f—

=~

|

Consiglio Nazionale delleRicezche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

AREA-TIME COMPLEXITY OF MATRIX-YECTOR MULTIPLICATION

B. Codenotti, F. Romani, G. Loth

Nots interna B86-02 2= 2
Gennaio 1986 i

R

| Aactrivio

R —

O 1

§ &&&w

ARZA-TIME COMPLEXITY OF HATRIX-VECTOn MULTIPLICATION.

B. CODENUTTI ana F. RO4ANI
Istituro di Iluporazione delit*Intormazione - CHR,

Via S.jdaria 46, PISA, ITALY.

G.LOITX
Dipartimento d1 Informuatica, Universaitat di Pisa,

Corso Italia 4(, PISA, ITALY.

ABSTRACT .

It is studied the 1watrix-vector nmultiplication problea in
VLSI. ©Both lower aund upper bounds are derived whaich depend on
the chosen model, obtained by different I/C conventions.

The propnleaz of multiplying a sparse matrix by a vector is
taken into consideration as well.

The resuits optelned ror matrix—vector product are applied

to study the VLSI coaplexity of other pumerical proplers.

KEY HdORDS. VLSI Hodeis, Area-lime Complexity, Sparse

Matrices, Hdatrix-Vector Product, Iterative sethods.

1. INTRODUCTIGH

The area~time coasplexity of sone propless cau pe deeply
influenced by the I/0 conventions, as shown by Ja® Ju® [6] ror
yrapa propleasc In this paper «e consSider satrix-vector
multiplication, deriving both lower ana upper bounds dependiug
on the chosen I/0 conventionsa #e also will taxe 1into
consideration the problem of multiplying a sparse matriX by a
vectora

the computational coamplexity of matrix-—vector Qultlplicatiou
in VLSI models induces complexity results ror other important
numerical proplems such as eigenvalues coaputations, operations
concerning polynomials, solution of linear systems by iterative
methods. In the following, we will deserve a special attention
to the last problem.

We turn now to the VLSI wmodels of computation here
considered. Pollowaing Ja® Ja', we can assume, without loss of
generality, the c¢hip to be a rectangle, whose area & |is
determined by gates connected by wires. dires have minimsal
width 1>0, and each gate has an area (12) . A coustant number
of 4ires can intersectv at any point. Horeover the chip 1is
where— and when—oblivious, i.c. the position and the time for
which data are availaple are independent of the values of the
input bits. The propagation of a bit along a wire takes a unit
time, independent of the wire lengtne

Several possibilities are considerad for the I/0
conventions:

G) I/0 ports lie anywhere on the chipe

B) all I/0 ports lie on the boauandary of the chip.

P) pipelininyg 1s atlowed ror I/0 ports.
) no pipeliniug 15 allowed for I/0 uoris.
These alternatives allow dezininygy four different aodels

), wnichn #1111l Dbe used in the

s3]

{denoted as GP, GX, EP,
following.

In numerical conmputations data dare grouped into words oOf
fixed length d. The value 4 is often independent of the size of
the problem; in tnis case the asymptotic complexity of the
problem is the sawe botn in word-based models and in bit-pased
models. Soasetimes, error ahalysis considerations suygest to
use an =#ord leayth depending on tihe size of the problem. This
leads to different asymptotlic complexity results in the two
types of models. Wde will state our results by assuming the

former situation to hold.

The following gyuantities will be used in deriving lower

bounds:

$., ¢ the input and output information flow,respectively,
i o

C the seyuential complexity of the problem,
s

I the number of input data-words,
R the number of internal data-words {(constants of the problem}.
For a specific problem area=-time lower pounds depend on the
used nodel.

Iin the model GP the followiny lower bounus hold:

al2 = 0(92), ATZ =((p2), AT > T, A > R.
i o s

In the model BP all the pbounuds for GP aold, together with

a2 = 0 (p 1)
X

In the model Gi all the bounds for GP hold, together with
A>1
In the model B#t all the pouands for GP, Gk, BP hold, togyether

with
AT =£l(¢'I%c
i

In the next section vwe ¥ill discuss the proplem ot
wul tiplying a matrix by a vector. In section 3 we #ill discuss
dense matrix by vector =multiplication; in section & the
“sparse® case w#ill be considered. In section 5 the results
obtained for wmatrix-vector product are applied +to study thne
YLSI complexity of other numerical problems. We will give a

special attention to the solution of linear systess by

iterative methods.

