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Unveiling mechanisms of electric field effects on superconductors by a magnetic field response
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We demonstrate that superconducting aluminium nanobridges can be driven into a state with complete
suppression of the critical supercurrent via electrostatic gating. Probing both in- and out-of-plane magnetic
field responses in the presence of electrostatic gating can unveil the mechanisms that primarily cause the
superconducting electric field effects. Remarkably, we find that a magnetic field, independently of its orientation,
has only a weak influence on the critical electric field that identifies the transition from the superconducting
state to a phase with vanishing critical supercurrent. This observation points to the absence of a direct coupling
between the electric field and the amplitude of the superconducting order parameter or 2π -phase slips via vortex
generation. The magnetic field effect observed in the presence of electrostatic gating is described within a
microscopic model where a spatially uniform interband π phase is stabilized by the electric field. Such an
intrinsic superconducting phase rearrangement can account for the suppression of the supercurrent, as well as
for the weak dependence of the critical magnetic fields on the electric field.
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I. INTRODUCTION

Recently, it has been shown that the superconducting
(SC) properties of metallic Bardeen-Cooper-Schrieffer (BCS)
superconductors can be influenced via electrostatic gating
[1]. The most striking effect: reduction and suppression of
the critical supercurrent, has been broadly demonstrated in
metallic nanowires [2–4] and Dayem bridges [5–8] made of
titanium, titanium nitrate, aluminum, niobium, and vanadium,
as well as in aluminum-copper-aluminum Josephson junctions
[9]. Moreover, recent experiments have probed the effect of
electrostatic gating on the SC phase in a SQUID [10], and
on the nature of the switching current distributions in gated
titanium Dayem bridges [11].

While these observations clearly indicate that the electric
field can suppress the supercurrent, whether and how it acts
on the amplitude or the phase of the SC order parameter
are questions so far unanswered. To develop a deeper insight
into this fundamental problem we investigate how the SC
state is modified by the simultaneous presence of electric
and magnetic fields. In this context, probing both the in-,
and out-of-plane magnetic fields (BY and BZ, respectively)
is particularly useful as the two orientations affect the SC
thin films via very different mechanisms [12]. In thin films
BZ generally leads to screening currents and a spatially
varying order parameter, marked by 2π -phase slips, as flux
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vortices penetrate the sample. BY on the other hand, ideally
affects the pairing amplitude homogeneously via electron spin
paramagnetism, inducing pair breaking and spin polarization
[13,14]. Thus, the search for magnetoelectric cross-talking
effects in superconducting thin films can provide indications
and constraints on the quantum states at superconductivity
breakdown, and reveal the origin of the unexpected coupling
between the electric field and the SC phase and/or pairing
amplitude.

We demonstrate that SC Al nanobridges can be electrically
driven into a state with complete suppression of the critical
supercurrent, and investigate their response to both in- and
out-of-plane magnetic fields at various temperatures. While
the effects of an out-of-plane magnetic field in combination
with an electric field have been measured in long Ti nanowires
[2] at low temperature, this is the first time the combined elec-
tric and magnetic field response of a superconducting Dayem
bridge has been characterized. Also, in contrast to the previous
work, the effect is investigated at several temperatures, to map
the whole temperature dependence of these effects as well.

Remarkably, we find that the magnetic field has only a
weak influence on the electric field effect in the SC bridges.
Moreover, this phenomenology is starkly independent of the
magnetic field orientation, despite the very different interac-
tions between SC thin films and in- and out-of-plane magnetic
fields. These findings suggest the absence of a direct electric
coupling between the electric field and the amplitude of the
SC order parameter, or 2π phase slips generated by vortices.
Both cases would have manifested with a significant variation
of the SC/normal (N) critical boundaries in the presence of
magnetic fields.

Our observations appear consistent with a recently pro-
posed and here further developed model in which the surface

2643-1564/2020/2(3)/033353(11) 033353-1 Published by the American Physical Society

https://orcid.org/0000-0002-7325-8331
https://orcid.org/0000-0002-1571-137X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033353&domain=pdf&date_stamp=2020-09-02
https://doi.org/10.1103/PhysRevResearch.2.033353
https://creativecommons.org/licenses/by/4.0/


LENNART BOURS et al. PHYSICAL REVIEW RESEARCH 2, 033353 (2020)

electric field is a source of inversion-symmetry breaking inter-
actions that strongly affects the orbital polarization only at the
surface layers of a multiband superconducting thin film [15].
This results in an electric-field-driven phase transition into
a mixed superconducting state where the relative SC phases
between different bands are shifted by π . This state, apart
from naturally yielding a suppression of the supercurrent,
is proven to be hardly influenced by the applied magnetic
field, as shown in the phase diagram, thus capturing the main
experimental findings.

In addition to the fundamental aspects discussed above,
the full suppression of the supercurrent is for the first time
demonstrated in our Al-based devices (previously only a 35%
reduction was achieved for Al wires [2]). This is noteworthy
as aluminum has several useful and impactful properties.
Indeed, it is easy to evaporate, has a self-limiting oxide layer,
and in situ its oxide layers can be reliably controlled by
make fine-tuned tunneling barriers, which makes our results
significant from the technological point of view. Moreover,
considering the broad application of Al-based thin films as
SC qubits [16], Josephson devices [17–19], photon detectors
[20,21], and bolometers [22], one can envision a new genera-
tion of SC electronics that can fully exploit the demonstrated
SC electric field effects.

The paper is organized as follows. In Sec. II we present
the experimental methods and the employed theoretical model
including aspects for the computation of the phase diagram.
Section III is devoted to the results concerning the evolution of
the critical supercurrent as a function of the applied magnetic
and electric fields, and the corresponding theoretical analysis
of the phase diagram. Section IV is assigned to discussion and
concluding remarks.

