
Resilience of Interaction Techniques to Interrupts?

A Formal Model-based Approach

FULL VERSION

Maurice H. ter Beek1, Giorgio P. Faconti1, Mieke Massink1,
Philippe A. Palanque2, and Marco Winckler2

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’ (ISTI), CNR
via G. Moruzzi 1, 56124 Pisa, Italy {terbeek,faconti,massink}@isti.cnr.it

2 Institute of Research in Informatics of Toulouse (IRIT), University Paul Sabatier
118, route de Narbonne, 31062 Toulouse cedex 9, France {palanque,winckler}@irit.fr

Abstract. In many modern working environments interruptions are commonplace as users
must temporarily suspend their current task in order to complete an unexpected intervening
activity. As users are faced with more and more sources of information competing for users’
attention at any time, it is becoming increasingly important to understand how interruptions
affect our abilities to complete tasks. The present work introduces a new perspective for the
research in the field by employing analytical, model-based, techniques that are informed
by well-established cognitive theories and experimental data available in the literature. We
propose stochastic modelling and model checking to predict measures of the disruptive
effects of interruptions to two well-known interaction techniques: Drag ’n Drop and Speak
’n Drop. The approach also provides a way to compare the resilience of different interaction
techniques to the presence of external interruptions that users need to handle. The results
obtained are in a form that allows validation with results obtained by empirical studies
involving real users.

1 Introduction

In many modern working environments interruptions are commonplace as users must temporarily
suspend their current task in order to complete an unexpected intervening activity [28, 74]. In this
context, users are required to accomplish multitasking (i.e. two or more tasks performed during the
same period of time) and to be able to do so has become a desired skill for many job functions [77].

Interruptions are unpredictable and quite often cannot be disregarded by the user in the work-
ing environment. Web page pop-ups, phone calls, emails, instant messaging and social events can
also be disruptive when people need to concentrate on certain tasks. One of the interesting aspects
of interruptions, according to O’Connaill and Frohlich [62], is that they reveal that the timespace
of any individual is not owned and controlled in the same way as their workspace, but can collide
and merge with that of another individual unexpectedly.

Research has shown that the level of disruption of different types of interruptions may vary
considerably [7, 37]. Quite often, interruptions are associated with negative effects: resuming a task
after an interruption is difficult and may take a long time [75], interrupted tasks are perceived as
harder than uninterrupted ones, interruptions cause more cognitive workload and they are quite
often annoying and frustrating because they keep people from completing their work [8].

Interruptions can also lead to incidents due to human error. According to Trafton & Monk [76],
pilots experiencing interruptions during preflight checklists have been blamed for multiple aviation
crashes [60, 61]. In addition, recent studies have shown that interruptions may be an important
factor in driving [58], emergency room care [21], and nursing errors [78]. Indeed, frequent in-
terruptions can reduce user performance, however not all interruptions bring negative impact:
? This work has been partially funded by the EU project Resist/Faerus (IST-2006-026764) and by the

RSTL project XXL funded by the Italian National Research Council (CNR).

awareness systems such as alarms and alert systems effectively shift our attention to matters that
need immediate care [16, 52] and, at least for simple tasks, interruptions may actually increase
performance [73].

As users are faced with more and more sources of information competing for user’s attention at
any time, it is becoming increasingly important to understand how interruptions affect our abilities
to complete tasks [19]. Interruptions raise questions of non-exclusive practical and theoretical
significance including: How many interruptions occur at work? How performance is affected by
various interruption characteristics, such as complexity, duration, timing and frequency? How
many are disregarded rather than handled? Who benefits from the ensuing interactions? How
disruptive are interruptions to prior tasks? What can be done to mitigate negative disruptive
effects?

Most of the current research has tackled these questions by conducting empirical studies with
users, either on controlled conditions (i.e. usability labs) or on working environment (e.g. ethno-
graphical studies). The present work introduces a new perspective for the research in this field
based on model-based analytical techniques that can be employed during early phases (i.e. speci-
fication phases) of the development process of interactive systems in order to investigate potential
disruptive effects of interruptions on user performance and the resilience of interaction techniques
to such interruptions. The proposed methodology consists of several phases. In the first phase we
consider an abstract view of the flow of information between interaction devices, system and user.
To facilitate the unambiguous and precise description and modelling at this level, we make use of
a specification notation in which the various components (device, system and user) are modelled
as syndetic models based on interactors [32, 35]. Interactors can describe the logical and physical
components of an interactive system, but by themselves give little direct insight into how a user
might or might not be able to use the system. Syndetic models [30, 12] address this problem by
expressing the behaviour of computing and cognitive systems within a common framework that
supports reasoning about the conjoint system. The computing component of a syndetic model is
determined by the system being represented, but for the cognitive side there is a range of models
to choose from, each emphasising different aspects of human information processing. The approach
that we adopt for syndetic modelling in the present work is called Interacting Cognitive Subsys-
tems [10, 11], or ICS, and is summarised in a later section. The objective of this phase is to get
insights in the cognitive resources required to perform the task at hand.

The second phase of the methodology uses the results of the analysis of the first phase. In
particular, the various mental configurations through which the user passes while performing
tasks using an interaction technique are modelled as states of a process algebraic specification.
The change of mental configuration can usually be identified by an observable action, such as the
end of a selection movement or the start of a movement after a planning period. Such events are
modelled as actions in the process algebraic specification. The average period of time during which
a particular mental configuration is in place is modelled by the inverse of a rate parameter of an
exponential distribution. How this works exactly is explained in more detail in later sections. In
this second phase also the processes modelling the system and interrupt generation are specified.
The three components (device/system, user and interrupts) are then composed together and their
interaction is modelled by the common observable actions on which they synchronise.

The resulting stochastic syndetic model is then used for analysis with a stochastic model
checker. In this work we used the PRISM model checker [48] to analyse and predict the disruptive
effect of interruptions considering different frequencies of interruption. In particular we illustrated
the approach by modelling two well-known interaction techniques for deleting items from a desktop;
Drag ’n Drop, in which users select an item and then drag it over the trash visible on the screen
and release the mouse button, and Speak ’n Drop, a multi-modal technique in which users select
an item by means of a mouse and delete it by pronouncing the word ‘delete’. The performance of
a user using a particular technique can then be characterised by the number of items the user is
able to drop during a fixed period of time. Using stochastic model-checking this measure can be
expressed as a cumulative reward property. This property is analysed for the models of the two
interaction techniques and for different frequencies of interrupts allowing for a comparison of their
resilience to external interrupts.

2

Outline of the paper. We start by a review of the literature on interruptions in Sect. 2 followed
by a brief presentation of the cognitive theory ICS in Sect. 3 that we use to motivate the models
of the user aspects that we present in later sections. Sect. 4 introduces the stochastic modelling
language used and the relative analysis tool. In Sect. 5 we describe our methodology for obtaining
the stochastic models using the Drag ’n Drop interaction technique as a running example. The same
method is then applied to the more complex multi-modal Speak ’n Drop interaction technique in
Sect. 6. Sect. 7 presents the results of the performance analysis of the models and discusses their
differences in resilience to external interrupts for different assumptions on the average number
of interrupts that occur. Finally, in Sect. 8 we conclude the paper with some considerations on
current work and a discussion of future research on this topic.

2 Task Interruptions

Literature about human interruption addresses this design problem from one the following different
perspectives: a) psychology of human interruption [1, 7, 17, 63]; b) technologies for improving the
quality of interruption generation [24, 44]; c) HCI methods for brokering interruptions [28, 76,
75, 71, 79]; d) the effects of interruptions in work settings [25, 62]; and e) case studies describing
the results of introducing technologies into the workplace in an attempt to improve coordination
performance [46, 59, 70].

2.1 The Anatomy of Interruptions

In the interruptions domain, there are relatively few reported task analyses. However, a number
of simple task analyses were conducted across several different domains to capture the critical
aspects of the tasks. These analyses are described by Trafton et al. [76, 75]. Fig. 1 shows some key
features of the interruption process, based on these naturalistic observations.

Fig. 1. Timeline: Anatomy of an interruption [75].

A person is working on a primary task, which can be thought of as similar to the complex,
long-lasting task that Czerwinski et al. [24] described. Next, an alert for a secondary task occurs.
Alerts come in different forms—e.g. a phone ringing, a person coming into the room to ask the
person a question, or a fire alarm. During the interruption lag, the person has a moment (or
longer) before turning his or her attention to the interrupting task. Then the person starts the
secondary task. After the secondary task is completed, the person must resume the primary task.
During the resumption lag, the person must figure out what he or she was doing during the
primary task and what to do next. Finally, the person resumes the primary task. From this task
analysis and the real-world examples, it is clear that different aspects of the cognitive system are
relevant to the study of interruptions and resumptions. First, executive control is very important
for all interruption/resumption tasks. Second, upon completing the secondary task, the person’s
main goal is to remember what task he or she was working on and what to do next (though in
some real-world situations, new task demands occur or the environment may have changed so that
significant re-planning may need to occur). Third, people may or may not use some sort of cue in
the environment to actively help them remember what they were doing before the occurrence of
the interrupt. Fourth, there may or may not be a link between the primary and secondary tasks.
Fifth, in some situations (e.g. an emergency), cues may not have been thought about—there may
be relatively different preparatory processes that occur.

3

2.2 Sources, Types and Taxonomy of Interruptions

Sources of task interruptions can be either external when caused by external entities such as events
in the environment or internal when users decide to break the current task flow due, for example
to new thoughts coming to their mind. Internal interruptions are very difficult to detect; in some
cases they might lead to tasks being abandoned that should be considered normal deviations of
the user scenario, for example when the user gives up to reach the initial goal. The sources of
external are many and vary, ranging from social events from the environment (e.g. phone calls,
instant messaging) to alarms and notification systems.

Types of interruptions that may serve beneficial purposes include warnings and alerts, re-
minders, notifications and suggestions. Of course warnings and alerts etc., may not always be
interruptions if they are part of the normal task flow. More generally, warning and alert etc.
should be considered interruptions when they cause a change or disturbance in a person’s activity
or behaviour. Waliji et al. [79] provide examples from a healthcare context, although these types
of interruptions would also exist in other domains.

Warnings & Alerts are usually a sign or signal of some negative event occurring, or a notice
to be careful. They are intended to make people aware of an impending danger or difficulty. For
example, drug interaction warnings embedded into drug prescribing systems warn doctors and
pharmacists about dangerous drug-drug interactions when prescribing or filling a prescription.
These warnings are designed to interrupt the current task, and alert the clinician to a potential
adverse event. Although such warnings may be critical in preventing errors, it is found that in
practice such warnings are often ignored or overridden, suggesting the need for better designed
warnings. Warnings and alerts are often urgent and need to be handled quickly. Warnings and
alerts may either have an explicit or implicit action associated with them. For example a drug
interaction warning may indicate explicitly that there is a potential interaction with a drug and
provide a list of medications that may be suitable replacements. An audible alert may be more
implicit, simply indicating an off nominal state, without providing any explicit instructions or
actions.

Reminders are a form of interruption that causes an individual to remember or recall an event.
Decision support systems often remind users of standard tests or procedures that conform to
practice guidelines. Although the urgency or importance of reminders may vary, many will include
an explicit associated action. For example a medication reminder may announce the time, dose
and route for the drug.

Suggestions are ideas or proposals that are propagated to individuals. Patients often receive
suggestions and recommendations from their care-givers. For example diabetics are urged to ex-
ercise more and eat healthier. Physicians may be informed that their patient may be eligible for
a particular clinical trial. Pharmaceutical companies also engage in suggestive practices to pre-
scribers when they promote their particular brand of medication. Such suggestive interruptions can
be from face-to-face encounters with a pharmaceutical sales representative or through the use of
sponsored drug reference databases. Suggestions are unlikely to be of high urgency or importance.
But effective suggestions may explicitly state associated actions that are recommended.

Notifications are usually described as the process of informing. Notifications are defined as the
most generic type of interruption, with the least degree of importance or urgency. A notification
may be purely informational in purpose with no explicit instruction for action. For example a
notice stating the availability of a patient’s lab results informs a physician that their requested
order is ready. However, notifications may lead to actions implicitly without specific instructions.
For example the lab test may indicate that a particular patient needs an immediate surgical
procedure.

A few researchers have attempted to define interruptions and establish a taxonomy that de-
scribes the different issues surrounding interruptions. McFarlane [54] developed a taxonomy of
human interruption as a tool for answering interruptions research questions. The taxonomy, sum-
marised in Table. 1, lists eight dimensions of human interruption. Manipulating each dimension,
as discussed in the next section, can influence the disruptive effects of interruptions.

4

Dimension of Interruption Example of Dimension
Source of interruption Self; another person; computer
Individual characteristics Limitations of: perceptual processors, cognitive processors, motor
of person receiving processors, memory, focus of consiousness, processing streams;
interruption willingness and ability to be interrupted

Immediate (the person must leave current task to attend to interrup-
tion); negotiated (the interruption is announced to the person, and then

Method of coordination the person decides when to attend to it); mediated (the interruption is
announced to the person’s personal digital assistant (or another third
party), which determines when the best time is to interrupt the person);
scheduled (the person is interrupted during prearranged time only)

Meaning of Interruption Alert; stop; divert attention (task-switching); distribute attention (task-
sharing); remind; communicate information

Method of expression Physical (i.e. verbal); type (i.e. by purpose)
Channel of conveyance Face-to-face; mediated by a person; mediated by a machine
Human activity changed by Conscious or subconscious; individual activities; joint activities
interruption
Effect of interruption Change in activity; change in memory; change in awareness; change in

focus of attention; loss of control over activity

Table 1. Summary of McFarlane’s [54] taxonomy of human interruption.

Despite the limited number of studies on interruptions taxonomy, there is some evidence of its
usefulness to report human errors (due to interruptions). Brixey et al. [16] reports on the use of
the taxonomy of task interruption in healthcare systems as a tool to identify how the introduction
of a technology might introduce new interruptions contributing to avoid medical error or change
the work of clinicians.

2.3 Factors Influencing Disruptiveness

Gillie and Broadbent [37] presented a series of experiments aimed at elucidating features of inter-
ruptions that make them more or less disruptive to an ongoing computer task. They manipulated
interruption length, similarity to the ongoing task, and the complexity of the interruption. They
showed that being able to rehearse one’s position in the main task does not protect one from the
disruptive effects of an interruption. In addition, they discovered that interruptions with similar
content could be quite disruptive even if they are extremely short.