2. THE MATRIX VECTOR HMULTIPLICATION FROBLEHM

Let 4 = {(a) be an nxn real watrix and let x = (x) be an
ij 3

n-vector. The product AXx 1S5 tane n-vector y whose coaponents are

=1

L.

4hen solvaing this proplem in VLSI models there are two main

possipilities, namely:

a) the patrix A is resident into tne circuit, i.e. its
entries are elthel constant and wired on the circuit or
inserted 1in a preprocessing phasee The input data are the
entries of x.

b} The input data are the entries poth of A and x.

The first case occurs when the matrix A& is related to a given
transform (e.g. Discrete Fourier Transtorm) or the same adtrix
nas 'to be multiplied by several different vectors as in
iterative methods tor tne solution of lincar systemse

In tnis section Wwe preseut a general technigue to opbtain
good upper bounds, namely we sho® two ways of aygregating
pasic matrix~vector multipliers, and we discuss the attained
performances. These results will be applied either to ®"dense®
or to M"sparse" matrix-vecctor multiplication, in the following
sections.

The techrnigue used in the followiny consists in partitioning
the nmatrix into @/@x@/x)blocks of size k ané performing the nxn
using sSiapler modules for the

matrix-vector product by

rultiplications of order k.

1) LINEAK ARRAY

Let us congider a linear array of n/k modules, each capable
ot performinyg KxK matrix-vector wmultiplication (see Fide).
The Dbasic =module haS area a({K), tiase t(K), aikd periou
plk) € t(k), i.es a matrix—vector product computation can start

every p(k) units of time. Vector x euaters via b input paths on

(a)

(a)

linear array or aodules;

(o)

Ax

(b)

single module.

the boundary and it is transmitted to neighbouring modules.

Apalogously vector y exits via b output paths on the boundary. Ph
The matrix enters via ¢ input paths. The perfomance of this P 5
design is nsz) nsz
A{n) = a(k) n/k; ‘ : 3 '
T(n) = max(p(k), kZ/c) n/k + t(k)e >
Yote ~that when the linear array is used in a modular ¥ a
structure, the output paths can be required to be as many as Fh/z Nes! Ph/z
the ;nput paths. ZIn this casé the resulting vector y can exit
‘frd; the b top output paths in time‘O(n).
2) RECURSIVE AGGREGATION (a)
- hAnother type of aggregation is the recursive design of Fig.
2, ghich can be derived by u mesh of tree'e
Assume n to be a power of two. Kodule P performs nxn matrix
n
"vector multiplication using four P modules. The P module is
n/2 k P
Kk L AX
capable of performing kxk matrix-vector gultiplication in time
t (k). The latter module has heigth h({k) and length 1(k), i.e. I
area a(k) = i(k) h{(k); vector x enters via b (bSl(k}, bsh{k})
ipput paths on the boundarye. Analogously vector y exits via b) {h)

output paths on the boundary.
"The following recurrence relations can be estabilished for
the heigth HE(n) and the length L (n} of the resulting network

H{n) = 2 H{(n/2) + b n/k;

§

H{k} = h(k};
Piyele {(a} rTecursive aggregation of modules; (b} single

module.
—6_

L{n) = 2 L{n/2) + b nsk;
Lk} = 1(k) o
fhence
H(n) = n/K h{(k) + b n/k log (n/k);
L{n) = n/k 1(k) + b n/k log (n/k};
A(n) = 0(n2/kZ a(k) + bZ n2/kZ logZ (n/k)).
) Horeove:) o B

T(n} = log(n/k) + t(x).

"3. THE DENSE CASE
In this section vwe present some results concerning the
L'area~time complexity of dense matrix—vector multiplication, in
the models considered in section 1.

For dense matrix-=vector multiplication the following

quantities can be used in deriving lover bounds:

$ =0@m, C=Qm2.

i s
Horeover

I =n, R=n=2, if the matrix is resident,

I = n=2, R = &, otherwise.

Then the followingrlouer bounds can be stated:
a) resident matrix case.
In all models w®we have & = (n2).
D) non-resident matrix casee.
AT =0 (n2).

In model GP,

In model BP, ATZ =) (a3) .

In model 6N, A ={l@m?).

In model BH, AT = n(n3) .

Consider no¥ the upper pounds which can be attained with
specific networks. The performances which meet the lower bound
are marked with ®OPTIAAL®™, the performances which meet the
lower’ b9und up to logarithmic> factors are marked with
®GeTeLaFa®e

1) BASIC 30ODULE

The first design is the basic module of fig. 3. It consists
of an aritnmetic processor and a finite addressable memoryic
The mnodule performs the straigthforward algorithm with the
following performancesa.

a) resident matrix case.