II. METHODS

In this section we discuss the methodologies for the fab-
rication and design of the device together with the main
aspects related to the transport measurements. Moreover, we
describe the model employed for the investigation of the
superconducting phase in the presence of both electric and
magnetic fields.

A. Experimental device: Fabrication and transport

The samples were fabricated in a single step employ-
ing electron-beam lithography to pattern a resist mask on
a sapphire substrate, see Fig. 1(a). 3 nm of titanium was
deposited at 1 Å/s (to improve adhesion), after which 14 nm
of aluminium was deposited at 2.5 Å/s, in an electron beam
evaporator with a base pressure of ≈10−11 torr. The Dayem
bridge is approximately 120 nm wide, 100 nm long, and has
a normal-state resistance RN ≈ 25 �. Gate-bridge separation
is about 30 nm, and the leads on either side of the bridge
are 2 μm wide. Resistance versus temperature measurements,
performed using a 3 μV square wave excitation indicate a
critical temperature TC ≈ 600 mK, and a transition width of
≈60 mK.

The critical current measurements were performed in a
He-3 He-4 dilution refrigerator at temperatures ranging from
50–600 mK, using a standard four wire setup, biasing with a

FIG. 1. (a) False color SEM image of a typical device. Inset:
close up of the region indicated by the black square showing the
Dayem bridge and gate electrode. (b) Critical current IC and re-
trapping current IR versus temperature. IC follows the typical BCS
evolution (gray line). (c) IC versus gate voltage VGate at four different
temperatures. (d) Voltage drop across the bridge versus bias current,
for four values of VGate at 50 mK. Arrows indicate sweep direction,
and the curves are horizontally offset for clarity. The black arrows in
(c) indicate the curves with VGate = 18, 21, and 24 V.

current. The dc lines are fitted with low pass and π filters.
The voltage drop was amplified using a room-temperature
differential preamplifier, while the gate voltage was supplied
by a low noise source meter. To determine the critical current
IC, current-voltage I-V measurements were repeated 30–50
times.

The leakage current between the gate and device was care-
fully measured by applying a voltage to the gate in the usual
manner, and amplifying the current flowing into the device
using a room-temperature current amplifier over a long period
of time. At VGate = 25 V, the leakage current I ≈ 7 × 10−11 A,
giving a gate-device resistance of R ≈ 0.63 T�. This is of the
same order of magnitude as reported in previous works [1].

Using the BCS relation, we find that �0 = 1.764 kBTC =
91 μeV (kB being the Boltzmann constant). Here, TC is rel-
atively low for Al, likely due to an inverse proximity effect
from the Ti layer. Via the conductivity σ , �0 and the magnetic
permeability of the vacuum μ0, we estimate the London
penetration depth λL = √

h̄/μ0πσ�0 ≈ 100 nm, and the su-
perconducting coherence length ξ0 =

√
h̄σ/NFe2�0 ≈170 nm.
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Here, we take the electron density at the Fermi energy of
aluminum to be NF = 2.15 × 1047 J−1m−3 [23–25]. Although
the critical temperature of Ti Dayem bridges is similar to that
of the Al, we point out that the Ti is not contributing to the
observed effects. This can be deduced by the observed critical
magnetic fields for the Al, which are very different from those
of the Ti.

B. Model and computation

In order to capture the effects of magnetic and electric
fields we introduce a microscopic model to simulate multi-
band superconductivity with conventional s-wave spin-singlet
pairing for a slab geometry with nz layers [15]. The electric
field, Es, on the surface is parallel to ẑ, and thus it can be
described by a potential Vs = −Esz. Following the custom-
ary approach we derive the surface orbital Rashba coupling
[26–28]. The matrix elements of Vs lead to an intra- (αOR) and
interlayer (λ) inversion asymmetric interactions (in the Bloch
basis), whose amplitude is proportional to Es while the relative
ratio depends on the interatomic distances and distortions at
the surface (see Appendix A for details). In this context, the
effect of the electric field in driving an orbital polarization is
particularly relevant for materials with p or d orbitals at each
atomic site. Hence, the case of aluminum is included in the
proposed modeling because p bands contribute to the Fermi
level.

Here, for convenience and clarity we indicate as (a, b, c)
the three orbitals on each atom that we employ for building
up the tight-binding model and can refer to either p bands or a
subspace of the d manifold. Then, assuming translational in-
variance in the xy planes, we introduce the creation d†

α,σ (k, iz )
and annihilation dα,σ (k, iz ) operators with momentum k, spin
(σ = [↑,↓]), orbital [α = (a, b, c)], and layer iz, to con-
struct a spinorial basis 	†(k, iz ) = [	†

↑(k, iz ), 	↓(−k, iz )]

with 	†
σ (k, iz ) = [d†

a,σ (k, iz ), d†
b,σ (k, iz ), d†

c,σ (k, iz )]. In this
representation, the complete Hamiltonian can be expressed in
a compact way as:

H = 1

N

∑
k,iz, jz

	†(k, iz )Ĥ (k)	(k, jz ) , (1)

with

Ĥ (k) = ĤSC + ĤISB + ĤM, (2)

where ĤSC is the superconducting part related with the multi-
layered configuration assuming an intraorbital singlet pairing,

ĤSC =
∑

α

[τzεα (k) + �α (iz )τx] ⊗ (
L̂2 − 2L̂2

α

)]
δ(iz, jz )

+ t⊥,ατz ⊗ (
L̂2 − 2L̂2

α

)
δ(iz, jz ± 1), (3)

the term ĤISB arises from the inversion symmetry breaking
at the surface of the superconducting thin film due to the
presence of the electric field and is expressed as

