringbone reconstruction of the Au substrate is also visible. In the
rectangles, the 3-fold equivalent dimer orientations are highlighted.
Tunneling current (I,) = 300 pA; tunneling bias (V;) = 1.000 V; T =
11 K. The top-right-corner inset shows two enantiomers; I, = 250 pA;
V, = 0.500 V. (B) Experimental (I, = 300 pA; V,= 0.630 V; T = 11 K)
and (C) simulated (V, = 0.630 V) STM image of an individual dimer.
In the simulated image, the chemical structure of the monomer is also
overlaid to display the strong Te-centered signal. (D) STM image of
self-assembled (CGP-Se), dimers on Au(111). I, = 300 pA; V, =
0.800 V; T = 8.5 K. (E) STM image of an individual dimer. I, = 150
pA; V, = 0.100 V; T = 85 K. (F) STM image of the reference
tellurazole molecules deposited on Au(111). Kinetic aggregates of
various shapes and sizes can be observed. I, = 400 pA; V,=1.000 V; T
=11 K. (G) Detail of a molecular assembly. I, = 400 pA; V, = 1.000 V;
T = 11 K. Scale bars: 5 nm in (A), (D), and (F); 0.5 nm in (B), (C),
(E), and (G); and 2 nm in the inset of (A).

(BR)STM images of the individual dimers and the respective
relaxed geometrical model computed by DFT. The pyrene and
pyridyl moieties are distinguishable in the experimental images,
while a robust electronic signal arises around the Ch atoms.
The total length of the dimers can be measured as 2.49 and
241 nm for (CGP-Te), and (CGP-Se),, respectively, while
their width is 9.0 A in both cases. DFT geometry optimizations
reveal that the two Ch atoms in the dimer lie at on-top
positions with respect to the underlying Au lattice and bind to
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Figure 3. From top to bottom: BRSTM image (constant height, V, =
S mV, T = 87 K) and DFT relaxed geometrical model of the
individual (CGP-Te), and (CGP-Se), dimers.

second-nearest-neighbor (second NN) atoms (Figure 3).
Indeed, the optimized Te:-Te (Se--Se) distance of 4.94 A
(4.82 A) in the gas-phase dimer matches well with the Au
second nn distance of 5.05 A (Table S1). The calculated Te--
Te (Se-+-Se) distance of 5.01 A (4.94 A) in the adsorbed dimer
is in notable agreement with the distance measured between
the two bright-contrast spots observed in the STM image
(Figure 2b,e).

The formation of dimers (or lack thereof) is determined by
the interaction energy, AE;, between the monomers. In the
gas phase, AE; is defined as the energy gain in forming the
dimer from its constituent fixed-geometry fragments (see
Section S10). The computed values (Table S1) indicate
exothermic processes of —9.2 and —6.2 kcal mol ™ for CGP-Te
and CGP-Se, respectively. The corresponding geometry for
(CGP-Te), is plotted in Figure 4a, showing alignment of the
chalcogenazole rings Te-N distances of 3.0 A (Table S1). For
comparison, the AE;, value for chalcogenadiazole dimers is
about —17 and —7 kcal mol™' for Te- and Se-containing
congeners (Ch--N distances are 2.6 and 2.9 A), respec-
tively.””* When adsorbed on Au(111), surface strain and
relaxation effects must also be considered when computing the
AE;,.. A derivation of the on-surface interaction energy is given
in Sections S10 and S17. We calculated AE,,, values at —5.7
and —3.9 kcal mol™! for (CGP-Te), and (CGP-Se),,
respectively, suggesting that the dimer formation remains
favorable, albeit weaker, also on Au(111). It is worth pointing
out that the interaction between CGP-Te or CGP-Se
monomers in the dimer is, in fact, still strong enough to
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Figure 4. DFT analysis of ChBIs in a (CGP-Te), dimer. (A, B) Gas
phase and adsorption geometries (side view). The tilt angle of the
chalcogenazole moiety with respect to the pyrene unit is shown. (C,
D) Electrostatic potential (in au) superimposed on a charge density
isosurface (p = 0.025 au). Atomic charges Q are reported for Te and
N. (E, F) Molecular graph showing bond paths (dotted lines), bond
critical points in red, and ring critical points in green. For clarity, bond
paths between the dimer and substrate are not shown, except for Te--
Au and N--Au. (G, H) Reduced density gradient (on the 0.5 au
isosurface) showing the noncovalent ChBIs; blue and red regions
indicate attractive and repulsive interactions, respectively; the dashed
circles highlight the attractive interaction at the bond critical point
between Te and N atoms.

allow us to manipulate a dimer with the STM tip without
breaking it apart (Figure S3). In contrast, the AE,, value for
dimers of reference benzo-Te is revealed to be +1.1 kcal mol™!
on the surface, consistent with the experimental observation
that no dimers are formed. A deeper analysis of AE,, is given
in Section S17.