McFarlane [55] examined four methods for deciding when to interrupt someone during mul-
titasked computing. He explored several interruption policies, including immediate (requiring an
immediate user response), negotiated (user chooses when to attend), mediated (an intelligent agent
might determine when best to interrupt) and scheduled (interruptions come at prearranged time
intervals) notifications. It was found that performance was affected by the method used for co-
ordinating interruptions, but there was no one best method for all performance measures. For
example, the immediate method showed the worst performance in terms of accuracy, but the
best performance in terms of completeness, on the interruption-matching task. The negotiated
method showed the best performance in terms of accuracy on the continuous task, whereas the
pre-scheduled method showed the worst. Mediation did not appear to significantly improve perfor-
mance for any measure, although this may be indicative of the type of task performed. McFarlane
also cautions that users may postpone attending to interrupting messages in these cases. Also, if
forced to acknowledge an interruption immediately, users in his study got the interrupting task
done promptly but were less efficient overall.

Other researchers have also studied the timing of interruptions, and how a warning can allow
a person to anticipate an interruption [37, 75, 58, 42]. Warnings essentially create an interruption
lag (see Fig. 1), and results of these studies have shown that an interruption lag can reduce the

5

disruptive effects of interruptions, primarily by reducing reorientation time to the primary task
after the interruption task is completed and thereby reducing overall performance time of the
primary task. Interruption lags in these studies allowed participants to either finish what they
were working on before attending to the interruption, or encode retrieval cues to allow for better
task resumption following the interruption. Most of these studies have focused on computerised
work, where an automated computerised system must intermittently interrupt a user for input,
while the user is focussed on other tasks. However, it is important to note that in safety-critical
environments, such as a hospital, it may not be possible for healthcare workers to anticipate
interruptions and have a substantial interruption lag.

2.4 Solutions and Design Support

Although the research on interruptions is still relatively new, and much work still needs to be
done at both theoretical and applied levels, there is some evidence on how to make interactive
systems more resilient and how to reduce the disruptive effects on user tasks. These strategies
include human training, guidelines for design and tool support.

Human training. One of the most striking findings in many studies is the effectiveness of
training strategies in mitigating the immediate disruptiveness of interruptions (e.g. rehearsal,
environmental cues). According to Trafton [75], if people are simply learning the task, training
people on the task itself would reduce the disruptiveness of the interruptions. However, if people are
learning how to resume, then training on interruptions and resumptions should be built into current
training regimens. They found that interruptions became less disruptive over time with experience
and practice on the resumption process itself; experience on the primary task alone (without
interruptions) did not reduce the disruptiveness of interruptions. This study strongly suggests that
for training people in complex domains, training scenarios should include occasional naturalistic
interruptions in order to reduce the disruptiveness of interruptions during actual performance.

Some guidelines have been proposed upon theoretical research for reducing the detrimental
effects of interruptions. For example, within the prospective memory framework, McDaniel et
al. [53] found that the use of a blue dot cue could improve performance upon resumption of
the task. This suggests that providing an external mnemonic may greatly benefit performance for
people who deal with real-world interruptions and prospective memory tasks. Using the Long Term
Working Memory (LTWM) perspective, Oulasvirta and Saariluoma [63] also made several applied
suggestions. Based on the results of their experiments, they suggested that system designers should
keep ‘interaction chains’ (the number of interface actions that lead to a goal or subgoal) quite short.
The amount of time does not seem to be theoretically determined, but 20 s seems to be a heuristic
used by some designers. They also suggested preventing interruptions on tasks that require large
amounts of encoding time (e.g. certain checklists that airline pilots go through). Finally, they
suggested that user control of interruptions is beneficial (consistent with McFarlane [55]) because
it allows the person to have control over the encoding time, which is critical under their framework.
Finally, Table 2 presents guidelines arising out of the memory for goals theory and the theoretical
justifications for why they should be followed.

Some of the design solutions for interruptions concern the development of specialised tools. For
example, Czerwinski’s group at Microsoft Research probably has the best track record of building
good tools that are based on theoretically grounded applied research principles. For example, the
diary study described previously [25] had a major impact on the creation of a prototype tool called
the GroupBar. GroupBar allows people to save and retrieve application and window management
setups, which can be extremely useful when switching tasks. Bailey and his colleagues also have
built several tools based on empirical work [7]. They suggested that the best place to interrupt
people is between ‘coars’ breakpoints between tasks. They have used an empirical approach to
explore the linkages between traditional task analytic approaches (e.g. goals, operators, methods,
and selection rules, or GOMS) and pupil size as a measure of mental workload. They have created a
tool that is able to automatically detect times of high and low workload. They have suggested that
interrupting people at times of low workload is best. They currently have several demonstration
systems that perform components of this task.

6

Suggestion Theoretical Reason
Minimise interruptions Interruptions are disruptive (whole theory)
Do not set your e-mail to automatically alert you Minimize external interruptions
when you get e-mail
Turn off all ‘intelligent’ agents that interrupt you Minimise external interruptions
When you get interrupted, take 2 s to figure out Rehearsal during interruption lag facilitates
what you will do next resumption
Make the next thing you do an action on a Environmental cues can prime previously
visible object suspended goals
Highlight the next thing you want to do upon Explict, blatant environmental cues help
resumption the resumption process

Table 2. Interface guidelines inspired by the memory for Goals Framework (Trafton [76]).

2.5 Formal Modelling of Task Interruptions

There have been several attempts to formalise cognitive models describing the impact of interrup-
tions in the human behaviour [1, 75, 71, 73]. However, only a few have addressed formal description
techniques to describe the occurrence of interruptions in system specifications [45].

Many situations involve the occurrence of multitasking, and thus the possibility to get work
interrupted any time. In multitasking environments, interruptions should be seen as just a break in
the current task execution that causes an (unexpected or intended) deviation of the control flow.
This problem is quite well known in the domain of Operational Systems where the occurrence of
interruptions during the execution of programs running in parallel presents many similarities with
multitasking in human activity. Previous work in the Operational System domain [72] has demon-
strated that systematic description of all deviations of the system control flow is almost impossible,
as it would lead to an exponential and unpredictable number of states. The unpredictability of
interruptions would favour the use of declarative models to describe what should be accomplished
by the user system (whatever happens) rather than describing the steps required (i.e. the control
flow) to accomplish it [68]. This notwithstanding, there are some situations where the interruption
of actual tasks should be considered as part of the user goals as, e.g., to cancel document printing.
Indeed, some task model notations, such as Concur Task Tree (CTT) [67], explicitly provide the
operator suspend/resume (i.e. ‘|>’) that allow explicitly modelling between tasks as presented by
Fig. 2. Similarly, West and Nagy [80] have added theoretical structures to the notation GOMS in
order to overcome its limitations for analysing interruptions when task switching is common.

Fig. 2. Example of task modelling with interruption operator ‘|>’ in CTT.

7

In a completely different approach, Jambon [45] analyses the idiosyncrasies of relationships
between tasks (such as parallelism, interlacing and sequence) to derive a formal model (using
automata) describing the semantics of interruptions in notations like MAD, UAN and Petri nets.
For example, if two tasks are said to run in parallel it is assumed that there will not be any
disruptive effect during their execution. If two tasks are interlaced, the disruptive effect should be
counted as the effort required for switching tasks. If two tasks are supposed to run in sequence,
the interruption of one task could be interpreted as a definite disruption (e.g. starting task t2
will interrupt and eventually cancel task t1) or an interlacing among tasks with a less disruptive
effect on human activity (e.g. starting task t2 will interrupt task t1, but t1 could be resumed after
task t2 has finished). Additionally, tasks resumption could be done at different steps of the task
execution (i.e. restarting from the beginning, resuming the task at the point before the interruption
occurred, resuming at the end of the task assuming it has been accomplished). In the stochastic
process algebra used in the present paper there is no explicit suspend/resume operator, but its
behaviour can be modelled using a combination of the more primitive interleaving and choice
operators.

3 Interacting Cognitive Subsystems

In this section we recall the relevant parts of the cognitive theory of Interacting Cognitive Sub-
systems (ICS) [9] and in particular we show which cognitive configurations are involved in the
execution of a simple Drag ’n Drop operation. We also explain the additional configurations in-
volved in a Speak ’n Drop operation and discuss the consequences of cognitive limitations that
have to be taken into consideration when developing a model of the user aspects of the use of the
interaction techniques.

Interacting Cognitive Subsystems (ICS) [10, 11] is a comprehensive model of human informa-
tion processing that describes cognition in terms a collection of subsystems that operate on specific
mental codes. Although specialised to deal with specific codes, all subsystems have a common ar-
chitecture, shown in Fig. 3. Incoming data streams arrive at an input array, from which they
are copied into an image record representing an unbounded episodic store of all data received
by that subsystem. In parallel with the basic copy process, each subsystem also contains trans-
formation processes that convert incoming data into certain other mental codes. This output is
passed through a data network to other subsystems. If the incoming data stream is incomplete or
unstable, a process can augment it by accessing or buffering the data stream via the image record.
However, only one transformation in a given processing configuration can be buffered at any mo-
ment. Coherent data streams (see [11]) may be blended at the input array of a subsystem, with the
result that a process can ‘engage’ and transform data streams derived from multiple input sources.

image record

transform C to X

transform C to Y

input of
code C

from store to store

transform C to Z

copy

input array

Fig. 3. Generic structure of an ICS subsystem.

ICS assumes the existence of 9 distinct subsystems, each based on the common architecture de-
scribed above:

8

Sensory subsystems Meaning subsystems
VIS visual: hue, contour etc. from the eyes PROP propositional: semantic relationships
AC acoustic: pitch, rhythm etc. from the ears IMPLIC implicational: holistic meaning
BS body-state: proprioceptive feedback

Structural subsystems Effector subsystems
OBJ object: mental imagery, shapes, etc. ART articulatory: subvocal rehearsal & speech
MPL morphonolexical: words, lexical forms LIM limb: motion of limbs, eyes, etc

Overall behaviour of the cognitive system is constrained by the possible transformations and by
several principles of processing. Visual information for instance cannot be translated directly into
propositional code, but must be processed via the object system that addresses spatial structure.
Although in principle all processes are continuously trying to generate code, only some of the
processes will generate stable output that is relevant to a given task. This collection of processes
is called a configuration. The thick lines in Fig. 4 shows the configuration of resources deployed
while using a hand-controlled input device to operate on some object within a visual scene.

!mpl
!implic

!art
!prop

art"
lim"

implic"

!mpl
!implic
!obj

!prop
!som
!visc

obj

!mpl
!prop
!lim limvis

!implic
!obj

!leg
!hand

!speech
!type

som

visc

ac art

implic

prop

mpl

bs

"hand

45

6

7

8

3

1

2

Fig. 4. ICS architecture.

The structures and principles embodied within ICS can be formulated as an axiomatic model in
the same way as any other information processing system. This means that the cognitive resources
of a user can be expressed in the same framework as the behaviour of the computer-based interface,
allowing the models to be integrated directly. We will refer to this way of modelling as syndetic
modelling. To begin this process, we define some sets to represent those concepts of ICS that will
be used here. Here and elsewhere in this document we will make use of common mathematical

9

conventions for sets and relations, for example ‘×’ for cartesian product and ‘P’ for power set.

[sys] - ICS subsystems, e.g. vis, prop, obj etc.
[repr] - mental represententations
tr == sys × sys - transformation processes, e.g. :vis-obj:.

Representations consist of basic units of information organised into superordinate structures. Co-
herence of units depends on several issues, including the timing of data streams, that will not be
addressed here. Instead, coherence is captured abstractly in the form of an equivalence relation
over representations:

≈ : repr ↔ repr

In describing ICS it is also useful to discuss the representations that are being delivered as part of
a particular data stream. We therefore introduce a further set, code, whose elements are represen-
tations that have been labelled by the subsystem in which they were generated. Representations
from or to the outside world are tagged with ‘*’:

code == repr × sys - located representations

In general we will write Rsys for the code (R, sys), and ‘:src-dst:’ for the transformation (src, dst).
interactor ICS
attributes

sources : tr → P tr
stable : P tr
@ : code ↔ sys

coherent : P P tr
buffered : tr
config : P tr

The state of the ICS interactor captures the data streams involved in processing activities and the
properties of the streams such as stability and coherence which define the quality of processing, or
in other words, user competence at particular tasks. The sources of data for each transformation is
represented by a function ‘sources’ that takes each transformation ‘t’ to the set of transformations
from which ‘t’ is taking input. In general only a subset of transformations are producing stable
output, and this set is defined by the attribute ‘stable’. The codes that are available for processing
at a subsystem are identified by a relation @ , where ‘c@s’ means that code ‘c’ is available at
subsystem ‘s’. As not all representations are coherent, only certain subsets of the data streams
arriving at a system can be employed by a process to generate stable output. The set ‘coherent’
contains those groups of transformations whose output in the current state can be blended. If the
inputs to a process are coherent but unstable, the process can still generate a stable output by
buffering the input flow via the image record and thereby operating on an extended representation.
However, only one process in the configuration can be buffered at any time, and this process is
identified by the attribute ‘buffered’. The configuration itself is defined to be those processes whose
output is stable and which are contributing to the current processing activity.

actions
engage : tr × tr
disengage : tr × tr
buffer : tr
trans

Four actions are addressed in this model. The first two, ‘engage’ and ‘disengage’, allow a process
to modify the set of streams from which they are taking information, by adding or removing a
stream. A process can enter buffered mode via the ‘buffer’ action. Lastly, the actual processing
of information is represented by ‘trans’, which allows representations at one subsystem to be
transferred by processing activity to another subsystem.