ĤISB = αORτz ⊗ (sin kyL̂x − sin kxL̂y)[δ(iz, jz )(δ(iz, 1)

+ δ(iz, nz )] + λτ0 ⊗ (L̂x + L̂y)

× [δ(iz, 1)δ( jz, 2) − δ(iz, 2)δ( jz, 1)

+ δ(iz, nz )δ( jz, nz − 1) − δ(iz, nz − 1)δ( jz, nz )], (4)

and finally the Zeeman term is given by

ĤM = B
∑

α

τ0 ⊗ (
L̂2 − 2L̂2

α

)
δ(iz, jz ). (5)

Here, the orbital angular momentum operators L̂ have

components L̂x = [
0 0 0
0 0 i
0 −i 0

], L̂y = [
0 0 −i
0 0 0
i 0 0

], L̂z =

[
0 −i 0
i 0 0
0 0 0

] within the (a, b, c) subspace, τi (i = x, y, z)

are the Pauli matrices for the electron-hole sector,
and δi, j the Kronecker delta function. The kinetic
energy for the in-plane electron itinerancy is due to the
symmetry allowed [29] nearest-neighbor hopping, thus,
one has that εa(k) = −2t||[cos(kx ) + η cos(ky)], εb(k) =
−2t||[η cos(kx ) + cos(ky)], and εc(k) = −2t||[cos(kx ) +
cos(ky)], with η being a term that takes into account
deviations from the ideal cubic symmetry. We assume
that the layer-dependent spin-singlet OP is nonvanishing only
for electrons belonging to the same band and it is expressed
as �α (iz ) = 1

N

∑
k g 〈dα,↑(k, iz )dα,↓(−k, iz )〉 with 〈. . .〉 being

the expectation value on the ground state. Here, N = nx × ny

sets the dimension of the layer in terms of the linear lengths
nx and ny, while we assume translation invariance in the xy
plane and nz layers along the z axis. We notice that in the
present analysis the pairing strength g is not modified by the
electric field. This is physically consistent with the fact that
due to screening effects the electric field cannot induce an
inversion asymmetric potential inside the thin film beyond
the Thomas-Fermi length. The study is then conducted by
determining the superconducting OPs corresponding to the
minimum of the free energy. The planar hopping is the energy
unit, t|| = t , while the interlayer one is orbital independent,
i.e., t⊥,α = t⊥, and the pairing coupling is g = 2 t . A change
in the pairing interaction does not qualitatively alter the phase
diagram [15].

III. RESULTS

In this section we present the experimental and theoretical
phase diagrams in terms of applied magnetic fields, electro-
static gating, and temperature.

A. Electric field vs in- and out-of-plane magnetic field

We start by discussing the behavior of the supercurrent
at zero applied magnetic field by varying the amplitude of
the electrostatic field and the temperature. Figure 1(b) shows
the critical and retrapping currents versus temperature. At the
base temperature of 50 mK, the critical current IC ≈ 12.8 μA.
The evolution of IC as a function of temperature follows the
conventional Bardeen’s profile [30–32] IC

∼= I0
C[1 − ( T

TC
)2]3/2.

The I-V characteristics show a considerable hysteresis at low
temperature [see the blue dots in Fig. 1(b) and the lines in
Fig. 1(d)], with a retrapping current IR ≈ 4.2 μA at T = 50
mK. The hysteresis is likely thermal in origin [33–35], and
it disappears when T > 400 mK, which is consistent with an
enhanced thermalization mediated by phonon coupling.

As in similar experiments [1,2,6,7,9–11], the critical cur-
rent can be reduced, up to complete suppression at the crit-
ical gate voltage V C

Gate ≈ 23 V. This is shown in Fig. 1(c),
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FIG. 2. (a) 3D plot of IC as a function of the out-of-plane magnetic field BZ and temperature T . The full black line shows IC(T ) at zero
field, the dashed black line shows the critical field BC

Z versus temperature. (b) 3D plot of IC as a function of the out-of-plane magnetic field
BZ and the gate voltage at 50 mK. The full black line indicates IC(VGate ) at zero field, the dashed black line indicates the critical field BC

Z.
(c) Critical BC

Z versus VGate at T = 50, 250 and 350 mK. The error bars indicate the resolution in BZ. (d) 3D plot of IC as a function of the
in-plane magnetic field BY and temperature T . The full black line shows IC(T ) at zero field, the dashed black line shows the critical field BC

Y

versus temperature. (e) 3D plot of IC as a function of the in-plane magnetic field BY and the gate voltage at 50 mK. The full black line indicates
IC(VGate ) at zero field, the dashed black line indicates the critical BC

Y. (f) Critical field BC
Y versus VGate at T = 50, 250, and 350 mK. The error

bars indicate the resolution in BY.

for several temperatures. The effect is bipolar in VGate (not
shown here) and is consistent with what has been reported for
different materials [1]. VGate has little to no effect at low values
until a sudden decrease close to V C

Gate. At higher temperatures,
the region where VGate is ineffective widens, while V C

Gate is
unaffected. In Fig. 1(d), we show four I-V curves for different
VGate, taken at T = 50 mK. In line with previous field effect
experiments, the retrapping current IR is not affected by VGate

until it coincides with IC (see also Appendix C). Above V C
Gate

some residual nonlinearity lingers, before the device becomes
completely ohmic [see the 24 V line in Fig. 1(d)] [1].