DFT was then used to analyze the chemical nature of the
ChBIs. Previous theoretical studies elucidating the character of
ChBIs in homodimers****?7%% j

int

included molecular electro-
static potential maps, reduced density gradient (RDG) plots,”
and quantum theory of atoms-in-molecules (AIM)** and
natural bond order calculations. Moreover, energy decom-
position analyses’”®" reveal that electrostatic effects can
contribute significantly (up to 58%) to AE,, in chalcogena-
diazole dimers, while the orbital mixing component can be as
large as 41% in telluradiazoles.”> A favorable AE,, combined
with the electrostatic potential map, RDG, and AIM analyses is
sufficient to confirm the presence and the noncovalent nature
of ChBIs in these systems.””"”

Figure 4c shows the molecular electrostatic potential for
CGP-Te superimposed on a charge density isosurface. The
blue maxima appearing at the extensions of the Te back-bonds
indicate o-holes. Their alignment with the red minima,
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corresponding to the N-lone-pairs, is a typical feature in
ChBIs.”® After Au adsorption (Figure 4d), the o-hole character
remains present, although it appears tilted toward the surface
(see also Figures 4b and S7) due to the strong Te--Au (and
N---Au) interaction. The subsequent misalignment of the o-
hole and N-lone-pair binding the two monomers is consistent
with the reduction of the calculated AE;, after adsorption. The
AIM analysis (Figure 4e) reveals bond paths along both Te--N
contacts containing bond critical points, constituting evidence
of a ChBI. Notably, both features persist in the Au-adsorbed
(CGP-Te), (Figure 4f) and (CGP-Se), (Figure S8) dimers.
Finally, RDG plots (Figure 4g) explicitly identify the Te-N
interaction as noncovalent.”> The blue color of the RDG
isosurface, centered at the Te:-N bond, indicates that the Te-:-
N interaction is attractive, as expected from the sign of AE,,.
The Te--N interaction persists in the adsorbed system (Figure
4h), although the less intense color indicates a weaker contact.
The interaction appears weaker again in (CGP-Se), dimers
(Figure S8), consistent with an expected smaller orbital
contribution.”” These conclusions are further supported by
calculations of the charge density difference (Figure S9) and
molecular projected density of states (Figure S13). In contrast,
similar analyses for Benzo-Te reveal a fundamentally different,
weaker interaction (Figure S10 and Table S2).

The total energy and charge density analyses support our
hypothesis that the ChBIs govern the surface-confined
dimerization of the pyrenyl derivatives and confirm the STM
results. This occurs despite a considerable dimer:--Au
interaction which determines the adsorption site, flattened
molecular geometry, and azimuthal orientation (Figure S6).
Although a large van der Waals component anchors the
molecule to the surface, a Te--Au bond is identifiable (Figures
S7 and S9). The total charge transfer from (CGP-Te), to the
Au(111) surface is 0.36e, mainly coming from the Te atom
(AQg. = +0.08e, see Figure 4b). Such an increase might
naively imply a larger electrostatic interaction after adsorption.
However, the computed reduction in interaction energy
suggests that the charge depletion is associated with the Te
lone pair aligned toward the Au surface. It thus has little
influence on the in-plane intermolecular ChBL