10

The principles of information processing embodied by ICS are expressed as axioms over the
model defined above. For a more complete discussion refer to [33].

axioms
1 ∀ trs : P tr • trs ∈ coherent

⇔

∃ dest : sys •

∀ s, t : sys • :s-t: ∈ trs ⇒ t = dest
∧

∀ s, t : sys; p, q : repr •

 :s-dest: ∈ trs ∧ ps@dest
∧
:t-dest: ∈ trs ∧ qt@dest

 ⇒ p ≈ q

2 t ∈ stable ⇔ sources(t) ∈ coherent ∧ (t = buffered ∨ sources(t) ⊆ stable)
3 t ∈ config ⇔ (t ∈ stable ∧ ∃ s • t ∈ sources(s))
4 per(engage(t , src)) ⇒ src ∈ stable

5 t 6∈ stable ⇒

∃ s • s ∈ stable ∧ s 6∈ sources(t) ∧ obl(engage(t , s))
∨
∃ s • s 6∈ stable ∧ s ∈ sources(t) ∧ obl(disengage(t , s))
∨
obl(buffer(t))

6 [buffer(t)] buffered = t
7 sources(t) = S ⇒ [engage(t , s)] sources(t) = S ∪ {s}
8 sources(t) = S ⇒ [disengage(t , s)] sources(t) = S − {s}
9 px@src ∧ :src-dst: ∈ stable ⇒ [trans] psrc@dst
10 (∃ p : repr ; src, dst : sys • [trans] psrc@dst) ⇒ ∃ x : sys • px@src ∧ :src-dst: ∈ stable
11 ∀ s, t : sys • :s-t:, :t-s: ∈ config ∧ (buffered = :s-t: ∨ buffered = :t-s:) ∧ x : tr • x 6∈ stable

⇒ per(buffer(x))

Graphical Input Devices The most common and widespread graphical device is the 2D mouse,
a physical device equipped with two transducers able to measure the distance between a current
position and a next point along two axes and with a number of buttons (usually from one to
three). The mouse can be described by a very simple interactor [31, 35], where the type RelPos
represents relative positions, i.e. offsets, and the type Switch represents the state {UP, DOWN}
of mouse’s button.

interactor Mouse
attributes

mouse : RelPos
button : Switch

actions
lim operate : RelPos
lim push
lim release
axioms
1 [operate(δ)] mouse = δ
2 [] button = UP
3 [push] button = DOWN
4 [release] button = UP
5 [push] obl(release)
6 [[operate]] ∧ [[push]] ∧ [[release]] in [[Mouse]]

The lim decoration of the operate, push, and release actions means that the device is sensed by
the body-state subsystem when it is used, and the notation [[. . .]] is used to refer to the perceiv-
able aspect of an attribute, interactor or action. The axioms describe the operations that can be
performed. Axiom 1 captures the movement of the mouse by a distance δ, Axiom 2 states that
initially the button of the mouse is in position UP. Axiom 3 states that after a push operation on

11

the button of the mouse its position changes into DOWN, and Axiom 4 states that after a release
operation the button returns to its UP position. Axiom 5 states that after a push the button will
eventually and mandatory be released. And, finally, Axiom 6 states the perceivable operations
possible with the mouse.

While the mouse can be used as a pure input device, it is usually coupled with a cursor that
provides the feedback of the current position in a reference space (usually a display).

interactor Cursor
attributes
vis cursor : DispCoord
actions

render
axioms
1 [[cursor]] in [[Cursor]]

The state space of the cursor device is represented by a pair of coordinates within the absolute
display coordinate system (DispCoord == xDisplay × yDisplay). The vis decoration indicates
that the cursor position is visually perceivable, while the axiom states that the cursor must be
visible whenever the interactor is activated. Mouse and cursor are linked by composing the two
interactors and adding further information describing their mutual relations:

interactor Mouse-Cursor
Mouse,Cursor

attributes
mouseLocation : DispCoord × RelPos → DispCoord

axioms
1 cursor = P ⇒ [render] cursor = mouseLocation(P ,mouse)
2 [push] obl(render)
3 [release] obl(render)

The attribute named ‘mouseLocation’ computes a new cursor position from the previous cursor
position and the relative position of the mouse. The axiom states that after the rendering has taken
place the new cursor position is the one computed by mouseLocation. In addition, after either a
’push’ or a ’release’ the system is forced to perform a ’render’. With this simple mechanism,
relative positions in the mouse space can be reflected to the user in terms of absolute positions in
the display space. As we will see this has a number of implications when considering the cognitive
resources necessary to operate the device effectively.

Positioning and selecting Mice are used for positioning and selecting. Positioning refers to
the task of identifying a specific point in a coordinate system. As an example, positioning in a
graphics editor refers to identifying the starting position from where an object is drawn. Similarly,
in a text editor it refers to identifying the position at which text is written. Selecting refers to the
task of identifying an object in a given context. This can be a graphical object, a menu entry, or
a character in a text.

Both positioning and selecting operations are influenced by the same kind of parameters:

Current position: the point or the entity at which the device is currently located;
Target position: the point or the entity that must be identified;
Distance: the distance from the current to the target position;
Size: the area of the target position.

The device position is moved from the current to the target position. When the target is acquired
an input token is sent to the interactive system, usually following the firing of a trigger. We already
know from experiments [36, 49] that the movement performed with a specific device is influenced
by the distance and the size of the target, assuming that no constraints are imposed over the
trajectory. Similarly, performance varies across devices due to the different muscles involved in
controlling the movement.

12

The interactors defined in the previous section adequately represent the system requirements
and are suitable to be reused in a syndetic specification for the positioning operation. For what
concerns selection and delete, a further interactor is required from the system side to express the
rendering of the objects currently selected. The selection itself can be triggered either on a button
down or on a button up transition. For this reason we specialise two interactors Select-Push and
Select-Release to take this possibility into consideration.

interactor Select-push
Mouse − Cursor

attributes
vis objects : P Obj

objLocation : Obj → DispCoord
vis selected : Obj
axioms
1 selected = s ⇒ s ∈ objects
2 [] selected = ∅
3 ∃ o : Obj • o ∈ objects

∧ cursor = P ∧ objLocation(o) = mouseLocation(P ,mouse)
⇒ [push] selected = o

4 ∀ o : Obj • o ∈ objects ∧ cursor = P ∧ objLocation(o) 6= mouseLocation(P ,mouse)
⇒ [push] selected = ∅

5 [[objects]] ∧ [[selected]] in [[Mouse − Select]]

The selected object is one of objects. Initially, it is empty and nothing is selected. On button down
the object, over which the cursor is positioned, becomes selected. Pushing the button outside of
objects resets the selection.

interactor Select-release

refers to the case of selection on button up, in which case Axiom 3 is modified accordingly.

axioms
3 ∃ o : Obj • o ∈ objects

∧ cursor = P ∧ objLocation(o) = mouseLocation(P ,mouse)
⇒ [push][release] selected = o

Both the objects and the current selection are visually perceivable.

Removing objects In this paper we are interested in the development of syndetic models that
can be used to analyse the resilience of different interaction techniques to the effect of external
interrupts. The specific interaction techniques that we address and analyse are the common Drag
’n Drop technique used to remove items from a desktop and an alternative multimedia combination
of a mouse and voice commands, Speak ’n Drop, in which a user uses the mouse to select items
on a display and pronounces the command delete in order to remove the selected item. For each
of the techniques, the above system specification is extended accordingly.

Drag ’n Drop. For Drag ’n Drop, the Mouse-Select interactor is augmented with a trash.

interactor Remove-DnD
Select − push

attributes
vis trash : Obj

objMove : DispCoord × RelPos → DispCoord

13

axioms
1 trash = t ⇔ t 6∈ objects
2 button = DOWN ∧ selected = s

∧ cursor = P ∧ objLocation(s) = mouseLocation(P ,mouse)
⇒
[operate(δ)] objLocation(s) = objMove(objLocation(s),mouse)

3 button = DOWN ∧ objects = O ∧ selected = s
∧ trash = t ∧ cursor = P ∧ objLocation(t) = mouseLocation(P ,mouse)
⇒ [release] objects = O − {s} ∧ selected = ∅

4 [[trash]] in [[Remove −DnD]]

When the mouse button is pushed down over the selected object, it is moved accordingly to mouse
movement. If a ’release’ action occurs when the mouse is over the trash then the selected object
is removed from the set of objects. It is required that the trash is perceived.

Speak ’n Drop. With this interaction technique, the user selects an icon by clicking on it and
deletes it by pronouncing the word delete. The Select-release interactor can be reused here for the
selection task. A new interactor is required to deal with the speech recogniser.

interactor Record-Speech
attributes
ac record : Cmd
actions
art speak : Cmd

recognize
axioms
1 [] record = ∅
2 [speak(ρ)] record = ρ ∧ obl(recognize)
3 [[speak]] ∧ [[record]] in [[Record − Speech]]

When the device is operated it is sensed by the body-state subsystem, art , and the speak action
is made perceivable, ac . When a command is pronounced, it is also recorded.

The interaction technique is built by the following interactor:

interactor Remove-SnD
Select − release
Record − Speech

axioms
1 objects = O ∧ record = ρ ∧ selected = s

⇒ [recognize] objects = O − {s} ∧ selected = ∅ ∧ record = ∅
An object is removed when it is selected and a command has been recognised. Here we do not
enter into the details of commands. We assume that only one is available (i.e. ρ = delete) and that
it is always recognised when pronounced.

Syndetic Model The syndetic model of device interaction is created by introducing both the user
and system models into a new interactor and then defining the axioms that govern the conjoint
behaviour of the two agents. A new attribute (goals) is used to ‘contextualise’ the generic ICS
model to the task of selection and removal formation by representing the sequence of points that
the user wants to follow in the display space and the clicks. Of course, it is highly unlikely that
users will have such a precise mental model of their goals, and a more realistic approach might be
to describe a class of desired or acceptable displays. However, it would add little to the analysis.

Drag ’n Drop: Syndesis. The syndetic model for Drag ’n Drop style of interaction is almost
straightforward:

14

interactor User-DnD
Remove-DnD - the system component: the device interactor
ICS - the user component: ICS resources and constraints

attributes
goal : DispCoord∗

The ‘operate’, ‘push’ and ‘release’ actions defined in the Mouse interactor are driven by the user’s
limb subsystem, and in order for the user to operate the device, the configuration must be set to
transform a propositional representation of the desired display coordinate to be reached by the
cursor into musculature control, using the processes illustrated in Fig. 4.

axioms
1 per(operate(D)) ⇒ [[cursor]] in [[User −DnD]]
2 per(operate(D)) ∧ per(push) ∧ per(release)

⇒ DnD − Config ⊆ config ∧ buffered = :prop-obj:
3 goal = 〈objLocation(s)〉a 〈objLocation(t)〉

⇒
[operate(Ps)][push] goal = 〈objLocation(t)〉[operate(Pt)][release] goal = 〈〉

In order to operate the device and select a display coordinate ‘D’, the operator must be able to
perceive the ‘current’ position of the cursor. Whether or not the position of the cursor reflects all
of the actions that the user has carried out is an issue that we will return to later. In addition, the
set ‘DnD-Config’ of transformations which is assumed to contain the processes deployed in Fig. 4,
must be part of the configuration; that is

{:prop-obj:, :vis-obj:, :obj-prop:, :obj-lim:, :bs-lim:, :lim-hand:} ⊆ config ,

These two requirements are captured in Axiom 1 and Axiom 2. Axiom 3 and Axiom 4 simply
state that a user works sequentially through the sequence of points that make up their current
goal taking the appropriate sequence of actions.

Drag ’n Drop: Analysis. At the propositional system, a goal is formulated that consists of only one
coordinate, namely the propositional representation of the target point or area location(s) that
the cursor is to be moved to. In terms of the User-DnD interactor, this is an assumption that in
the ‘initial’ state goals = 〈locationPROP 〉. The goal is satisfied when the distance of the cursor or
of the digitiser from the locationPROP is perceived to be zero (or within some threshold).

If :vis-obj: and :bs-lim: are to be part of the configuration, we must also assume that the
input to these sensory systems is stable, and thus after a processing cycle (modelled by the ‘trans’
action) we have that cursor∗@VIS and operate∗@BS .

Since :prop-obj: and :vis-obj: are part of the configuration and are both sources of :obj-prop:
and :obj-lim:, they must also be coherent. Provided this condition is met, processes within the
object system are permitted to engage the streams and thus blending of the input data streams
can occur. After a ‘trans’ action, the visual information becomes available at the object system,
so that the following holds:

locationPROP@OBJ ∧ cursorVIS@OBJ

Using its own encoding of this information, object system processes are able to derive propositional
information on the distances between objects, and limb-based code specifying the musculature
control needed for the cursor or the digitiser to get closer to the target location within the display
space. Let us use ∆pos to refer to the difference between the intended position locationPROP@OBJ
and current cursor position cursorVIS@OBJ . The two representations produced by OBJ processes
will then be ∆posOBJ@PROP (from :obj-prop:) and ∆posOBJ@LIM (from :obj-lim:). These will
be transferred over a stable stream to the destination systems.

Provided that the new representation ∆posOBJ of the required device movement is coherent
with respect to the current goal, PROP can sustain its output toward OBJ in a reciprocal loop.

15

In fact, if locationPROP and ∆posOBJ are coherent, the reciprocal exchange of information will be
stable and self-sustaining, and as a result it will not be necessary for :prop-obj: to be buffered.

The limb subsystem always receives an input stream from the body-state system that is respon-
sible of proprioceptive feedback encoding dimensions such as skeletal muscle tensions. According
to the definition of the Mouse interactor, the limb system produces an output stream that enables
the hand to control the corresponding devices through the ‘operate’, ‘push’ and ‘release’ actions.
Consequently, the body-state system receives a proprioceptive feedback from these devices. From
this information the system is able to derive information on the direction and on the velocity and
the acceleration of the arm/hand movement as perceived in the device spaces, so that we can state
that ∆dev∗@BS . This information is carried on a stream of data from the :bs-lim: transformation,
and will be stable provided that the movement is within expected bounds. Finally, the limb system
is permitted to engage the stable streams from the object and body-state systems and after a trans
action we will have

∆posOBJ@LIM ∧ ∆devBS@LIM .

Now, for the output of the :lim-hand: transformation to be stable we know that its sources
(:obj-lim: and :bs-lim:) must also be both stable and coherent. Since the representations of
∆posOBJ@LIM and ∆devBS@LIM are actually based in different coordinate spaces (AbsPos and
RelPos) in the case of a mouse-like device, we argue that they are not coherent. Under this as-
sumption, the limb system will either (a) try to engage a new stable stream, or (b) try to disengage
from one of the two streams, or (c) enter buffered mode. There is no other available stream in ICS
for LIM code, so option (a) is eliminated.

Option (b) captures the situation where a user consciously tries to ignore either visual or propri-
oceptive feedback, possibly by watching the motion of the mouse rather than the cursor. In the case
of option (c) buffering is transferred from :prop-obj: to :limb-hand:. However, it can be achieved,
as once a stable representation of the desired location has formed in the :prop-obj::obj-prop: loop,
the buffer is no longer required and can be used elsewhere. That way, user’s goals can be satisfied
considering nominal user and system performance.

In addition to this analysis we also recall a few facts about pointing movements. It is well
known and largely accepted that pointing movements are governed by Fitts’ law [36]:

MT = a + b log2

(
ID
W

+ 1
)

(1)

where the logarithmic factor called the index of difficulty ID , describes the difficulty to achieve the
pointing task [50]. More recent research has shown that a number of phases can be distinguished
in the movement itself [34]:

– an optional planning phase where the display is investigated and the propositional goal is
formed;

– a ballistic phase from the current position to close to the target, where the movement is based
on low level hand control that does not require focus of attention;

– a phase in which the target is approached slowly, performed under visual control requiring
focus of attention;

– an optional adjustment phase in the case the target is not completely reached, also requiring
visual control.

The mean time interval for each phase depends on the difficulty of the task. In particular, for
a given subject, the duration of the target approaching phase and the adjustment phase depend
heavily on the size of the target, whereas the duration of the ballistic phase is mainly depending
on the distance that needs to be covered. The duration of the planning phase is relatively short
and is constant, which is directly related to the cognitive configuration that needs to be set-up in
order to prepare for the task to be performed.