While the critical current is easily identified when the
switch to the normal state is abrupt, this is less evident when
IC is close to zero and the transition is more gradual. We have
defined IC as the value of the bias current I for which the
differential resistance is larger than 10 �, which is of the same
order of magnitude as the normal state resistance RN ≈ 25 �,
and can be reliably identified over the background noise.
Unlike the switching process, the retrapping generally does
not occur in one step, but tends to happen in two successive
events [see, e.g., the 18 V line in Fig. 1(d)]. The exact origin
of this partial switching is not yet fully settled, but it is likely
related to two local thermalization processes taking place in
different regions of the device.

The out-of-plane critical field versus temperature
follows the phenomenological profile BZ(T ) = BZ(T =
0)(1 − (T/TC)2) [36], which yields TC = 507 mK and
BZ(T = 0) = 16.25 mT [see Fig. 2(a) and Appendix C].
At T = 50 mK, the critical field BC

Y ≈ 850 mT. Via the
two critical magnetic fields, we estimate the London

penetration depth λGL
L ≈ BC

Yd/BC
Z

√
24 = 160 nm [36]

via the Ginzburg-Landau theory using d = 17 nm. Since
the thickness of the SC film is d � λ, it is reasonable
to assume that the in-plane field BY penetrates the
superconductor completely. Indeed, the critical in-plane
field’s temperature dependence BC

Y(T ) is consistent with
the evolution of a spin-split BCS condensate with a
critical Zeeman field near the Clogston-Chandrasekhar
limit μBHC = �0/

√
2 [14,37,38] [see Fig. 2(d) and

Appendix C].
The simultaneous application of magnetic and electric

fields is summarized in Fig. 2, where the evolution of IC is
plotted as a function of both temperature T and out-of-plane
magnetic field BZ. The reduction of IC is monotonous in BZ

and T .
It is interesting to compare the dependence of IC on T and

BZ, with the dependence on VGate and BZ, which is presented
in Fig. 2(b). While the critical magnetic field BC

Z decreases
continuously with temperature, the same is not true for VGate.
For VGate < 17 V, the dependence of IC on BZ is unaffected.
Only when VGate exceeds this value, we see a reduction in both
IC and a sharp decrease of BC

Z. The dependence of BC
Z on VGate

is shown in Fig. 2(c), for three different temperatures. Even at
higher T , the onset of the reduction of BC

Z is not significantly
changed.

The complete evolution of IC as a function of both T and
BY is shown in Fig. 2(d). Analogous to the effect of BZ, IC is
reduced monotonously. Also the behavior of IC versus T and
VGate is similar; for VGate < 17 V, the dependence of IC on BY

is not significantly affected. Figure 2(f) depicts the evolution
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FIG. 3. (a) Phase diagram in the (B, λ) plane corresponding to a BY applied Zeeman field and an effective electric field for an orbital
Rashba coupling αOR = 0.2 t . We have three different phases: conventional superconducting state (0-SC), unconventional π phase (π -SC), and
normal metallic state (Normal). The transition line is obtained by comparing the free energy of the 0-SC and π -SC, as shown in (b)–(d). Bc0 is
the critical field at αOR = λ = 0. The critical λ amplitude (or effective electric field) for the 0-π transition does not change as a function of the
applied magnetic field B, except close to the critical field Bc0. Other parameters: nz = 6 (number of layers); t⊥ = 1.5t, μ = −0.4t, η = 0.1.
(b)–(c) Behavior of the free-energy as a function of the SC-order parameter � for the conventional (b) and unconventional (c) SC states. �G0

is the energy gap when αOR = λ = 0 and B = 0. The free energy is shown for several values of λ, ranging from 0 to 3λc, for a fixed value of
the magnetic field, which is marked by the yellow line in (a). The dark dots indicate the free energy minima. (d) Comparison of the minima of
the free energy corresponding to the profiles in (b) and (c) for the 0 and π phase, respectively.

of the critical magnetic field BC
Y versus VGate for several T . For

neither BZ nor BY does the relation between IC, B, and VGate

depend on the sign of either B or VGate.

B. Theoretical phase diagram

Starting from the zero magnetic field configuration, the
coupling λ (i.e., the electric field) can drive transitions of the
type 0 π (i.e., conventional-to-unconventional superconduct-
ing phase) or superconducting-normal depending on whether
the αOR coupling is smaller or comparable to the planar kinetic
energy scale set by the hopping amplitude t [15]. Here, the
π phase means that the SC order parameter in a given band
has a different sign with respect to that in the other bands
contributing to the pairing at the Fermi level. Instead, in the
0 phase there is no phase difference among the bands. Within
our modeling the three bands contributing at the Fermi level
(i.e., a, b, c) are coupled through OR effects; in the π phase
we have that �a = �b = −�c.

The essential outcome of our modeling is that the electric
field is able to break the interorbital phase rigidity before
fully suppressing the amplitude of the order parameter. This
is a consequence of the inversion-symmetry breaking at the
surface layers induced by the external electric field, which
polarizes the orbitals of the electronic states at the Fermi level.
The electric field in this context has two main consequences
for the phase diagram. It rearranges the orbital-dependent
superconducting phases with a π shift (π phase) and it sup-
presses the amplitude of the order parameter by increasing the
population of depaired orbitally polarized quasiparticles (elec-
trically driven normal phase). Both phases are marked by a
vanishing supercurrent, however, the underlying mechanisms
that lead to the supercurrent suppression is fundamentally
different. In the π phase the vanishing supercurrent is due
to orbitally driven frustration of the phase of the supercon-
ducting order parameter, while in the electrically induced
normal phase it is due to the suppression of the pairing order

parameter. These two scenarios can be distinguished by the
response of the critical voltage to an external magnetic field.