In all aodels A{n) = O(ng),

T(n) = 0(n?)

b} non—-resident matrix case.

In model GP,BP A(n) = O(m), T(n) = 0(n2?).
In model GN A(n} = 0(n2}, P{n) = 0(n?) .
In model BH A(1) =0(1), T(3) = 0(V).,

since only the case n=1 is significativeie

2} BASIC MODULE + RECURSIVE AGGREGATIOR
The latter design is clearly not optimal, but it can be used
to perform kxk matrix-vector multiplications in a mesh of tree,
used to perform nxn matrix—vector multiplication.
The area and the time of the above described network are:
A = 0(nz A{k)/k2 + nZ/kZ logZ(n/k)),

and

FI1G.3

MEM

PE

Fige3. Basic module.

T = O{(log(n/kK) + k2.
Let us study the performance of this design in the models
considered in this papera
a) resident matrix case.
Bodels GP, BP.
Let k €{(Q.(Vlog n), O(log n)}. Then
A = 0(n2/T log2n/T), .
T €(f(log n), O(log?n)) (0-T.L.F).
For T =£(log2n) no saving in the area can be obtained by
slowing down the coaputation.)
Nodels GH, BH.
Only the choice k=1 is significative. Hence
A= O(BZ’;OQZQ), T = O0(log n) (OeTeLaF) e
b) non-resident matrix case.
In GP,BP models better ’ppupds are produced by qther
designs, to be described later.
Bodel GNi«
Only the choice k=1 is significative. Hence
A = 0{(n2 log2n), T =70(loq n) {OoToLaF) o
dere the memory cells of the resident case are substituted with
input portse.
#odel BN.
Only the choice k=1 is significative. The circuit has to
be stretched in order to insert n2 vires connecting the
boundary to the processors, (see [4#,5]), then

A = 06(n% logén), T = 0(loyg n) {OaTelal)e

3) LIHBAR ARRAY OF ELEMENTAKY PROCESSORS
The linear array can be built w¥ith elementary processors for
the scalar multiplication. In this case ¢=b=1, and the
performance 1is:
a) resident matrix case: HNOT APPLICABLE.
b) non-resident matrix casee.

In models GP,BP, we have A = O(n)3 T = 0(n}) (OPTIMAL)/.

This design is the classical systolic array [3]-

4) LINEAR ARRAY + RECURSIVE AGGREGATION

-

The 1inear array can be used to perfora the Kkxk
matrix-vector multiplications in the mesh o§ tree.
We obtain:
“a) resident matrif(case: HOT APPLICABLEe.
‘b} non-resident matrix case.
In model‘GP, o
the area and the time for the nxn nat;ix—vector
wultiplication are respectively
k= 0{n2/k + n2/k2 logZ (a/kK}).
T = log(n/k}) + Ke
Let k= (log n). Then T=k and
A = O(a2/T2 log2n/T) for Te (L{L(log n), O0(log?n)),
(0T oLeFYie
A = 0(n2/T} for TE(LL(log2n),0(n}).
(OPTIAAL) -
In tue case of poundary chips the circuit is stretched 1in

order to insert the wires “hich transfer the matrix from the

f

boundary to the elementary processors« For the nxn probles
nZ/k paths have to be inserted. Therefore the heigth of the
circuit is:

2 H{n/2) + 0(n2/k), B (k) = k, whence

n

H{n)

H(n) Of(n + n log n/k), and from
L(n)=0(n/k + n/k log n/k) we obtain
" A{n) = O(n2/k + n3/k2Z log2{n/k)) s Then the performance in
model BP is:

A = 0(n3/T2 log2{n/T)) for T&(LL (log n},0(n)), (CcTeleF)«

The results produced for the "dense® case are summarized in

table I and plotted in logarithmic scale in fig.le

4, THE SPARSE CASE ’ T -

In this section we present some results concerning the
area-tine coaplexity of matrix-vector multiplication, when the
matrix 1s sparse.