16

Speak ’n Drop: Syndesis. The syndetic model for pointing and speaking has the following structure:
interactor User-SnD

Remove-Speech - the system component: the device interactor
ICS - the user component: ICS resources and constraints

attributes
goalSelect : DispCoord∗
goalRemove : Cmd∗

The ‘operate’, ‘push’ and ‘release’ actions are driven by the user’s limb subsystem, and in order
for the user to operate the device, the configuration must be set to transform a propositional
representation of the desired display coordinate into musculature control. In addition, the ‘speak’
action is driven by the articulatory subsystem. Consequently, a second configuration is needed for
the user to be able to speak.

axioms
1 per(operate(D)) ⇒ [[cursor]] in [[User − SnD]]
2 per(operate(D)) ∧ per(push) ∧ per(release) ∧ per(speak)

⇒ Speak − Config ⊆ config ∧ buffered = :prop-obj:

3

 goalSelect = 〈objLocation(oi)〉a G
⇒
[operate(Pi)][push][release] goalSelect = G

∧ goalRemove = 〈record(delete)〉a G
⇒
[speak(delete)] goalRemove = G

In order to operate the devices and select a display coordinate ‘D’, the operator must be able to
perceive the “current” position of the cursor. In addition, the set ‘Speak-Config’ of transformations
which is assumed to contain the processes deployed in Fig. 5, must be part of the configuration;
that is{:prop-obj:, :vis-obj:, :obj-prop:, :obj-lim:, :bs-lim:, :lim-hand:}

∪
{:prop-mpl:, :mpl-prop:, :mpl-art:, :bs-art:, :art-speech:, :ac-mpl:}

 ⊆ config

Fig. 5. ICS configuration for the Speak ’n Drop interaction.

17

Speak ’n Drop: Analysis. The structure of the user’s goal at the propositional subsystem is similar
to the case of Drag ’n Drop. However, the deployed configuration (Fig. 5) is very different: po-
tentially, it allows both pointing and speaking to be performed in parallel, provided the streams
flowing to the same cognitive subsystem are coherent and stable. Clearly, the system might be
implemented in order to force the user to achieve the two goals (pointing and speaking) in se-
quence and the user will adapt to this. However, studies and experiments such as those reported
in [57, 64], that have analysed the temporal synchrony between speech and gestures for different
languages, show that there exist variations in user behaviour and suggest that systems must be
prepared to cope with this variety. In terms of ICS theory, we already know from [33] and from the
analysis of Drag ’n Drop that operating any device in a space different from the visual one, under
explicit visual control, requires the transfer of the buffer to the limb subsystem since the :bs-limb:
and :obj-limb: transformations are not coherent. When the goal is a simple one (e.g. pointing), the
operation can be executed smoothly since the goal itself is self-sustaining through the :obj-prop:,
:prop-obj: loop. However, in more complex cases of multimodal interaction (e.g. point and speak)
transfer of the buffer from the prop subsystem to elsewhere may interfere with the proper execu-
tion of operations. In our case, transferring the buffer to the limb subsystem will have the effect
of separating the two parallel goals (i.e. goalSelect and goalRemove) with the incoming streams
:obj-prop: and :mpl-prop: contributing to self-sustain only that goal related to them with the
consequence that only one will be processed and the other stream be disengaged. The problem
here is to determine whether the buffer transfer will occur after both pointing and speaking have
started. This is indeed the case and this can be understood as follows. As explained in the Drag
’n Drop case, we know that the first phase of a movement is ballistic and occurs without visual
control and attentional focus. Consequently, during the first phase of movement there’s no need
for buffer transfer (the device is operated with a natural gesture, i.e. without technological aware-
ness). Under this condition, a user performing the action ‘operate(D)’ and starting the action
‘speak(delete)’ before entering visual control will achieve both goals in parallel. In the case the
visual control is entered (i.e. the buffer is tranferred to limb) before speech is started, pointing will
always occur first and speaking will be done in parallel with mouse clicking (i.e. push and release)
usually terminating later in time, in agreement with the experimental results.

4 PEPA: A Process Algebra for Performance Evaluation

Before continuing with the development of stochastic syndetic models that are amenable to per-
formance analysis we first briefly introduce the formalism and the analysis tool that we will use.

The specification language that we use is the Performance Evaluation Process Algebra PEPA.
In PEPA, systems can be described as interactions of components that may engage in activities
in much the same way as in other process algebras. Components reflect the behaviour of relevant
parts of the system, while activities capture the actions that the components perform. A component
may itself be composed of components. The specification of a PEPA activity consists of a pair
(action type, rate) in which action type denotes the type of the action, while rate characterises the
negative exponential distribution of the activity duration. A positive real-valued random variable
X is exponentially distributed with rate r if the probability of X being at most t , i.e. Prob{X ≤ t},
is 1 − er ·t if t ≥ 0 and is 0 otherwise, where t is a real number. The expected value of X is 1/r .
Exponentially distributed random variables are more tractable because they enjoy the memoryless
property, i.e. Prob{X > t + t ′ | X > t ′} = Prob{X > t} for t , t ′ ≥ 0. Exponential distributions
are widely used in the modelling of the dependability and performance of real systems where they
form the basis for Continuous Time Markov Chains (CTMC), see e.g. [47].

Moreover, proper compositions of exponential distributions can be used to approximate any
non-negative distribution. The PEPA expressions used in this paper have the following syntax:

P ::= (α, r).P | P + P | P ��L P | A

Behavioural expressions are constructed through prefixing. Component (a, r).P carries out activ-
ity (a, r), with action type a and duration ∆t determined by rate r . The average duration is given

18

by 1/r . It is defined that ∆t is an exponentially distributed random variable with rate r . After
performing the activity, the component behaves as P . Component P + Q models a system that
may behave either as P or as Q , representing a race condition between components. The coop-
eration operator P ��L Q defines the set of action types L on which components P and Q must
synchronise (or cooperate); both components proceed independently with any activity not occur-
ring in L. The expected duration of a cooperation of activities a belonging to L is a function of the
expected durations of the corresponding activities in the components. Typically, it corresponds to
the longest one (see [41] for definition of PEPA). An important special case is the situation where
one component is passive (a rate > indicates this) in relation to another component. Here the total
rate is determined by that of the active component only. The behaviour of process variable A is
that of P , provided that a defining equation A = P is available for A. We introduce two shorthand
notations. If the set L is empty P ��L Q is written as the parallel composition of P and Q : P | Q .

PEPA specifications can be analysed in several ways, but in particular with the stochastic
model checker PRISM [48]. With PRISM temporal logic properties involving performance aspects
of the system can be formulated as Continuous Stochastic Logic (CSL) formulae and automatically
verified. We briefly present CSL and PRISM in the following sections.

4.1 Stochastic Logic: CSL

The properties that one wants to verify by stochastic model checking are usually expressed in some
form of extended temporal logic. In this paper, we use Continuous Stochastic Logic (CSL) [4, 5],
which is a stochastic variant of the well-known Computational Tree Logic (CTL) [22]. CTL allows
one to state properties over states as well as over paths.

CSL extends CTL by two probabilistic operators that refer to the steady-state and transient
behaviour of the system being studied. The steady-state operator refers to the probability to reside
in a particular state or set of states (specified by a state formula) in the long run. The transient
operator allows one to refer to the probability mass of the set of paths in the CTMC that satisfy a
given (path) property. In order to express the time span of a certain path, the path operators until
(U) and next (X) are extended with a parameter specifying a time interval. Let I be an interval
on the real line, p a probability value and ./ a comparison operator, i.e. ./ ∈ {<,≤,≥, > }. The
syntax of CSL is:

State formulae

Φ ::= a | ¬Φ | Φ ∨ Φ | S./p (Φ) | P./p (ϕ)

S./p (Φ) : probability that Φ holds in steady state is ./ p
P./p (ϕ) : probability that a path fulfills ϕ is ./ p

Path formulae

ϕ ::= X I Φ | ΦUI Φ

X I Φ : next state is reached at time t ∈ I and fulfills Φ
ΦUI Ψ : Φ holds along path until Ψ holds at t ∈ I

The meaning of atomic propositions (a), negation (¬) and disjunction (∨) is standard. Using these
operators, other boolean operators like conjunction (∧), implication (⇒), true (TRUE) and false
(FALSE), etc., can be defined in the usual way. The state formula S./p (Φ) asserts that the steady-
state probability for the set of states satisfying Φ, the Φ-states, meets the bound ./ p. P./p (ϕ)
asserts that the probability measure of the set of paths satisfying ϕ meets the bound ./ p. The
operator P./p (.) replaces the usual CTL path quantifiers ∃ and ∀. In CSL, the formula P≥1 (ϕ)
holds if almost all paths satisfy ϕ. Moreover, clearly ∃ ϕ holds whenever P>0 (ϕ) holds.

The formula ΦU I Ψ is satisfied by a path if Ψ holds at time t ∈ I and at every preceding state
on the path, if any, Φ holds. In CSL, temporal operators like 3, 2 and their real-time variants 3I

or 2I can be derived, e.g. P./p (3I Φ) = P./p (TRUE U I Φ) and P≥p (2I Φ) = P<1−p (3I ¬Φ).
The untimed next and until operators are obtained by X Φ = X I Φ and Φ1 U Φ2 = Φ1 U I Φ2 for

19

I = [0,∞). In a variant of CSL the probability p can be replaced by a question mark, denoting
that one is looking for the value of the probability rather than verifying whether the obtained
probability respects certain bounds.

In addition to CSL formulae, stochastic model-checking algorithms have been extended to deal
with reward-based measures. The CSL state formulae have been extended with formulae such as:

Reward formulae

Φ ::= R./r [FΦ] | R./r [C ≤ t] | R./r [I = t] | R./r [S]

R./r [FΦ] : Reachability reward Φ is bounded by r
R./r [C ≤ t] : Cumulative reward within time t is bounded by r
R./r [I = t] : Instantaneous reward at time t is bounded by r

R./r [S] : Steady-state reward is bounded by r

Reachability reward properties refer to the reward accumulated along a path until a certain state
is reached which satisfies state formula Φ. Cumulative reward properties associate a reward with
each path of a model until t time units have elapsed. Instantaneous rewards refer to the rewards
at a particular instant in time. Steady-state rewards refer to the rewards in the long run. In this
paper we will use mainly the cumulative reward that allows us to verify for example the number
of items a user has been able to remove from the screen in the presence of a number of interrupts
for a particular interaction technique.

The reward formulae make implicitly use of so-called reward-structures which have to be in-
cluded in the formal model specification and which define for example which transitions generate
a certain amount of reward when executed. We address this in more detail in the section that
describes the models.

4.2 Stochastic Model Checker: PRISM

The Probabilistic Symbolic Model Checker PRISM [48, 66] is a prototype tool that supports,
among others, the verification of CSL properties and Reward properties over CTMCs. It accepts
system descriptions in different specification languages, among which PEPA and the PRISM
language—a simple state-based language based on the Reactive Modules formalism of Alur and
Henzinger [3], from which it automatically generates CTMCs. PRISM checks the validity of CSL
properties for given states in the given model and provides feedback on the calculated probabilities
of such states where appropriate. It uses symbolic data structures (i.e. variants of Binary Decision
Diagrams).

5 Methodology

Syndetic modelling is a conceptual breakthrough in interactive system and man-machine interface
design [29]. Syndesis provides design, and formal specification and verification techniques that take
into account both human’s capabilities and limitations together with robustness of interactive
systems, thus enabling the study of the joint man-machine behaviour. Such joint models allow
for the investigation of properties expressing requirements or expectations and provide insight in
the extent to which an interactive system meets such requirements and constraints. The point of
departure from known design methods is the requirement that the system should be usable. This
is not just a mechanical property of the system, but a statement that implicitly or explicitly must
embody some claim or understanding about human capabilities and limitations. In other words,
in addition to being a (formally) provable consequence of the specification, the property must also
be psychologically valid.

With a syndetic approach capabilities of and constraints on user behaviour are expressed
explicitly by representing a cognitive model (or an approximation of such) as a formal theory,
which can then be integrated or combined with the model of system behaviour. In this way, the
user model is explicit and it contains the theoretical basis for the claims that are based on it; the

20

model is as correct as the theory that it encapsulates. However, properties can be expressed and
verified only at the level of abstraction at which available models describe cognitive behaviour.
Such models could be refined but at the risk of making unvalidated assumptions.

To deal with this issue, we retain the approach of modelling explicitly aspects of user behaviour;
however, we represent directly a cognitive theory only when it matches the level of abstraction at
which properties are to be verified. When this is not the case, we model both systems’ and aspects
of users’ behaviour by proposing that, given a set of statistical assumptions about both system and
user performance, we can use stochastic modelling techniques to understand the character of the
interaction between user and system. We can see these specifications as a means to make explicit
the assumptions about the capabilities of both user and system, and of exploring the behaviour
of the combination of system and user on the basis of these assumptions. In this way, answers to
design questions can be both easier to relate to empirical performance data from human factors and
usability studies, and also the results of the analysis can be more meaningful for interpretation
by human factors experts. Additionally, much modern and emerging user interface technology
is stochastic in nature, which provides additional motivation for the application of stochastic
techniques to modelling interaction.

5.1 Modelling the "Drag ’n Drop" Interaction

In order to illustrate the methodology, as applied for the purposes of the FAERUS project, we
introduce first the general assumptions we have made and subsequently the steps necessary to
develop a stochastic model for "Drag ’n Drop" interaction specified and analysed from a cognitive
point of view in Sect. 3.

In this paper we are interested in developing a model-based approach that can be used to
analyse the resilience of interaction techniques to external interrupts. In order to study this we
include in the model only correct behaviour both of that of the user and that of the system. In
principle the model could be enriched with erroneous behaviour, which would be more realistic.
However, such an approach would complicate the interpretation of the analysis results because
it is then no longer clear to which extent a certain outcome should be attributed to erroneous
behaviour or to the effect of interrupts or both. So we prefer to separate these concerns for the
time being.

A further concern is the level of abstraction used for modelling. We choose to keep the models
relatively abstract, modelling observable events and refine the models only when we find a clear
indication that this would lead to significantly better approximations.

Also our choice to use exponential distributions to approximate the average duration of ac-
tivities should perhaps be motivated briefly. Exponential distributions are fully determined by
their only parameter, i.e. the rate of the distribution, or in other words, the inverse of the average
time. This means that when using exponential distributions we make minimal assumptions on the
exact shape of the distribution of the duration of individual actions. On the other hand, it is also
well-known that any distribution can be approximated by a combination of exponential distribu-
tions, the so-called phase-type distributions. This gives us an opportunity to refine the models
when more precise information on the probability distribution is available, for example from ex-
periments published in the literature, or when we obtain more detailed insights when validating
the models. So, our approach is to make minimal assumptions for the time being and enrich or
refine the models when we obtain clear indications that this leads to better predictions of reality.