Let us start by considering the behavior of the π phase from
a representative case with αOR = 0.2 t at zero temperature
(Fig. 3). For B = 0 the superconductor undergoes a 0-π tran-
sition above a critical λ, which is proportional to the applied
electric field. As expected, when considering a nonvanishing
Zeeman field B, the superconductor exhibits a transition into a
normal state if B exceeds a critical field BC. This SC-Normal
transition is also obtained in the presence of a nonvanishing
λ. Remarkably, both the 0-π phase boundary and the critical
lines separating the 0 or π phases from the normal state shows
a weak interplay between the electric and magnetic fields
[Fig. 3(a)]. Indeed, λc does not exhibit significant changes
as a function of the magnetic field B, except for close to the
transition point. A similar behavior is also observed for BC.
The phase diagram is determined by evaluating the behavior
of the free energy at a given magnetic field for the 0 and π

phases [Figs. 3(b)–3(c)]. While the free-energy minimum of
the 0 phase is strongly affected by the electric field, via λ, the
π phase is more resilient and at λ ∼ λc there is a transition
from 0 to π phase due to the crossing of the corresponding
free energies [Fig. 3(d)]. This transition is starkly unaffected
by the magnetic field B and it varies only close to the critical
point where both 0 and π phases can be brought into the
normal state. The weak dependence of λC on the magnetic
field can be ascribed to the character of the π phase, marked
by only a rearrangement of the relative phases between the
band-dependent SC order parameters, while their amplitudes
do not significantly vary across the transition.

Now, one can try to compare the results of Fig. 2(f) with
those of Fig. 3(a). We observe that in Fig. 3(a) the critical
magnetic field BC, setting the boundary between the 0 or π

phase and the Normal state, is practically unaffected by the
variation of the electric field. This outcome can capture the
behavior of the experimental critical field in Fig. 2(f) that is
also flat and is not significantly varying except close to the
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FIG. 4. (a) Phase diagram in the (λ, T ) plane showing three different states: conventional superconducting state (0-SC), unconventional
(π -SC), and normal state for αOR = 0.2t for B = 0.615Bc0. We assume an in-plane magnetic field orientation, e.g., By. The critical λ amplitude
for the 0-π transition (black line) does not change as a function of temperature. The transition from the SC to normal state (blue line) is of
second order. The gray dashed lines are the transition lines in absence of magnetic field (B = 0). (b)–(c) Behavior of the order parameter as a
function of temperature for B = 0 [(b)] and B �= 0 [(c)] and for several values of λ.

critical voltage. We argue that the π phase is the configura-
tion that can be induced by the electric field already before
reaching the critical voltage to account for the decrease of the
supercurrent. Within the π phase the supercurrent suppression
is first driven by a pure phase mechanism due to the interband
sign frustration and then further amplified by the reduction
of the amplitude of the superconducting order parameter. On
the other hand, the rapid decrease of the critical magnetic
field close to the critical voltage is due to the occurrence of
normal state configurations. In this regime, we expect that
the magnetic field phenomenology can be captured by the
character of the 0-normal phase transition.

When considering the transition from the 0-SC to N state
by varying the electric field amplitude (λ) at a larger value
of the αOR coupling, one finds a stronger correlation between
the critical electric field and the magnetic field (see Fig. 7 in
Appendix B).

In order to assess the role of the thermal fluctuations we
have also determined the phase diagram at finite temperature
for the case of small orbital Rashba coupling. In Fig. 4 we
report the phase diagram with the evolution of the transition
lines among the 0, π -SC phases and the normal metallic state
by considering the effects of the temperature and of the effec-
tive electric field through the λ coupling. We compare the zero
magnetic field case with one representative configuration cor-
responding to B ∼ 0.6Bc. There are two relevant observations
to highlight: first, the critical boundary from the 0-SC state to
the π phase is substantially unaffected by the temperature and
by the applied magnetic field. Second, the critical temperature
for the superconducting-normal transition is also independent
on the 0 or π character of the superconducting phase, as is ob-
served experimentally. The evolution of the superconducting
order parameters in temperature demonstrate a conventional
trend with a weak dependence on the electric (via λ) and
magnetic fields (B) as explicitly reported in Figs. 4(b) and
4(c).

IV. DISCUSSION AND CONCLUSIONS

Comparing the above theoretical results with the experi-
mental observations we argue that the experimental outcome
supports the π phase for accounting the phenomenology of the
magnetic field response of the SC nanobridges in the presence

of an electrostatic gating. We note that in the π phase, the
presence of interband π -phase slips can naturally account
for a suppression of the supercurrent, due to a cancellation
between positive and negative pair currents among the vari-
ous bands that are present at the Fermi level. In Fig. 5 we
schematically depict this scenario assuming that the super-
conducting film can form domains both due to the expected
inhomogeneous distribution of the electric field on the surface
and also due to the intrinsic polycrystalline character of the
investigated materials. Then, before the electric field is able
to fully suppress the superconducting state and driving it into
a normal metal configuration it is plausible to expect that an
inhomogeneous phase with 0-π (small electric fields) and π -π
interfaces (with increasing electric field) is achieved. More-
over, since the π phase does not exhibit spatial modulations or
gradients of the superconducting order parameter, we expect
a weak influence from the formation of a vortex phase, as
induced by the out of plane magnetic field BZ. Thus, this
supports the observation that the electric field is able to disrupt
the superconducting state by primarily inducing π -phase slips
between the electronic states that contribute to the pairing
at the Fermi level. This remark is also consistent with the
enhancement of nonthermal phase fluctuations that have been
observed in the switching current distributions of Ti Dayem
bridges [11].