Large linear systeas with sparse coetficient matrix arise
frequently in solving many problems of applied mathematicse.
Sometimes the coefficient matrix has a strong structure which
can be fully exploited in devising solution algorithms. On the
other hand, if & is a general sparse matrix with weak structure
properties, the algorithms suited for dense matrices are very
inefficient and %ad hoc®™ algorithms cannot be derived. Hote
taat iterative metnods for the solution of linear systeass aave

to performs, a8 main steps, Bsatrix—vector products. The main

- fF -

advantage of using iterative methods ¥ith a sSparse iteration
matrix is that the storage can be bounded by the nonzero
elements of the iteration matrixe. Note that area 1is the
critical cresource swhen dealing w«ith sparse matrices, since
their size usually is very large. Our results will Jlead to a
number of nearly optimal VLSI designs for the solution of l&rge
sparse linear’systens py iterative methodse

Given an nxn matrix A, let H(n) be the number of its nonzero
entries. Let us partition i into @/@x@/k)blocks of size k« Re
denote with # (k) the maximum number of nonzero entries of the

kxk blocks. HWe define three types of sparsity:

simple-sparsity if #(n} = O{a}.

]

weak-sparsity if E {n) Om)mduwmeumsacmmwtc
not depending on n such that H(k)sck, 1<k<n,
strong—sparsity if ¥ {n) = o{n) and there exists a constant C
not depending on n such that #(k}=c, I<k<¥T.
An example of weak sparsity are band matrices, e.g. those
arising from the discretization of partial differential
equations. Examples of strony sparsity are some permutation
matrices and some matrices arising from network probleas. To
exploit sparsity we will use the technigue of partitioning the
matrix into subamatrices, and only pipelined podels (GP and BP)
vill be considered in the following.
For sparse aatrix—vector multiplication the following

guantities can be used in deriving lower bounds:

¢ = m, ¢ = (n}).

1 s

Koreover

I

n, R H{n), if the matrix is resident,
I =n, B = G, otherdise.
Then the following lower bounds can be stated:
a) resident matrix case,
models GP, BP, ATZ =(L (n?), A =Ll(n),

b) non-resident matrix case,

model GP, BP =~ AT2 ={)(n2).
Now we present the results on the front of upper bounds.

1) BASIC HODULE

The first design is the basic module of figia 3a In the
memory the M (n)=0(n) nonzero elements of A are stored together
with their indexes,., The area sufficient for the computation is

A=0 (A (D)) - The module perforrs the multiplication in two

phases:
1) coampute the products a X 5 a # 0, j=1,2;c-003
i3 3 ij
n
2} compute the suias 22: a X . i=1,25000a
ij 3
=1
a #J
ij

Each phase can be completed in time T=0(n+H(n)).
This module can be used for all the +types of sparse
matrices, producing
A(n) = O(n), T{u) = O(n),
in both GP and BP models and with resident or non-resident

2atrix.

w §3 e

MODEL

LOWER BOUND

a) Resident matrix

GP, BP

GN, BN

b) Non-resident matrix

GP

BP

GN

BN

A=Q(n?)

A=0(nd)

AT = ({n?)

AT?Z = (n?)

A= n?)

AT= (%)

TABLE |
DENSE MATRICES

UPPER BOUND

A =0(n%/T log? n/T),
T e(Q(log n), OClog?n))

A =0(n? log? n),
T =0(log n}

A=0(n}, T=0(n)

A =0(n%/T2 1og? n/T),
T (Qlog n), oflog?n))

A =0(n/T),

T &(D(log? n), O(n))
A=0(), T=0(n)

A =0(n*/T2 10g? n/T),

T €(Q(log n), o(n))

A =0(n? log? n),
T =0(logn)

A =0(n° log? n),
T = 0(log n)

DESIGN OPTIMALITY

(2) O.TLF.

(2) OTLF.

(3) OPTIMAL

(4 OTLF.
(4) OPTIMAL
3 OPTIMAL
(4) OTLF.
(2) OTLF.
(2) OTLF.

-

Fig.4. Opper and lower bounds for the case of dense matrices
plotted in log=-log scale. The dotted lines denote lower bounds.
The evidenced points and the solid lines denote upper bounds.

Logarithmic factors disappear in this presentation.

Now we distinguish the cases of weak and stroang sparsity.
COSPLIZXITY RESULTS POR WBSARLY~SPAKSE MATRICES

2) BASIC HODULE + RuCUBSIVE AGGREGATION
The basic module can be used to perfors the kxk
matrix—vector multiplications in the mesh of treeic The total
area is: B o
A = 0(nZ/k + n2/kz logZ(n/k)),
and the time is

T =,79(log (n/k) + k).