In conclusion, our study comprehensively explores nanostruc-
ture self-assembly on surfaces guided by ChBI molecular
recognition. Specifically, we utilized chalcogenazolo pyridine
(with Ch = Se and Te) moieties to create supramolecular
chiral dimers through double ChBIs on Au(111). The
combination of BRSTM measurements and quantum chem-
istry calculations clarified the formation of these dimers,
characterized by distinct 6-fold rotational symmetry and
upheld by nonbonding interactions between Ch atoms and
adjacent pyridine moieties. On-surface ChBI was also
demonstrated on other substrates (Figure S4) and for other
moieties (Figure $10).***” In contrast, reference chalcogena-
zole compounds lacking the N-pyridyl atom and thus incapable
of establishing ChBIs do not form dimers but assemble into
irregularly shaped kinetic aggregates. Charge density analysis of
the (CGP-Te), dimer confirmed the attractive noncovalent
nature of Te---N interactions, which persist when assembled on
Au(111). The distinctive feature of ChBIs, characterized by
their strong orbital contribution, leads us to anticipate that our
findings will pave the way for designing and fabricating precise
supramolecular nanostructures on surfaces with tailored
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semiconducting properties.”" Ultimately, this study not only
expands our comprehension of supramolecular interactions but
also sheds light on a promising avenue for future research in
the bottom-up engineering of two-dimensional (2D) mono-
layered supramolecular chalcogenide-type materials as we
delve into the novel role of ChBIs in surface-based molecular
recognition.

The syntheses of CGP-Te, CGP-Se, and Benzo-Te were
performed following previous literature reports.”**® For details
on the protocols and structural characterization, please see the
Supporting Information.

All molecules studied here were sublimated in ultrahigh
vacuum from a commercial evaporator (Kentax) onto an
Au(111) single crystal that was previously cleaned following
standard Ar* sputter/anneal cleaning cycles. During sub-
limation, the Au(111) substrate was held at room temperature,
with the pressure in the chamber being below 2 X 10™'° mbar.
All STM measurements were performed using a commercial
Infinity system from Scienta Omicron held at temperatures
between 11 and 8 K (the exact temperature is specified in the
text for each reported STM image). The STM images were
calibrated so that the measured Au lattice constant would
coincide with the one from the simulation after geometry
optimization (lattice constant: 4.122 A). A CO-functionalized
W tip was used for BRSTM. BRSTM images were collected in
constant height mode with a low tunneling bias (S mV). All
experimental images were analyzed using the Gwyddion
software.*®

Surface studies Calculations were performed using DFT in a
planewave/pseudopotential framework implemented in the
quantum-ESPRESSO (QE) code.’” The Perdew—Burke—
Ernzerhof (PBE) exchange—correlation functional was
used,®® and van der Waals interactions were accounted for
semiempirically via the Grimme-D3 method with Becke-
Johnson damping.®” Ultrasoft Rappe-Rabe-Joannopoulos-Kaxi-
ras (RRJK) pseudopotentials were used (cutoff 45/360 Ry).
Gas phase geometries were computed in a 45 X 35 X 25 A®
cell. The optimal monomer geometry was determined by
rotating the pyrene group about the bond to the azole unit
until an energy minimum was reached and then free relaxation
was performed. The substrate was modeled using a four-layer
Au(111) slab (a, = 4.12 A), whose backmost two layers were
fied. Monomer and dimer adsorption were modeled within
supercells of size 46.6 A X 20.2 A, ensuring an intermolecular
separation of at least 12 A and a vacuum spacing between
periodically repeating images of 20 A. Gamma-point sampling
with a Marzari-Vanderbilt smearing of 0.1 eV was used
throughout.”” Geometry optimizations were performed using a
tight S meV A™' threshold. Several initial geometries for
monomer adsorption were tested. The most stable geometry
features the chalcogen atom at the on-top site. By testing the
azimuthal energy dependence, we identified the optimal
orientation of having the pyrene groups aligned along the Au
atom rows. This configuration was then used to construct
possible geometries for the dimer, including chalcogen atoms
at the nearest and second nearest neighbor sites and for
different lateral offsets and azimuthal orientations. The most
stable geometries are the ones reported in the main text. The
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RDG’' and electrostatic maps were also computed using QE.
Analysis of atomic charges and quantum theory of AIM paths
were performed with the critic2 code’” using all-electron
charge densities computed with the QE package. RDG and
molecular electrostatic potential (MEP) maps were visualized
using VESTA.” The MEP maps are plotted on a relatively high
value of charge density isosurface (p = 0.025 au; Figure SS for
a comparison with the standard plot at p = 0.001 au) to reveal
the o-holes also in the dimer and the adsorbed systems. RDG
isosurfaces are colorized using the product of the charge
density and sign of the second eigenvalue of the electron
density Hessian matrix in the range [—0.02:0.02] au.””> STM
images were computed using the Tersoff-Hamann approx-
imation.”* Atomic charges were computed using the Voronoi
deformation density (VDD) method.”

The Supporting Information is available free of charge at
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