In conclusion, we have investigated the suppression of su-
percurrent effected by the electric field, combined with an in-
plane or out-of-plane magnetic field, and ascertained that the
two are weakly coupled: the critical magnetic fields are only
affected for gate voltages close to the critical gate voltage.
These findings are consistent with a microscopic model based
on a multiband description of the superconducting state where
the electric field is assumed to induce an electrostatic interac-
tion at the surface and in turn a strong orbital polarization at
the Fermi level. The effect of a magnetic field on the electri-
cally driven phase transitions has been thoroughly explored
and the way the electric and magnetic fields can affect the
superconductivity in thin films has been set out clearly. Fur-
thermore, we have, for the first time, realized a complete sup-
pression of the critical current in an aluminium-based Dayem
bridge via electrostatic gating. Since aluminium is an impor-
tant material from the technological point of view, this paves
the way for future applications of the electric field effect.
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FIG. 5. (a) Schematic description of the competing directions
among Josephson pair currents (arrows) at the interface between
superconducting domains having a multiband character with 0 and
π phase (a) or with π phases on both sides (b)–(c). For graphical
clarity we have depicted only the arrows from the a bands to all
the other bands across the interface. Taking into account the charge
transfer processes at the interface of the superconducting domains
between homologue or different bands there can be Josephson cur-
rents with positive or negative sign. The resulting outcome is to
have an overall tendency to cancel out the total supercurrent. For
the interface between π -phase domains, since the configurations
(b) and (c) are approximately degenerate in energy, it is plausible
to expect an enhanced suppression of the supercurrent especially
when considering an inhomogeneous superconducting films (e.g.,
polycrystalline).

For completeness, it is also valuable to comment on recent
results showing an increase of quasiparticle population in-
duced by gate effects on superconducting nanowires [4]. Our
proposed model, although completely different in microscopic
structure and nature in comparison to the high-energy injec-
tion scenario, is, however, compatible with the increase of the
quasiparticle population and the modification of the in-gap
spectral weight. In fact, in both the 0 phase and especially in
the π phase (due to the sign frustration of the superconducting
order parameters) the electric field is able to induce a variation
of the in-gap quasiparticles through the orbital polarization
effect.

Although, recent experimental results on suspended Ti
nanowires [39] seem to rule out charge injection through
the substrate surface as a possible mechanism, we believe
that the nature of the electric gating effect in all metallic
superconductors is still an open challenge that requires further
investigation to fully solve this exciting puzzle.
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APPENDIX A: MODEL DERIVATION: INTERACTIONS
INDUCED BY SURFACE ELECTRIC FIELD

The external electric field on the surface of the supercon-
ductor is parallel to the ẑ direction and can be described by a
potential Vs = −Esz with Es being constant in amplitude (as-
suming the electric charge e is unit). We consider a Bloch state
representation and explicitly evaluate the matrix elements of
the electrostatic potential Vs. Since the translational symmetry
is broken along the ẑ direction due to the finite thickness of the
thin film and for the electric field, the out-of-plane momentum
is not a good quantum number. Thus, a representation with a
Bloch wave function associated to each layer is suitable to
evaluate the effects of the electric field and the way it enters
in the tight-binding modeling. Here, we use the index iz to
label different Bloch wave functions along the ẑ direction as
follows:

ψk,β (r, iz ) = 1√
N

∑
ν

exp
[
ik · Rν,iz

]
φβ (r − Rν,iz ) (A1)

with the Bravais vector Rν,iz identifying the position of the
atoms in the x-y plane for the layer labeled by iz, β indi-
cating the atomic Wannier orbitals, and N the total number
of atomic sites. A central aspect in the derivation is that the
atomic Wannier functions span a manifold with nonvanishing
angular momentum L. To proceed further, we demonstrate
how orbitally driven Rashba-like splitting occur for p states
{px, py, pz} due to the presence of the inversion-symmetry
breaking potential Vs by evaluating the corresponding matrix
elements in the Bloch basis. Similar results can be obtained
following the same approach for hybridized sp and d states.

The p orbitals for a given atomic position Rν,iz are ex-
pressed as

φx(r) = f (r) x exp

[
− Zr

naM

]

φy(r) = f (r) y exp

[
− Zr

naM

]

φz(r) = f (r) z exp

[
− Zr

naM

]
(A2)

with f (r) = f0(Z, n) L3
n+1(t ), f0(Z, n) being a numerical pref-

actor, Z the atomic number, n the principal quantum number,
t = 2Zr/(naM ), aM = a0(1 + me/M ) with a0 the Bohr radius,
me and M the mass of the electron and nucleus, and Lq

p(t )
the associated Laguerre polynomials. These p orbitals are
also linked with the eigenstates {|0〉, |1〉, |1̄〉} of the Lz com-
ponent of L = 1 angular momentum with quantum numbers
{0, 1,−1}. As done in the main text, (a, b, c) will be used to
indicate the p orbitals. Now, in order to evaluate the conse-
quence of the electrostatic potential, we need to determine the
matrix elements in the Bloch state representation within the
same layer and in the neighbors layers along the ẑ direction.
These terms will provide, in turn, the amplitude of the orbital
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FIG. 6. Schematic figure describing the atomic positions for the determination of the electrostatic energy associated to the intra- and
interlayer electronic processes for the p orbitals. (a) sketch of the nearest-neighbor atomic positions along the (x, y, z) symmetry directions.
(b) and (c) describe schematically the in-plane displacements that are related with the interlayer orbital Rashba coupling. The displayed orbitals
are those that contribute in the in- and out-of-plane electronic processes for the electric field induced interactions.