Displays are common devices for the communication in man-machine interfaces; they are used
to present visual scenes to users and operators of computers. It is well known from psychological
theories [38] that design and layout of objects in a visual scene, as well as other (multi-)media
structures, play a fundamental role in the way people perceive, think and react to sensorial stimuli.
However, this level of detail is beyond the scope of our current work. We assume that the symbolic
configuration or pattern of icons is based on a set of features that directs the structuring of the
visual scene into one group of icons with one distinguished icon (the trash in our case) becoming
the initial focus of attention, as shown in Fig. 6.

21

Fig. 6. Example of display.

Features, such as colours, textures and edges, contribute to form a mental visual representation
derived from raw sensorial data acquired by the eyes. The structure of the visual scene in terms
of icons is a more abstract object representation obtained by combining the visual representation
with the knowledge and the experience the perceiver has of the world. This knowledge comes
from another level of abstraction where objects are named and their properties identified, in terms
of a propositional representation. Thus, the current structuring of the visual scene is used to
produce/augment the propositional knowledge about the objects that are being sensed. Finally,
sensorial raw data and propositional representation can be combined to produce a further level
called implicational representation where the general meaning of information is stated. Combining
the implicational and the propositional knowledge, people are able to define goals and to (re-)act
accordingly. In the Drag ’n Drop example, this is thinking mentally of moving the cursor over one
of the icons, push the mouse button to select it, drag it over the trash and release the button.
That way, the object representation enriched by propositional and implicational knowledge can
be transformed into limb representation controlling physical actions performed as an example by
hands and eyes. A continuous source of sensorial information, body state representation, provides
feedback to the co-ordination of the physical actions.

Referring to the ICS theory, the above method is described by a set of subsystems, where
knowledge is stored as representations at different levels of abstraction, a set of processes encoding
and transforming the knowledge from one representation into another, and a set of communication
paths carrying the information from one subsystem to another. The set of transformations, in place
at a given moment in time, characterises completely the mental activity and is referred to as a
configuration (see Fig. 7). The reaction time is the interval from the acquisition of sensorial data
to the production of physical actions. It represents the time needed to put in place the appropriate
mental configuration in order to react to sensorial data.

The level at which mental activity is described is very abstract, dealing only with generic
subsystem’s structure and communication. What we obtain is an actual mental configuration and
the number of steps needed to put it in place. This is very useful information since it provides us
with a lower bound for the reaction time: in fact, it is known from psychology literature that each
transformation between representations takes approximately 40 ms on average. Consequently, the
time spent to deploy the configuration required for Drag ’n Drop is at least 240 ms (with variations
among people depending on their biology, knowledge, experience, emotional status, etc.). This time
is represented, in the PEPA model, with a value added to any initial move operation performed

22

Fig. 7. ICS configuration for graphical interaction.

during interaction; we will refer to it as the planning phase (UsrPlanMove) state. Also, the 240
ms planning refers to a skilled performer since, under this assumption, the user is able to start
the operation after only one cycle of transformations.

After the planning phase, a user is able to start to move towards the icon to be selected.
ICS does not provide information on the user’s performance. However, one may derive from the
theory that in order to enable the pointing to an icon by using a mouse-like device, the limb
subsystem needs to be buffered. Consequently, we know that such a pointing movement cannot be
performed in parallel with another activity requiring also the transfer of the buffer to a different
ICS subsystem.

In order to get better insight in the user’s performance in pointing movements, we need to
refine the ICS model by addressing human factors and usability studies. It is well known that
pointing movements are fairly well approximated by Equation (1) of Sect. 3 (i.e. Fitts’ law [36]).

Also, the index of difficulty for a number of devices has been defined from experiments. These
experiments show that the average time spent to point at an icon on a computer display by oper-
ating a mouse is in the order of 1000 ms [50]. Additionally, more recent research [34] has shown
that several phases can be distinguished in the movement itself including a planning phase, where
the display is investigated and the propositional goal is formed, a ballistic phase, where the move-
ment is based on low-level hand control (i.e. without buffering taking place at limb subsystem),
an approach phase, performed under visual control requiring focus of attention (i.e. with buffering
taking place at the limb subsystem), and an adjustment phase to check that the target has been
reached, similarly requiring the focus of attention.

Experiments have indicated an average value of 968 ms for random pointing at icons on a 17"
computer display. The distribution of time over the ballistic phase and the approach and adjustment
phases varies linearly depending on the distance between the icon and the initial cursor position,
with average values of 69% for the ballistic phase and 31% for the visually-controlled one.

With this information, it is possible to refine the ICS analysis by splitting the pointing move-
ment into two distinct phases; the first one includes the planning phase plus the ballistic movement,
and the second one consists of visual control. With this refinement, we derive that the transfer of
the buffer, described by ICS, occurs later with respect to the start of the movement and this will
have important effects in the case of multimodal interaction, as we will see later on.

///o '& %$! "#UsrPlanMove
(move,im)

//

(interrupt,∞)

��

'& %$! "#UsrMove
(vC,vc1)

//ED
BC(interrupt,∞)

oo

'& %$! "#UsrOperate
(push,pb)

//ED
BC(interrupt,∞)

oo

'& %$! "#UsrSelect
(drag,sd)

//ED
BC(interrupt,∞)

oo

'& %$! "#UsrEndMove
(vC,vc2)

//ED
BC(interrupt,∞)

oo

'& %$! "#UsrEnd

BECDGF
(drop,dd)

��

ED
BC(interrupt,∞)

oo'& %$! "#SysInterrupt

(clickOK,∞)

OO

Fig. 8. Stochastic automaton of UsrPlanMove, where vC = visualControl.

23

Following the above line of reasoning and referring to Fig. 8, the PEPA model describes the
pointing movement through the states UsrPlanMove, where the user is defining the goal, UsrMove,
where the user ends the ballistic phase and implements the visual control, and UsrOperate, where
the user reaches the target and is ready to select it. The transition from state UsrPlanMove to
UsrMove is governed by action move, which has an average duration of 240 + 670 ms expressed
as rate im, and the subsequent transition to UsrOperate is governed by action vC, which has an
average duration of 290 ms, expressed as rate vc1 (in number per 1000 ms), with

im = 1000/(planningt + ballistict) = 1.0989
vc1 = 1000/(approacht + adjustt) = 3.4483

where planningt = 240 ms, ballistict = 670 ms and approacht + adjustt = 290 ms.
In state UsrOperate the user can push the mouse button to select the icon. The model performs

the transition to state UsrSelect by means of action push occurring at rate pb. With reference to
the ICS theory, this rate is set to

pb = 1000/pusht = 8.33

where pusht = 120 ms.
In fact, the buffer is released by the limb subsystem as soon as the target icon has been reached.

Then the overall goal is restored and the button push can be performed in a procedural way.
Similarly, the ballistic phase of dragging the selected icon can be performed in a procedural

way with the goal being sustained by procedural knowledge without planning, until visual control
is enforced again to approach and adjust the selected icon over the trash. We understand that the
approach and adjustment time for the visually controlled phase of dragging is shorter than the
time required for selection. This is due to the fact that the target of drag (i.e. the trash) is in a
fixed position on the display and the performance of pointing at it can be optimised by frequent
recurrence of the movement. This movement is specified as a first transition from state UsrSelect
to UsrEndMove governed by action drag occurring at rate sd, followed by a transition to UsrEnd
governed by action vC occurring at rate vc2, with

sd = 1000/ballistict = 1.49
vc2 = 1000/(approacht + adjustt) = 8.33

where ballistict = 670 ms and approacht + adjustt = 290 ms.
Finally, the user can release the mouse button dropping the selected icon into the trash and

causing its removal from the display. This is specified in the model by the transition from state
UsrEnd back to the initial state, governed by action drop that is performed procedurally and is
set to occur at rate

dd = 1000/releaset = 8.33

where releaset = 120 ms.
The model developed so far describes the behaviour of a skilled user performing nominally

without making errors or mistakes. This is done in order to precisely understand the effect of
interruptions only that occur during the performance of a Drag ’n Drop activity.

The ICS theory can be used to describe which changes in mental configurations occur when
unexpected events happen during a users’ activity aiming at satisfying a specific goal. The mech-
anism put in action according to the ICS architecture is the stopping of the activity of effector
subsystems and the deployment of the configuration described in Fig. 9.

The sensorial and propositional information is blended at the implicational subsystem and fed
back into the propositional subsystem. This loop with information mutually exchanged between
implicational and propositional subsystems, enables to get insights on what we know both as facts
and feelings and to reason about the current context in which the unexpected event has occurred.

Again, the level of description dealt with in ICS is very abstract. However, we are not refining
it since we are not interested in describing why and how interrupts are handled; here, we are

24

Fig. 9. ICS recovery configuration for unexpected events.

merely interested in observing the effects on the interrupted task. For this purpose, we assume
that the interrupt manifests itself as a pop-up window completely covering the display. The user
has to click the mouse button over a push button positioned in the center of the window in order
to make the pop-up window disappear and be able to resume the previous task.

Interruption is modelled by adding to the PEPA specification a further state, SysInterrupt,
representing the handling of the interrupt by the user. One extra transition to the new state is
added to each state of the Drag ’n Drop model, which is governed by the interrupt action occurring
with ∞ rate. This reflects the fact that the action is generated outside the user model, but that
the user is always ready to deal with it. In other words, it models that the user cannot prevent
the interrupt from happening and is forced to deal with it whenever it occurs. Action clickOK
represents that the interrupt has been serviced. Also this action occurs with rate ∞ in the user
model being generated externally by the process in charge of interrupt handling.

The PEPA model just described is a user specification derived from ICS theory augmented
with known facts from other branches of cognition studies. It has a general validity within the
bounds of the theory it was derived from and can thus be applied wherever this theory applies.

In order to investigate the performance of such a user model we couple it with a specification
of the system supporting the Drag ’n Drop task. This specification is represented by the stochastic
automaton of Fig. 10. The system is always ready to reply to user’s initiated actions as described
as well as to interrupts.

///o/o/o '& %$! "#SysPlanMove
(move,∞)

//

(interrupt,∞)

��

'& %$! "#SysMove
(push,∞)

//ED
BC(interrupt,∞)

oo

'& %$! "#SysSelect
(drag,∞)

//ED
BC(interrupt,∞)

oo

'& %$! "#SysEnd

BECDGF
(drop,∞)

��

ED
BC(interrupt,∞)

oo'& %$! "#SysInterrupt

(clickOK,∞)

OO

Fig. 10. Stochastic automaton of SysPlanMove.

Generation and handling of interrupts is described separately by a third process, represented
in Fig. 11. It is composed of two states, Interrupt and InterruptOK and two actions governing
the transition between them. We assume that no nested interrupts occur, i.e. no new interrupt
occurs while a previous one is still being handled. Action interrupt represents interrupting events
occurring at rate in. Action clickOK represents that the interrupt has been handled with rate ok.

///o/o/o '& %$! "#Interrupt

(interrupt,in)
//'& %$! "#InterruptOK

(clickOK,ok)
oo

Fig. 11. Stochastic automaton of Interrupt.

We assume that the service rate is

ok = 1000/servicet = 0.77

25

where servicet = 1300 ms, which is based on the assumption made about the kind of interrupt
and the user actions required to react.

When the three systems identified by their initial states UsrPlanMove, SysPlanMove, and
Interrupt are composed in parallel, model checking and simulation tools such as PRISM [48] can
be used to verify properties and analyse the behaviour and the performance of the conjoint system
as with syndetic modelling. The composition is formally defined as:

(UsrPlanMove��{move,push,drag,drop,interrupt,clickOK}(SysPlanMove��{interrupt,clickOK}Interrupt))

The full textual PEPA specifications used for analysis can be found in Appendix A. Finally, we
need to add a few additional reward structures to the PRISM version of this specification to make
it ready for the particular analysis of the cumulative reward properties by means of the model
checker. The transformation of the PEPA specification into the PRISM language is performed
automatically by a front-end PEPA to PRISM compiler. Examples of the reward structures can
be found in Appendix C. They only serve to define which observable actions we want to count
over a certain period of time (e.g. the number of drops and the number of interrupts that occur).

6 Modelling the "Speak ’n Drop" Interaction

We introduce the steps necessary to develop a stochastic model for the "Speak ’n Drop" interaction.
We follow the same methodology as used for "Drag ’n Drop" in Sect. 5.1.

We retain the general assumptions, already made there, together with the symbolic configura-
tion of icons that make up the presentation on the display (Fig. 6). Consequently, the initial mental
activity taking place to deploy the appropriate mental configuration does not change with respect
to the one already explained in Sect. 5.1. However, a different goal is formulated that directs the
deployment of the configuration shown in Fig. 12 when the implicational and the propositional
representations are combined together.

In the Speak ’n Drop technique, this involves thinking mentally of moving the cursor over one
of the visible icons on the display followed by a mouse click, while pronouncing the word delete.
That way, the object representation enriched with propositional knowledge can be transformed
into the limb representation that is blended with the body state representation to provide for co-
ordinated physical action control. At the same time, the propositional knowledge is transformed
into a morphonolexical representation that describes the structure of phrases (in our case just the
word delete). This is subsequently transformed into an articulatory representation controlling the
physical production of speech.

Usually, skilled people may control their speech sustained by the morphonolexical representa-
tion enriched with both acoustic and propositional knowledge without explicit blending of body
state information. For this reason, the communication between the body state to the articulatory
subsystems is not explicitly shown in Fig. 12. Similarly, the communication from the body state
and the acoustic subsystems to the implicational one are not shown since they do not play a direct
role in the formulation of the users’ goal at the propositional level. However, they are always active
when recovering from unexpected events as shown in Fig. 9.

This interaction is multimodal in nature requiring both speech and gesture at the same time in
order to enable the performance of deictic references. The meaning of words (i.e. delete) is resolved
by the selection of the icon the user is referring to, as described for example in [14].

Since the performance of deixis requires the combination of data from multiple streams under
temporal constraints, a key question is whether users will be able to deploy the resources of the
interface to achieve their tasks by performing a deixis or by using a sequential construct. For
example, in [30] it is shown that a user is not able to articulate a phrase at the same time as they
try to locate textual information on some part of the display.

A possible solution to this problem is that the system might be implemented in order to
enforce explicitly that the users perform their tasks sequentially thus requiring them to adapt their
behaviour accordingly. However, studies and experiments [57, 64] show that there exist variations

26

Fig. 12. ICS configuration for the pointing and speaking interaction.

in user behaviour and suggest that systems must be prepared to cope with this variety. Following
this suggestion, we specify the system as composed of two processes running in parallel, each one
handling one modal interaction independently.

The first system component supports the selection task and it is represented by the stochastic
automaton of Fig. 13. This component is always ready to reply to user’s initiated actions as well
as to interrupts.