Rashba coupling αOR and λ, respectively. Let us start by
calculating the intralayer interaction

A||
l,m = cψ 〈ψk,l (r, iz )|(−Esz)|ψk,m(r, iz )〉

= cψ (−Es)
1

N

∑
ν,γ

exp
[
ik · (

Rν,iz − Rγ ,iz

)]

×
∫

d3rφ∗
l (r − Rν,iz ) z φm

(
r − Rγ ,iz

)
(A3)

with l and m spanning the orbital space, and cψ the normaliza-
tion factor of the Bloch state. Since the functions φl (r − Rγ ,iz )
are localized around each atomic position one can restrict the
summation to leading terms which are those corresponding
to the same site, i.e., Rν,iz = Rγ ,iz , and to nearest-neighbor
sites, i.e., Rν,iz = Rγ ,iz ± ax,y, with ax,y being the connecting
vectors of nearest-neighbor atoms in the x-y plane. The term
for Rν,iz = Rγ ,iz is zero due to the odd-parity symmetry of the
atomic functions. Then, assuming that the distance between
two in-plane nearest-neighbor atoms is R||, the amplitude A||
can be expressed in a matrix form as

Â|| = cψ (−Es) R|| I||(R||; Z, n)[sin(kxR||)Ly − sin(kyR||)Lx]

(A4)

with I||(R||; Z, n) being a function of the relative atomic dis-
tance R||, the atomic number Z and the principal quantum
number of the Wannier functions n, respectively. Hence, com-
paring A|| with the term of the Hamiltonian associated with
the orbital Rashba coupling, we have that the strength of the
orbital Rashba coupling αOR is expressed as

αOR = (−Es) R|| I||(R; Z, n)cψ (A5)

and it is proportional to the intensity of the applied electric
field Es and to the amplitude I||(R||; Z, n). The form of Â|| in
Eq. (A4) is due to the structure of the expectation values of the
electrostatic potential between Wannier functions on nearest
neighbors atoms. If we consider schematically the atomic po-
sitions PA = [0, 0,−R⊥

2 ], PB = [0, 0, R⊥
2 ], PC = [R||, 0,−R⊥

2 ],
PD = [0, R||,−R⊥

2 ], for a cubic geometry in Fig. 6(a), we have
that

〈φA,m|Esz|φC,m〉 = 0 for m = a, b, c (A6)

〈φA,a|Esz|φC,b〉 = 〈φA,b|Esz|φC,c〉 = 0 (A7)

〈φA,a|Esz|φC,c〉 = −EsR||I||(R||; Z, n) (A8)

〈φA,c|Esz|φC,a〉 = +EsR||I||(R||; Z, n) . (A9)

The same expressions are obtained along the ŷ direction for
the orbitals b and c. In a similar way, one can proceed for the
matrix elements of the electrostatic potential between Bloch
states in adjacent layers expressed as

A⊥
p,q = cψ 〈ψk,p(r, iz )|(−Esz)|ψk,q(r, iz ± 1)〉 . (A10)

As for the in-plane amplitude, one can expand the summation
over all the Bravais lattice. However, in this case there are
contributions which are nonvanishing for Rν,iz = Rγ ,iz±1 and,
thus, we focus on these contributions

A⊥
p,q = cψ (−Es)

∫
d3rφ∗

p

(
r − Rν,iz

)
z φq

(
r − Rν,iz±1

)
.

(A11)

To proceed further we notice that the amplitude A⊥
p,q is in

general complex because the electric field induces a time-
dependent vector potential along the ẑ direction that affects the
relative phase of the Bloch functions in neighbor layers. This
implies that one cannot fix the gauge in a way that the Bloch
states in adjacent layers at the surface, e.g., ψk,p(r, iz = 1) and
ψk,p(r, iz = 2), have the same phase. This is an overall phase
factor that does not influence the amplitude of the term A⊥

p,q.
Below, we proceed by considering the contribution, which
leads to a coupling between the electric field and the orbital
polarization. The form of A⊥ is due to the structure of the
matrix elements of the electrostatic potential between Wannier
functions in neighbor layers along the ẑ direction. Hence, one
has to evaluate the following integrals:∫

d3rφ∗
p

(
r − Rν,iz

)
z φq

(
r − Rν,iz±1

)
. (A12)

for nearest-neighbor atoms along the ẑ direction as schemati-
cally shown in Fig. 6.

For the interlayer term, it turns out that the electric field
can induce an orbital polarization on nearest-neighbor atoms
only if one allows for displacements/distortions of the atoms
in the plane with respect to the high-symmetry positions.
This physical scenario is sketched in Figs. 6(b) and 6(c). The
analysis is performed by considering the following positions
for the atoms A′ and B′ in the plane, PA′ = [− d||

2 , 0,−R⊥
2 ],

PB′ = [ d||
2 , 0, R⊥

2 ]. As for the intraplane case, we have that the
relevant nonvanishing integrals are those related to the Lx and
Ly components of the angular momentum, namely we have the
Ly component that is active for an atomic displacement along
the x̂ direction. Within a first-order expansion in d||/R⊥ one
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FIG. 7. (a) Phase diagram in the (B, λ) plane for αOR = 1.0t assuming an in-plane magnetic field (e.g., BY ). For this value of αOR, there
is no stable (π -SC) state. Indeed the free energy for the π -SC case has a higher value with respect to the normal phase. Bc0 is the critical
field when αOR = λ = 0 and the other parameters are: nz = 6 (number of layers); t⊥ = 1.5 t, μ = −0.4 t, η = 0.1. (b)–(c) Behavior of the free
energy as function of the SC-order parameter � for two different values of the magnetic field B [marked by the yellow lines in (a)]. �G0

is the energy gap when αOR = λ = 0 and B = 0. The free energy is shown for several values of λ, ranging from 0 to ∼0.9λc (λc � 0.33t).
(d) Behavior of the SC-order parameter � as a funciton of λ for different applied magnetic field.