///o/o/o/o/o '& %$! "#SysMouse
(move,∞)

//

(interrupt,∞)

��

'& %$! "#SysSelectM
(click,∞)

//ED
BC(interrupt,∞)

oo

'& %$! "#SysEndM

BECDGF
(drop,∞)

��

(interrupt,∞)

��'& %$! "#SysInterruptM1

(clickOK,∞)

OO

'& %$! "#SysInterruptM2

(clickOK,∞)

OO

Fig. 13. Stochastic automaton of SysMouse.

The second system component supports the speech action and is represented by the stochastic
automaton of Fig. 14. This component is ready to record phrases pronounced by the user (action
startSpeak) and, subsequently, to recognise them (action endSpeak). In addition, it is always ready
to reply to interrupts.

///o/o/o/o/o '& %$! "#SysSpeak
(startSpeak,∞)

//

(interrupt,∞)

��

'& %$! "#SysSelectS
(endSpeak,es)

//ED
BC(interrupt,∞)

oo

'& %$! "#SysEndS

BECDGF
(drop,∞)

��

(interrupt,∞)

��'& %$! "#SysInterruptS1

(clickOK,∞)

OO

'& %$! "#SysInterruptS2

(clickOK,∞)

OO

Fig. 14. Stochastic automaton of SysSpeak.

The SysSpeak specification imposes a strong constraint on users’ behaviour concerning the
performance of the speech modality. This is unavoidable and depends on the currently available
technology for speech recognition systems.

In fact, the performance of a speech recognition system is affected by many parameters, such
as the quality of the speech signals, any corrupting environmental influences, the complexity of
the underlying task, and the memory and computational resources available. Moreover, there is
general agreement on the fact that performance accuracy at a rate below 95% is not acceptable,

27

but this again may be syntax and/or domain specific. Although a few speech recognition systems
work in real time, their word error rate does not match the agreed performance accuracy [43].
Realistic systems operate at a rate that is in the range of 2/2.5× real time. However, for isolated
word recognition systems, such as in the current example, performance close to real time can be
envisaged.

Following this line of reasoning, we have made the informed assumption that the average time
interval to pronounce the word delete is 630 ms. Consequently, we have set the overall speech
recognition process to span over 1630 ms so that action endSpeak occurs at rate

es = 1000/(recognitiont − speakingt) = 1000/(1630− 630) = 1

With this specification the system is able to respond to users’ actions in whatever order they are
performed (concurrent gesture and speech, speech followed by gesture, gesture followed by speech)
provided that users adapt their behaviour to the speech recognition system. This support by the
system makes them to behave as in everyday communication acts where deictic references are usu-
ally performed. Gestures and speech are synchronised in order to disambiguate the interpretation
of the deictic word with an exact point in space at a reference point in time.

In addition to the speech recogniser, also the use of a pointing device such as the mouse con-
strains further users’ performance. In fact, it is known from the application of the ICS theory [33]
that operating any device in a space different from the visual one, under explicit visual control,
requires the transfer of the buffer to the limb subsystem. Consequently, users will focus on oper-
ating the mouse device and they will be unable to initiate speech. However, they will be able to
sustain previously initiated speech that is not in conflict with resource allocation (i.e. it can be
performed procedurally).

The problem here is to determine whether the buffer transfer will occur after both pointing
and speaking have started. This is indeed the case for a skilled user and it can be explained by the
fact that the first phase of a pointing movement is ballistic and occurs without visual control and
attentional focus [34]. Consequently, during the first phase of the movement there is no need for
buffer transfer since the device is operated with a natural and proceduralised gesture regardless of
the device space (i.e. without technological awareness). Under this condition, a user that starts to
speak while operating the mouse before entering visual control, will achieve both goals in parallel.
In the case the visual control is entered (i.e. the buffer is tranferred to limb) before speech is started,
pointing occurs first and speaking is done in parallel with the mouse click, usually terminating
later in time, in agreement with the experimental results.

As in the case of Drag ’n Drop interaction, the consideration of human factors and usability
studies allows to get better insight in the users’ performance of the Speak ’n Drop interaction and
it enables the development of a detailed stochastic model of users’ behaviour.

///o/o '& %$! "#UsrPlanMoves

(move,im)

��

(i,∞)

##HHHHHHHHHHHHHHHHHHHH '& %$! "#UsrSelect
(startSpeak,ss)

,,XXXXXXXXXXXXX
(i,∞)

��'& %$! "#UsrOperate1

(click,mc) 33ggggggggggg

(startSpeak,ss) ++WWWWWWWWWWW

(i,∞)

��

'& %$! "#UsrInterrupt2

(OK,∞)
OO

'& %$! "#UsrSelectSpeak

(endSpeak,∞)

))RRRRRRRRRRRRRRRRRRR(i,∞)
oo

'& %$! "#UsrSpeak2
(click,mc)

22fffffffffffff

(i,∞)ssggggggggggg

'& %$! "#UsrMove

(visualControl,vc)oooo

oooo

77oooooo

(startSpeak,ss)

''PPPPPPPPPPPPPPPP (i,∞)
//'& %$! "#UsrInterrupt1

(OK,∞)

ccHHHHHHHHHHHHHHHHHHHH '& %$! "#UsrInterrupt4
(OK,∞)

//'& %$! "#UsrEndSpeakSelect
(i,∞)

oo

EDGF
(drop,dd)

��

'& %$! "#UsrOperate2
(endSpeak,∞)

,,XXXXXXXXXXXX

(i,∞)kkWWWWWWWWWW

'& %$! "#UsrSpeak1

(visualControl,vc) 33ggggggggggg

(endSpeak,∞) ++WWWWWWWWWWW

(i,∞)

OO

'& %$! "#UsrEndSpeakOperate

(click,mc)

55lllllllllllllllllll

(i,∞)
��

'& %$! "#UsrMove2
(visualControl,vc)

oo

(i,∞)
rreeeeeeeeeeeeeee

'& %$! "#UsrEndSpeak

(visualControl,vc) 22ffffffffffff
(i,∞)

//'& %$! "#UsrInterrupt3
(OK,∞)

//'& %$! "#UsrEndSpeak2

(move,im)
OO

Fig. 15. Stochastic automaton of UsrPlanMoves, where i = interrupt and OK = clickOK.

28

With reference to Fig. 8, users’ behaviour is modelled starting from the initial state Usr-
PlanMove, where the goal is defined. The transition to state UsrMove, indicating the ballistic
movement, is governed by action move occurring at rate im1.

im1 = 1000/(planningt + ballistict) = 1000/(240− 670) = 1.1

In state UsrMove a race condition occurs: users have started speaking already or the visual control
is being put in place.

– In the former case, a transition is made to state UsrSpeak1 governed by action startSpeak
occurring at rate ss and depending on the time required to pronounce the word delete. Speech
and gesture proceed in parallel according to action visualControl occurring at rate vc1, and
action endSpeak 1.
In state UsrEndSpeakOperate both gesture and speech are completed: the spoken command
is entered and the icon to be deleted is identified but not selected. Its selection and the
subsequent removal happen only when the transition to state UserEndSpeakSelect is triggered
by the action click performed procedurally at rate mc.

ss = 1000/speakingt = 1000/630 = 1.6 (2)
vc1 = 1000/(approacht + adjustt) = 1000/290 = 3.4
mc = 1000/clickt = 1000/120 = 8.33

An interrupt occurring when in state UsrEndSpeakOperate requires the repetition of the point-
ing gesture to re-identify the icon to be deleted. This is done through state UsrMove2 with
action move at rate im2 and action visualControl at rate vc2. We have analysed the model
with different rates, as discussed in Sect. 7, but we can anticipate that the Speak ’n Drop
interaction is stable with respect to those variations.
The repetition of the spoken command is not required since it has been completed already.
Consequently, the selection of any icon causes its removal. A key question is raised here whether
or not the user remembers that he or she has entered a (temporary) removal mode where any
icon in the display can be removed by pure selection without invoking the related command
again. This is not dealt with here but it is an interesting point to be investigated in future
research on this topic.

– In the latter case, visual control is entered and a transition is made to state UsrOperate1 by
performing the action visualControl with rate vc1. Here, the pointing movement ends with the
identification of the icon to be removed. The selection of the icon and the pronunciation of the
command are performed in parallel according to action click performed procedurally at rate
mc and action startSpeak performed at rate ss as defined in Equation (2).
In state UsrSelectSpeak the icon to be removed is selected but the delete command has not
been pronounced completely nor has it been recognised. Its completion and the subsequent
removal of the selected icon happen only when the transition to state UserEndSpeakSelect is
triggered by the action endSpeak whose rate is a system dependent parameter.
An interrupt occurring at this point requires the repetition of the spoken command while one
of the icons on the display is selected already. This is done through state UsrSelect with action
startSpeak with rate ss as defined in Equation (2).

It is interesting to note the duality of the states UsrEndSpeakOperate and UsrSelectSpeak. Both
of them identify a condition in which one of the modalities has reached a stable point in the sense
that the task can be completed re-starting from that state after an interrupt has occurred. This
requires special attention to be paid to the presentation of the system state in order to help the
recovery of the propositional goal. For example, how do users know whether or not the system has
already recognised the pronounced words? and by what means is this knowledge made persistent
over a period of time?
1 Note that the rate at which the action endSpeak occurs is defined by variable es in the automaton

described in Fig. 14. It requires the adaptation of users to the system performance.

29

One cycle of interaction is terminated by the drop action occurring at rate dd = 8.33. It
represents the actual removal of the selected icon from the display and that this is perceived by
the users.

Generation and handling of interrupts is described separately by the same process used for
the Drag ’n Drop technique and is represented in Fig. 11. The handling of the interrupts by the
users is specified by adding to the PEPA specification further states, UsrInterrupt1, UsrInterrupt2,
UsrInterrupt3, and UsrInterrupt4. An extra action i triggers the transitions to one of these states,
occurring with rate ∞. This reflects the fact that the action is generated outside the user model,
but that the user is always ready to deal with it. Action OK represents that the interrupt has
been serviced. Also this action occurs with rate ∞ in the user model being generated externally
by the process in charge of interrupt handling. With respect to the Drag ’n Drop model, we have
here four states instead of only one, since the interaction can be resumed at different stages of
advancement and does not always need to be restarted from the very beginning.

Also the PEPA model described above is a user specification derived from ICS theory aug-
mented with known facts from other branches of cognition studies. It thus also has a general
validity within the bounds of the theory from which it was derived and can thus be applied
wherever this theory applies.

The full Speak ’n Drop model is specified by the parallel composition of the four systems
identified by their initial states UsrPlanMove, SysSpeak, SysMove, and Interrupt as follows.

((UsrPlanMoves��{move,startSpeak,click,endSpeak,drop,interrupt,clickOK}

(SysMouse��{drop,interrupt,clickOK}SysSpeak))��{interrupt,clickOK}Interrupt)

Property verification and behavioural analysis can be conducted for the conjoint system as with
syndetic modelling. The full textual PEPA specifications used for analysis can be found in Ap-
pendix B. For analysis purposes reward structures are added to the PRISM version of the specifi-
cation in the same way as for the Drag ’n Drop specification.

7 Analysis Results

In this section we present the results of the analyses of both models. As an indicator of the resilience
of an interaction technique to external interrupts we study the number of effective ‘drops’ a user
manages to perform during a fixed period of time under a varying number of interrupts occurring
randomly during that period. We also study the sensitivity of the models themselves to small but
reasonable variations of user behaviour such as the distribution of time over the various phases
of cursor movement and the effect of learning. Finally, we show the effect of substituting a 2.5 ×
real-time speech recogniser by an ideal real-time one.

7.1 Comparison of nominal performance of interaction techniques.

The expected number of effective ‘drop’ actions over the first 300 s (i.e. 5 minutes) is a reward
measure that can be formalised as follows in the extended CSL temporal logic:

R{"drops" }=? [C ≤ 300]

and the number of ‘interrupts’ can be formalised in a similar way as:

R{"interrupts" }=? [C ≤ 300]

The notation R=? means that instead of comparing the results with a specific bound the model
checker calculates the effective number of drops and interrupts respectively.

Fig. 16 shows the expected number of drops a user manages to perform in the presence of a
number of interrupts over a time span of 300 s. So, with an interrupt rate close to zero (left side of
the figure) the user performs on average (given the values chosen for the parameters of the model)

30

Fig. 16. Drag ’n Drop for nominal performance.

134 drops when using the standard Drag ’n Drop interaction technique. As expected, the user’s
performance decreases if the interrupt rate increases. In the presence of about 130 interrupts in
300 s (right side of the figure) the user manages to perform only about 27 drops.

The numbers at the x-axis give the value of the rate of action in (interrupts), in the models.
This rate ranges from (almost) 0 to 1 per s. The reason why the effective number of interrupts
at rate 1 in the figures is 130 and not 300 is that the user needs time to handle the interrupt
(i.e. moving the cursor to a button and click on it). In our model we have made the assumption
that no new interrupts arrive during the time that the user is still handling a previous interrupt.
This assumption has been modelled by blocking the occurrence of interrupts during the period
when the user is handling an interrupt.

Fig. 17 shows the expected number of drops when a Speak ’n Drop interaction technique is
used over a time period of 300 s in the presence of the same number of interrupts as for the Drag
’n Drop interaction technique.

Fig. 17. Speak ’n Drop for nominal performance.

Fig. 18 shows the difference between the expected number of drops for the two interaction
techniques. Although the differences over a relatively short time period of 300 s are relatively
small, we can nevertheless make some observations. The first observation is that in the absence of
interrupts the standard Drag ’n Drop technique leads to a higher average number of drops by the
user. This can be explained by the fact that the we have assumed a time of recognition of spoken

31

words equal to 2.5× real time for the model of Speak ’n Drop which is a realistic assumption for
the performance of current speech recognition software but which also puts a bound on the speed
of the interaction that a user can reach with this interaction technique.

Fig. 18. Comparison of Drag ’n Drop and Speak ’n Drop performance.

A further observation is that when the number of interrupts increases, the Speak ’n Drop
technique leads to better performance than Drag ’n Drop. In fact, in extreme circumstances with
130 interrupts per 300 s, with the Speak ’n Drop technique the user manages to drop 33 items,
whereas with the Drag ’n Drop technique only 27 items get deleted. The Speak ’n Drop technique
scores slightly better than the Drag ’n Drop as the number of interrupts keep increasing. This can
be explained by the fact that the Drag ’n Drop technique is more sensitive to interrupts because
the total time involved in dragging is relatively long and when an interrupt occurs the user needs
to start from the beginning, re-selecting the item and dragging it again towards the trash.

Apart from the basic comparison of performance of the two techniques, under the assumptions
made, it is interesting to get a more detailed insight on how the global performance is obtained.
In particular we investigate the sensitivity of the conjoint behaviour of the system to the values
of the rate parameters of various actions.

7.2 Drag ’n Drop

In Fig. 19, the performance for the Drag ’n Drop technique is shown for different users’ behaviour
concerning the distribution of time between the ballistic phase, the approach phase and adjustment
phase of a movement. As expected, when the percentage of time spent in the ballistic phase
increases with respect to the one spent on the visually controlled phase, the performance is slightly
improving. However, a variation of 12% of the splitting between ballistic and visually controlled
phases accounts only for a 4% difference in number of drops. This shows that the model is not
very sensitive to how the movement is partitioned over time into the phases.

Following the same line of reasoning, in Fig. 20 the line labelled drops (vc2=120) shows the
effect on performance of a user skilled in sustaining the overall propositional goal and able to drag
in a completely procedural way. The line labelled drops (vc2=290) represents the performance of
a less skilled user that behaves in the same way both when selecting an icon and dragging it to
the trash. Clearly, in the former case the performance is uniformly better than in the latter; this
situation describes the effect of learning due to frequent recurrence of the operation. According to
the modelling experiments, an already skilled user can increase the performance by 8% with such
a learning effect.

Finally, Fig. 21 relates the performance of various actions with respect to the overall perfor-
mance. In other terms, it shows the total number of move, push, and drag actions required to
obtain the corresponding number of drops in the presence of the various number of interrupts

32

Fig. 19. Drag ’n Drop performance with varying behaviour.

Fig. 20. Effect of learning in Drag ’n Drop performance.

occurring in 300 s. Since the Drag ’n Drop interaction technique is a sequential one, it is clear
that actions occurring towards the beginning of the sequence fail more often than those close to
the end.

Fig. 22 shows the increasing percentage of intermediate actions with the increase of the number
of interrupts. Already with about 100 interrupts in 300 s (in = 0.5 or 1 interrupt every 3 s) 50% of
move actions, 35% of push, and 10% of drags are interrupted. Obviously, such interrupted actions
do not lead to a successful drop.

7.3 Speak ’n Drop

We perform the same type of analysis as for the Drag ’n Drop technique so we can compare
the results. Fig. 23 shows the performance for the Speak ’n Drop technique comparing different
distributions of movement time over the the ballistic and the visually-controlled phases of user
movement. The difference of performance is negligible, under the nominal assumptions, since a
variation of 12% in the distribution of the time accounts for only a 1% difference in number of
drops. This is not surprising since the speech modality of this technique is predominant over that
of gesture. Variations in the performance of movement have a lower impact w.r.t. pure gestural
interaction.

33

Fig. 21. Performance relation among the number of actions in Drag ’n Drop.

Fig. 22. Percent of failures of intermediate actions in Drag ’n Drop.

Fig. 23. Speak ’n Drop performance with varying behaviour.

34

For the same reason, also the learning effect that can be observed with the Drag ’n Drop
technique, does not apply. In addition, the learning effect is mitigated by the fact that, in principle,
the icons are always randomly positioned on the display and, consequently, there is no fixed position
to point to. In fact, there is no significant variation in performance regardless of the user behaving
procedurally or not. This is clearly shown in Fig. 24.

Fig. 24. Effect of learning moves in Speak ’n Drop performance.

Fig. 25. Performance relation of number of actions in Speak ’n Drop.

With the Speak ’n Drop technique, it is particularly interesting to relate other actions to the
number of drops. In Fig. 25 two facts show up clearly:

1. The number of startSpeak actions keep decreasing also when the number of other actions have
reached a more or less stable minimum, as demonstrated by the crossing of the startSpeaks
and moves curves at a high number of interrupts (in the order of 200) in 300 s.

2. The number of failures of the click and the endSpeak actions are substantially equal to the
number of drops for any number of interrupts considered.

The first phenomenon is related to the choice of the endSpeak action rate. In line with the available
literature, we have specified a speech recognition engine performing 2.5 × real time. Considering
that the time for pronouncing the word delete is 630 ms on average with very minor variations,
the endSpeak rate has been set to 1. This means that the average time needed to recognise the
command is 1 second (1000 ms) after it has been pronounced: a relatively long time when compared
to the average duration of the other actions. Fig. 26 shows the results for a model where we assume

35

a real-time speech recogniser. In this case the number of startSpeak actions decreases in a similar
way as for the other actions. This is an example of a case where the user is forced to adapt its
behaviour to the performance of the computing system; a better performance of one component
results in a better performance of the overall system.

Fig. 26. Performance relation of number of actions in Speak ’n Drop with real-time speech recognition.

The second phenomenon observable in Fig. 25 is that once one subtask in the interaction tech-
nique (i.e. gesture or speech modality) has been completed, there is almost a 100% probability that
also the other will complete successfully without an intervening interrupt. This can be explained
by the level of parallelism that a skilled user can reach performing the tasks. Since both subtasks
may proceed in parallel, when one of them completes also the other one is near completion and
the duration between the two is so short that further interrupts are unlikely to happen.

Figs. 27 and 28 show the percentage of failures for the intermediate actions. It is clear from the
figures that the percentage of failing clicks and endSpeaks is very low, that the increase of failing
actions is moderate, and that speech fails less often than selection.

Fig. 27. Percentage of failures of intermediate actions in Speak ’n Drop.

7.4 Comparison of results

Considering the results analysed so far, a comparison can be made between the two interaction
techniques, that have been explored, in terms of their relative performance. Referring to Fig. 18
one might infer that Drag ’n Drop interaction is better suited for low interrupt rates while as

36

Fig. 28. Percentage of failures of intermediate actions in Speak ’n Drop with real-time speech recognition.

the number of interrupts increases, multimodal Speak ’n Drop takes the lead. On the other hand,
referring to Figs. 19 and 23, and 20 and 24, the multimodal interaction proves to be more resilient
both to the number of interrupts and to the varying performance of users.

Also, taking into account the percentage of failures of intermediate actions caused by interrupts,
it can be expected that the Speak ’n Drop interaction might be more appreciated by the users
because they experience less frustration than with the Drag ’n Drop technique where for many
interrupts they continuously need to restart their primary activity.

Moreover, under the objective assumption that simple command languages can be recognised
in real time by a speech recogniser, Fig. 29 shows the comparison of the overall performance of
the interaction techniques (i.e. number of drops) comparing drag ’n drop and speak ’n drop with
real-time speech recognition. It is clear that multimodal interaction gives the best results for any
number of interrupts.

Fig. 29. Comparison of performance of Drag ’n Drop, Speak ’n Drop, and Speak ’n Drop with real-time
speech recognition.

The models seem to produce rather plausible results despite their relatively high level of ab-
straction and the fact that the values of the parameters have been gathered from experiments
published in the literature each referring to different concerns of the overall user behaviour. Fur-
ther validation of this kind of models could be performed by empirical research. If the models
turn out to be quite reasonable predictors of the performance and the resilience to interrupts of

37

the interaction techniques then this would allow designers of such techniques to use model-based
analysis during design. Empirical validation, which is a costly and time consuming activity, could
then be used only during the later stages of development.

8 Conclusions and Future Work

In this paper we have developed syndetic stochastic models of two kinds of interaction techniques
used for the removal of items on a screen (Drag ’n Drop and Speak ’n Drop) to analyse their
resilience to the presence of external interrupts appearing in the form of pop-up screens. The part
of the models concerning human behaviour has been based on the well-established cognitive theory
ICS that provides information on mental configurations involved in the performance of subtasks
of the Drag ’n Drop and the multi-modal Speak ’n Drop interactions, as well as on estimates of
average durations involved in the cognitive aspects of these tasks. Literature on Fitts’ law has
been used to obtain timing information on task execution such as limb movements involved in
selection and dragging.

The models in this work have been specified in the process algebra PEPA and analysed with
the stochastic model checker PRISM. The latter also provides automatic verification of measures,
expressed as logical formulae, that concern rewards associated with actions. This allows for the
analysis of the resilience of the interaction techniques to external interrupts by studying how the
number of drop-actions changes when the number of interupts increases.

The results obtained so far are encouraging because with relatively simple models we have
obtained rather plausible and attainable results. To what extent exactly these models may serve
to predict performance of human interaction in the presence of external interrupts is a topic for
future research. However, the results of the model-based analysis are in a form that allows for
validation and comparison with e.g. results obtained from empirical studies, i.e. with real human
users. This brings us also to a further issue and that is that in real settings human errors cannot
be excluded and may clearly influence the overall performance. In our current work we have not
included erroneous behaviour in our models because we wanted to study the effect of interrupts
separately from a possible effect of errors. Once the effect of both aspects are better understood
it would be very interesting to add erroroneous behaviour to our models to investigate whether it
is possible to predict their combined effect with a model-based approach. A particular challenge
in this respect will be to take the effects of cognitive load into account. A high cognitive load may
result in more errors, but perhaps also in a slower capability of resuming the original task after
an interrupt.

A further topic for future research is the adaptation of the proposed methodology to formalisms
that are more commonly used in the HCI community such as ICO [65], which is based on Petri
nets. This involves the development of a stochastic extension of ICO, inspired by stochastic Petri
nets, and the automatic translation of such specifications into the input language of a stochastic
model checker, e.g. PRISM, for example by adapting existing translators that convert stochastic
Petri net models into PRISM specifications.

Acknowledgements

We would like to thank Stephen Gilmore of the University of Edinburgh for providing us a stand-
alone version of their pepa2prism compiler.

References

1. E.M. Altmann and J.G. Trafton, Memory for goals: An activation-based model. Cognitive Science
26(1), 2002, 39–83.

2. E.M. Altmann and J.G. Trafton, Timecourse of Recovery from Task Interruption: Data and a Model.
Psychonomics Bulletin and Review 14(6), 2007, 1079–1084.

38

3. R. Alur and T. Henzinger, Reactive modules. Formal Methods in System Design 15(1), 1999, 7–48.
4. A. Aziz, K. Sanwal, V. Singhal and R. Brayton, Model checking continuous time Markov chains. ACM

Transactions on Computational Logic 1(1), 2000, 162–170.
5. C. Baier, J.-P. Katoen and H. Hermanns, Approximate symbolic model checking of continuous-time

Markov chains. In Proceedings CONCUR’99 , LNCS 1664, Springer, 1999, 146–162.
6. C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen, Automated performance and dependability

evaluation using model checking. In Performance’02 Tutorial Lectures, LNCS 2459, Springer, 2002,
261–289.

7. B.P. Bailey, J.A. Konstan and J.V. Carlis, Measuring the effects of interruptions on task performance
in the user interface. In Proceedings SMC’00 , IEEE Press, 2000, 757–762.

8. B.P. Bailey, J.A. Konstan and J.V. Carlis, The effects of interruptions on task performance, annoyance,
and anxiety in the user interface. In Proceedings INTERACT’01 , IOS Press, 2001, 593–601.

9. P.J. Barnard, Interacting Cognitive Subsystems: Modelling working memory phenomena within a
multi-processor architecture. Chapter 9 in Models of Working Memory: Mechanisms of Active Main-
tenance and Executive Control (A. Miyake and P. Shah, Eds), Cambridge University Press, 1999,
298–339.

10. P.J. Barnard and J. May, Cognitive modelling for user requirements. In Computers, Communication
and Usability: Design Issues, Research and Methods for Integrated Services (P.F. Byerley, P.J. Barnard
and J. May, Eds.), Elsevier, 1993, 101–145.

11. P.J. Barnard and J. May, Interactions with advanced graphical interfaces and the deployment of latent
human knowledge. In Proceedings DSV-IS’94, Springer, 1994, 15–49.

12. P.J. Barnard, J. May, D.J. Duke and D.A. Duce, Systems, interactions and macrotheory. ACM Trans-
actions on Human-Computer Interaction 7(2), 2000, 222–262.

13. R. Bastide, P.A. Palanque, D.-H. Le and J. Munoz, Integrating rendering specifications into a formal-
ism for the design of interactive systems. In Proceedings DSV-IS’98, Springer, 1998, 171–190.

14. R.A. Bolt, “Put-that-there”: Voice and gesture at the graphics interface. In Proceedings SIG-
GRAPH’80 , ACM Press, 1980, 262–270.

15. E. Brinksma, H. Hermanns and J.-P. Katoen (Eds.), Lectures on Formal Methods and Performance
Analysis, LNCS 2090, Springer, 2001.

16. J.J. Brixey, M. Walji, J. Zhang, T.R. Johnson and J.P. Turley, Proposing a Taxonomy and Model of
Interruption. In Proceedings Healthcom’04 , IEEE Press, 2004, 184–188.

17. M.E. Brudzinski, R.M. Ratwani and J.G. Trafton, Goal and spatial memory following interruption.
In Proceedings ICCM’07 , Psychology Press, 2007, 139–144.

18. P. Buchholz, J.-P. Katoen, P. Kemper and C. Tepper, Model-checking large structured Markov chains.
Journal of Logic and Algebraic Programming 56, 2003, 69–96.

19. D.M. Cades, J.G. Trafton, D.A. Boehm-Davis and C.A. Monk, Does the difficulty of an interruption
affect our ability to resume? In Proceedings HFES’07 , Human Factors and Ergonomics Society, 2007,
234–238.

20. S. Caffiau, P. Girard, D.L. Scapin, L. Guittet and L. Sanou, Assessment of Object Use for Task
Modeling. In Proceedings TAMODIA’08 , LNCS 5247, Springer, 2008, 14–28.

21. C.D. Chisholm, E.K. Collison, D.R. Nelson and W.H. Cordell, Emergency department workplace
interruptions: Are emergency physicians “interrupt-driven” and “multitasking”? Academic Emergency
Medicine 7, 2000, 1239–1243.

22. E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8,
1986, 244–263.

23. E.M. Clarke, O. Grumberg and D.A. Peled, Model Checking . MIT Press, 1999.
24. M. Czerwinski, E. Cutrell and E. Horvitz, Instant Messaging and Interruption: Influence of Task Type

on Performance. In Proceedings OzCHI’00 , 2000, 356–361.
25. M. Czerwinski, E. Horvitz and S. Wilhite, A diary study of task switching and interruptions. In

Proceedings CHI’04 , ACM Press, 2004, 175–182.
26. D. Diaper and N.A. Stanton (Eds.), The Handbook of Task Analysis for Human-Computer Interaction.

Lawrence Erlbaum Associates, 2004.
27. M. Diez, D.A. Boehm-Davis and R.W. Holt, Model-based predictions of interrupted checklists. In

Proceedings HFES’02 , Human Factors and Ergonomics Society, 2002, 250–254.
28. A. Dix, D. Ramduny-Ellis and J. Wilkinson, Trigger Analysis: understanding broken tasks. Chapter

19 in [26], 2004, 381–400.
29. D.A. Duce and D.J. Duke, Syndetic Modelling: Computer Science Meets Cognitive Psychology. In

Proceedings FME’00 , ENTCS 43, Elsevier, 2001, 50–74.