obtains

〈φA′,a|Esz|φB′,a〉 = 〈φA′,b|Esz|φB′,b〉 = 〈φA′,c|Esz|φB′,c〉 = 0

〈φA′,a|Esz|φB′,b〉 = 0

〈φA′,c|Esz|φB′,a〉 = −〈φA′,a|Esz|φB′,c〉 = Esd||I⊥(R⊥; Z, n)

〈ψA′,b|Esz|ψB′,c〉 = 0 . (A13)

A similar analysis for a distortive mode along the ŷ direction
would give a nonvanishing amplitude only for the wave func-
tions φc and φb. Assuming that the atomic distortions along
the x̂ and ŷ directions have the same amplitude [Fig. 6(c)], the
resulting expression for the matrix Â⊥ is

Â⊥ = Esd||I⊥(R⊥; Z, n)cψ (Lx + Ly) . (A14)

Hence, comparing the structure of Â⊥ with the interlayer
asymmetric interaction introduced in the Hamiltonian, we
have that

λ = Esd||I⊥(R⊥; Z, n)cψ . (A15)

APPENDIX B: SUPERCONDUCTING-NORMAL PHASE
BOUNDARY: ROLE OF MAGNETIC FIELD

In the main text we have shown that for weak orbital-
Rashba couplings compared to t , i.e., the in-plane kinetic
energy scale, the increase of the interlayer interaction λ can
drive a rearrangement of the interband superconducting phase
difference resulting into a π phase above a critical threshold
for λ. We have also demonstrated that this transition is sub-
stantially unaffected by the presence of a magnetic field. In
this Appendix, for completeness we also investigate another
interesting regime that refers to values of the orbital Rashba
coupling that are comparable to t , where the π phase is not
stable and the variation of the amplitude of the interlayer
asymmetric coupling λ drives a transition from the super-
conducting to the normal metal. In Fig. 7(a) we observe that
at zero magnetic field, for αOR = 1.0 t , the superconducting
state with uniform orbital phase (0-SC) can be tuned into a
normal state by increasing the amplitude of λ above a critical
amplitude λc. The type of transition is continuous as one can
notice by inspection of the superconducting order parameter

[Fig. 7(d)]. Here, we recall that the amplitude of λ measures
the strength of the applied electric field. The evolution of the
critical line separating the 0-SC state from the normal metallic
state indicates that one can destroy the superconducting phase
with a smaller amplitude of the λ coupling in the presence of
an applied magnetic field. In particular, close to the critical
magnetic field the strength of the λ coupling can be tuned
to be vanishingly small. This would imply that the threshold
of the electric field to disrupt the superconductivity can be
tuned to zero by the simultaneous presence of an applied
magnetic field. In this respect, the behavior of the critical
line is not compatible with the experimental observation that
the electric field amplitude to disrupt the superconducting
phase is weakly dependent on the strength of the applied
magnetic field. It is reasonable to expect such behavior for
the 0-SC/normal transition line because the magnetic field
acts as a source of spin pair breaking and thus it tends to
reduce the energy of the superconducting phase and in turn
it favors the stability of the normal state. We point out that
the transition line is first-order type and there is net jump at
the boundary of the superconducting order parameter, which
grows with the increase of the magnetic field strength. We

FIG. 8. (a) Critical out-of-plane magnetic field BC
Z versus temper-

ature, error bars indicate the resolution in B. Fitted with an empirical
expression (see main text). (b) Critical in-plane magnetic field BC

Y

(along the direction of the current) versus temperature. Error bars
indicate the resolution in B. Fitted with the calculated temperature
dependence of the critical field assuming perfect spin paramagnetism
(see main text).
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FIG. 9. (a) The critical and retrapping current versus gate voltage, (b) out-of-plane field BZ, and (c) in-plane field BY.

have also verified that a change in the number of layers does
not alter the outcomes of the results by explicitly evaluating
the case with nz = 12.

APPENDIX C: CRITICAL MAGNETIC FIELDS VERSUS
TEMPERATURE AND RETRAPPING CURRENTS

It is well known that magnetic fields suppress superconduc-
tivity, although the in- and out-of-plane magnetic fields do so
in very different ways. In Fig. 8(a), we show the critical out-
of-plane magnetic field versus temperature, where the error
bars indicate the resolution in BZ. The data agrees well with
the phenomenological expression BZ(T ) = BZ(T = 0)[1 −
(T/TC)2] [36], which yields a critical temperature TC = 507
mK and critical out-of-plane field of BZ(T = 0) = 16.25 mT.
Figure 8(b) shows the critical in-plane field BC

Y(T ), fitted with
a calculation of the temperature dependence of the critical

in-plane field assuming a homogenous spin splitting, while
minimizing the free energy. [14,37,38]

A noteworthy aspect of the electric field effect is that the
electric field seems to become less effective at higher tem-
peratures, i.e., a higher voltage is required before the critical
current is reduced, while the critical gate voltage where the
supercurrent is zero is not affected. Similarly it can be inter-
esting to consider the retrapping current, and how it responds
to the electric field as opposed to the magnetic fields. Unlike
the dependence of the retrapping current on the temperature
[see Fig. 1(b)], the retrapping current seems to be completely
unaffected by VGate, until the critical current is reduced to the
original value of the retrapping, see Fig. 9. From that point
on, the critical and retrapping current coincide. On the other
hand, for the magnetic fields we see that both IC and IR are
immediately affected, a reflection of the suppression of the
superconducting order parameter the magnetic fields impose.
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