39

30. D.J. Duke, P.J. Barnard, D.A. Duce and J. May, Syndetic modelling. International Journal of Human
Computer Interaction 13(4), 1998, 337–393.

31. D.J. Duke and M.D. Harrison, Abstract interaction objects. Computer Graphics Forum 12(3), 1993,
25–36.

32. D.J. Duke and M.D. Harrison, Interaction and task requirements. In Proceedings DSV-IS’95 , Springer,
1995, 54–75.

33. G.P. Faconti and D.J. Duke, Device models. In Proceedings DSV-IS’96 , Springer, 1996, 73–91.
34. G.P. Faconti and M. Massink, Analysis of pointing tasks on a white board. In Revised Papers of

DSV-IS’06 , LNCS 4323, Springer, 2007, 185–198.
35. G.P. Faconti and F. Paternò, An approach to the formal specification of the components of an inter-

action. In Proceedings Eurographics’90 , Elsevier, 1990, 481–494.
36. P.M. Fitts, The information capacity of the human motor system in controlling amplitude of move-

ment. Journal of Experimental Psychology 47(6), 1954, 381–391.
37. T. Gillie and D. Broadbent, What makes interruptions disruptive? A study of length, similarity and

complexity. Psychological Research 50(4), 1989, 243–250.
38. I.E. Gordon, Theories of Visual Percept . Psychology Press, 2004.
39. B.R. Haverkort, Markovian models for performance and dependability evaluation. In [15], 2001, 38–83.
40. H. Hermanns, J-P. Katoen, J. Meyer-Kayser and M. Siegle, A tool for model-checking Markov chains.

International Journal on Software Tools for Technology Transfer 4(2), 2003, 153–172.
41. J. Hillston, A Compositional Approach to Performance Modelling . Cambridge University Press, 1996.
42. E. Horvitz and J. Apacible, Learning and reasoning about interruption. In Proceedings ICMI’03 , ACM

Press, 2003, 20–27.
43. ICASSP (IEEE International Conference on Acoustics, Speech and Signal Processing) Proceedings

series, IEEE Press, 1976–2009.
44. S.T. Iqbal and B.P. Bailey, Effects of intelligent notification management on users and their tasks. In

Proceedings CHI’08 , ACM Press, 2008, 93–102.
45. F. Jambon, Formal modelling of task interruptions. In Proceedings CHI’96 , ACM Press, 1996, 45–46.
46. A. Kapoor and E. Horvitz, Experience sampling for building predictive user models: A comparative

study. In Proceedings CHI’08 , ACM Press, 2008, 657–666.
47. V. Kulkarni, Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.
48. M. Kwiatkowska, G. Norman and D. Parker, Probabilistic symbolic model checking with PRISM: A

hybrid approach. In Proceedings TACAS’02 , LNCS 2280, Springer, 2002, 52–66.
49. G.D. Langolf, Human motor performance in precise microscopic work . Ph.D. Thesis, University of

Michigan, 1973.
50. I.S. MacKenzie, Fitts’ law as a research and design tool in human-computer interaction. International

Journal of Human Computer Interaction 7(1), 1992, 91–139.
51. G. Mark, D. Gudith and U. Klocke, The cost of interrupted work: more speed and stress. In Proceedings

CHI’08 , ACM Press, 2008, 107–110.
52. D.S. McCrickard and C.M. Chewar, Attuning notification design to user goals and attention costs.

Communications of ACM 46(3), 2003, 67–72.
53. M.A. McDaniel, G.O. Einstein, T. Graham and E. Rall, Delaying execution of intentions: overcoming

the costs of interruptions. Applied Cognitive Psychology 18(5), 2004, 533–547.
54. D.C. McFarlane, Interruption of People in Human-Computer Interaction: A General Unifying Defini-

tion of Human Interruption and Taxonomy. NRL Formal Report NRL/FR/5510-97-9870, US Naval
Research Laboratory, Washington, 1997.

55. D.C. McFarlane, Coordinating the interruption of people in human-computer interaction. In Proceed-
ings INTERACT’99 , IOS Press, 1999, 295–303.

56. D.C. McFarlane, Comparison of four primary methods for coordinating the interruption of people in
human-computer interaction. Human-Computer Interaction 17, 2002, 63–139.

57. D. McNeill, Language as gesture (Gesture as language). In Proceedings WIGLS’96 , University of
Delaware, 1996, 1–20.

58. C. Monk, D. Boehm-Davis and J.G. Trafton, Recovering from interruptions: Implications for driver
distraction research. Human Factors 46, 2004, 650–663.

59. D. Morris, A.B. Brush and B.R. Meyers, SuperBreak: Using interactivity to enhance ergonomic typing
breaks. In Proceedings CHI’08 , ACM Press, 2008, 1817–1826.

60. National Transportation Safety Board, Aircraft Accident Report NTSB/AAR-69/08: Pan American
World Airways. National Transportation Safety Board, 1968.

61. National Transportation Safety Board, Aircraft Accident Report NTSB/AAR-88/05: Northwest Air-
lines. National Transportation Safety Board, 1988.

40

62. B. O’Conaill and D. Frohlich, Timespace in the workplace: Dealing with interruptions. In Proceedings
CHI’95 , ACM Press, 1995, 262–263.

63. A. Oulasvirta and P. Saariluoma, Surviving task interruptions: Investigating the implications of long-
term working memory theory. International Journal of Human-Computer Studies 64(10), 2006, 941–
961.

64. S.L. Oviatt, A. De Angeli and K. Kuhn, Integration and synchronization of input modes during
multimodal human-computer interaction. In Proceedings CHI’97 , ACM Press, 1997, 415–422.

65. P.A. Palanque and R. Bastide, Petri net based Design of User-driven Interfaces Using the Interactive
Cooperative Objects Formalism. In Proceedings DSV-IS’94 , Springer, 1994, 383–400.

66. D. Parker, G. Norman and M. Kwiatkowska, PRISM 2.0—Users’ Guide, February 2004. URL
http://www.cs.bham.ac.uk/˜dxp/prism.

67. F. Paternò, C. Mancini and S. Meniconi, ConcurTaskTrees: A Diagrammatic Notation for Specifying
Task Models. In Proceedings INTERACT’97 . Chapman & Hall, 1997, 362–369.

68. P. Pinheiro da Silva, User Interface declarative models and Development environments: A survey. In
Proceedings DSV-IS’00 , LNCS 1946, Springer, 2000, 207–226.

69. L. Ramanna and R. Ramachandran, Real-time Pitch Tracking of Speech Signals using the Robust
Algorithm for Pitch Tracking on a Personal Digital Assistant. Speech Signal Processing: Final Project
Report , 2007. URL http://www.utdallas.edu/˜lakshmish/pubs files/Speech RAPT Report.pdf.

70. R.M. Ratwani, J.M. McCurry and J.G. Trafton, Predicting post completion errors using eye move-
ments. In Proceedings CHI’08 , ACM Press, 2008, 539–542.

71. J.A. Rukab, K.A. Johnson-Throop, J. Malin and J. Zhang, A Framework of Interruptions in Dis-
tributed Team Environments. In Proceedings MEDINFO’04 , Studies in Health Technology and Infor-
matics 107, IOS Press, 2004, 1282–1286.

72. A. Silberschatz, P. Galvin and G. Gagne, Operating Systems Concepts. John Wiley & Sons, 2008.
73. C. Speier, I. Vessey and J.S. Valacich, The effects of interruptions, task complexity, and information

presentation on computer-supported decision-making performance. Decision Sciences 34(4), 2003,
771–797.

74. N.M. Su and G. Mark, Communication chains and multitasking. In Proceedings CHI’08 , ACM Press,
2008, 83–92.

75. J.G. Trafton, E.M. Altmann, D.P. Brock and F.E. Mintz, Preparing to resume an interrupted task:
Effects of prospective goal encoding and retrospective rehearsal. International Journal of Human-
Computer Studies 58(5), 2003, 583–603.

76. J.G. Trafton and C.A. Monk, Task Interruptions. Reviews of Human Factors and Ergonomics 3, 2007,
111–126.

77. K. Tsukada, K. Okada and Y. Matsushita, A Cooperative Support System Based on Multiplicity of
Task. In Proceedings WCC’94 , North-Holland, 1994, 69–74.

78. A.L. Tucker and S.J. Spear, Operational failures and interruptions in hospital nursing. Health Services
Research 41, 2006, 643–662.

79. M. Walji, J. Brixey, K. Johnson-Throop and J. Zhang, A theoretical framework to understand and
engineer persuasive interruptions. In Proceedings CogSci’04 , Lawrence Erlbaum Associates, 2004.

80. R.L. West and G. Nagy, Using GOMS for Modeling Routine Tasks Within Complex Sociotechnical
Systems: Connecting Macrocognitive Models to Microcognition. Journal of Cognitive Engineering and
Decision Making 1(2), 2007, 186–211.

A PEPA Specification of Drag ’n Drop

% all times in ms
im = 1000/910; % time of planning (240 ms) plus ballistic (670 ms) movement
vc1 = 1000/290; % time of approach + adjust movement
vc2 = 1000/290; % as above (1000/120 for procedural case)
in ; % interrupt time variable
pb = 1000/120; % time of completion of movement finishing with a push button
sd = 1000/680; % time planning (0) and ballistic (680 ms)
dd = 1000/120; % time to release (120 ms)
ok = 1000/1300; % time needed to handle pop-up interrupt (1300 ms)

#UsrPlanMove = (move,im).UsrMove + (interrupt,infty).UsrInterrupt;
#UsrMove = (visualControl,vc1).UsrOperate + (interrupt,infty).UsrInterrupt;
#UsrOperate = (push,pb).UsrSelect + (interrupt,infty).UsrInterrupt;
#UsrSelect = (drag,sd).UsrEndMove + (interrupt,infty).UsrInterrupt;
#UsrEndMove = (visualControl,vc2).UsrEnd + (interrupt,infty).UsrInterrupt;
#UsrEnd = (drop,dd).UsrPlanMove + (interrupt,infty).UsrInterrupt;

41

#UsrInterrupt = (clickOK,infty).UsrPlanMove;

#SysPlanMove = (move,infty).SysMove + (interrupt,infty).SysInterrupt;
#SysMove = (push,infty).SysSelect + (interrupt,infty).SysInterrupt;
#SysSelect = (drag,infty).SysEnd + (interrupt,infty).SysInterrupt;
#SysEnd = (drop,infty).SysPlanMove + (interrupt,infty).SysInterrupt;
#SysInterrupt = (clickOK,infty).SysPlanMove;

#Interrupt = (interrupt,in).InterruptOK;
#InterruptOK = (clickOK,ok).Interrupt;

(UsrPlanMove <move,push,drag,drop,interrupt,clickOK> (SysPlanMove <interrupt,clickOK> Interrupt))

B PEPA Specification of Speak ’n Drop

% all times in ms
im = 1000/910; % time of planning initial movement plus ballistic movement
vc = 1000/290; % time of visual control
in ; % interrupt time variable
mc = 1000/80; % time of completion of movement finishing with a mouse click
ss = 1000/630; % time for user to start speaking and completing the utterance
es = 1000/1000; % time for user to end speaking (plus recognition and feedback)
dd = 1000/120; % time to drag icon to trash and drop it there
ok = 1000/1300; % time to handle pop-up interrupt

#UsrPlanMove = (move,im).UsrMove + (interrupt,infty).UsrInterrupt1;
#UsrMove = (visualControl,vc).UsrOperate1 + (startSpeak,ss).UsrSpeak1 + (interrupt,infty).UsrInterrupt1;
#UsrOperate1 = (startSpeak,ss).UsrSpeak2 + (click,mc).UsrSelect + (interrupt,infty).UsrInterrupt1;
#UsrSpeak2 = (click,mc).UsrSelectSpeak + (interrupt,infty).UsrInterrupt1;
#UsrSelect = (startSpeak,ss).UsrSelectSpeak + (interrupt,infty).UsrInterrupt2;
#UsrSelectSpeak = (endSpeak,infty).UsrEndSpeakSelect + (interrupt,infty).UsrInterrupt2;
#UsrInterrupt2 = (clickOK,infty).UsrSelect;
#UsrSpeak1 = (visualControl,vc).UsrOperate2 + (endSpeak,infty).UsrEndSpeak + (interrupt,infty).UsrInterrupt1;
#UsrOperate2 = (endSpeak,infty).UsrEndSpeakOperate + (interrupt,infty).UsrInterrupt1;
#UsrInterrupt1 = (clickOK,infty).UsrPlanMove;
#UsrEndSpeak = (visualControl,vc).UsrEndSpeakOperate + (interrupt,infty).UsrInterrupt3;
#UsrEndSpeak2 = (move,im).UsrMove2 + (interrupt,infty).UsrInterrupt3;
#UsrMove2 = (visualControl,vc).UsrEndSpeakOperate + (interrupt,infty).UsrInterrupt3;
#UsrEndSpeakOperate = (click,mc).UsrEndSpeakSelect + (interrupt,infty).UsrInterrupt3;
#UsrInterrupt3 = (clickOK,infty).UsrEndSpeak2;
#UsrEndSpeakSelect = (drop,dd).UsrPlanMove + (interrupt,infty).UsrInterrupt4;
#UsrInterrupt4 = (clickOK,infty).UsrEndSpeakSelect;

#SysMouse = (move,infty).SysSelectM + (interrupt,infty).SysInterruptM1;
#SysSelectM = (click,infty).SysEndM + (interrupt,infty).SysInterruptM1;
#SysInterruptM1 = (clickOK,infty).SysMouse;
#SysEndM = (drop,infty).SysMouse + (interrupt,infty).SysInterruptM2;
#SysInterruptM2 = (clickOK,infty).SysEndM;

#SysSpeak = (startSpeak,infty).SysSelectS + (interrupt,infty).SysInterruptS1;
#SysSelectS = (endSpeak,es).SysEndS + (interrupt,infty).SysInterruptS1;
#SysInterruptS1 = (clickOK,infty).SysSpeak;
#SysEndS = (drop,infty).SysSpeak + (interrupt,infty).SysInterruptS2;
#SysInterruptS2 = (clickOK,infty).SysEndS;

#Interrupt = (interrupt,in).InterruptOK;
#InterruptOK = (clickOK,ok).Interrupt;

((UsrPlanMove <move,startSpeak,click,endSpeak,drop,interrupt,clickOK>
(SysMouse <drop,interrupt,clickOK> SysSpeak)) <interrupt,clickOK> Interrupt)

C Added Reward Structures

These are two examples of the reward structures added to the PRISM version of the specifications:

rewards "drops"
[drop] true : 1;

endrewards

rewards "interrupts"
[interrupt] true : 1;

endrewards

42