Then
A = 0(n%/T? log2n/T), T €({l(log n), O(log2n)), (0.F.L.F),
A = 0(n2/7), T €(()(log?Z n), O(n}), (0T oLeF) e

This design can be used in the resident matrix case with
models GP, BP, and in the non-resident matrix case with GP

model onlyi.

3) GRID OF BASIC KODULES

In figes 5 another structure is shown, which performs block
matrix—vector products. The design consists ot a mesh of
processors of the type shown in fig.3. Each processor performs
the multiplication of a kxk submatrix by a k-vector and
accumulates partial results, with k=0(Vi). The area of a
processor is Q(VO). The time sufficient to periorm Kkxk
mratrix-vector wmultiplication is O(VR) and the same time is

ufficient tor data transfer. The whole network attains the

]

bounds A=Q(a V) and T=0(Vi) .

- FL -

Flgede

(a}

gria of modules;

(0

(b)

{a)

single module.

This design can be used in the resident matrix case with
models GP, BP, and in the non-resident matrix case with GP

mudel oaly.

The results optained for the ®weakly-sparse® case are
summarized in table II and plotted in logarithmic scale in

£ig .6.

COMPLEXITY RESULTS FOR STRKONGLY=-SPARSE MATRICES

z) $§SIC YODULE + RECURSIVEVAGGREGATION
In tahis case, if the block size k is O (V) the area of the
basic modules is O(1) . The total area is:
A = 0(n2/k2 + n2/k2 logZ(n/k))
and the tinme is
T = 0(log(n/k) + K)a
Then
A = C(n2/T2 log2n,/T), T €((L(log n), O(VA)}, (OoTeLoF)
This design can be used in the resident matrix case with
rodels GP, BP, and in the non-resident matrix case with GP

Bodel only.

3) GRID OF BASIC XODULES
In this case the area of the basic aodule is 0 (1) . Phen the
netwsorx attains the performance A=0 (n} and T=0 {VIi} »
This de3ign can be used in the resident matrix case with
models GP, BP, and in the non-resident matrix case with GP

godel only.

i

4) LINCAR ARRAY OF ELZHENTARY PROCESSORS
The linear array structure presented in section 2 can be
formea with basic aodules of area 0(3) and period p(k)=0(k},
with k=0({Vn) . Yoreover c=b=1, so that
A=O0(VI); T =20(n)e
This desagn can be used in the non-resident matrix case with

GP, BP models.

The results obtained for the ®stroagly-sparse® case are
sumparized in table III and plotted 1in logarithmic scale in

fig‘ «le

S5e¢ APPLICATIONS

In this section we show +that efficent implementation of
natrix-vector multipliers leads to efficient designs for other
iamportant numerical problemse.

It is easy to see that, in any model, the VLSI complexity of
sparse matrix by vector product and of the computation of one
step of an iterative method for the solution of linear systenms,
are of the same order.

Assume first that a network with area A, time T, and b input
gates computes the product of an nxn sparse matrix by an
n-vectorc. It is easy to see that the area A* and the time T°®
sutficient to perfora one step of an iterative method, are

given by:

A*= Q(VA + b)Y2 + n = O(A),

Fig.6. Upper and lower bounds for the case

matrices plotted in log-loy scale.

+

of weakly-sparse

TABLE 11
WEAKLY-3PARSE MATRICES

MODEL LOWER BOUND UPPER BOUND DESIGN
a) Resident matrix
A=0(n), T=0(n) (1)

A=0n%/T2 102 /1), (2)
GP, BP ATZ=Q(n?), T e(@logn), o(log?n))
A=0(n)
A =0(n%/T), (2)

T e(Qlog?n}, O(n))

A=0(n¥2), T =0(n) 3

b) Non-resident matrix
A=0(n), T=0(n) n

A=0(n%/T2log? /T), (2)
T e(Q(log n), o(log?n))

GP AT? = ((n?)
A=0(0*T), (2)
T (Q(log?n), 0(n))

A=0(n¥2), T=0(n) (3

BP AT2=0(n?), A=0(n), T=0(n) (1

OPTIMALITY

O.T.LF.

O.TLF.

TABLE 11
1 log T : STRONGLY-SPARSE MATRICES
x =
fog n : MODEL LOWER BOUND UPPER BOUND DESIGN OPTIMALITY
2] B
log A ,: a) Resident matrix
*Togn 5 A=0(n), T=0(n) (n
GP, BP AT2=0(n%), A=0(n¥T?log? /T), (2) OTLF.
A=0Q(n) T e(0(log n), o(n*/?))
i A=n
A=0(n), T=0"2 (3 OPTIMAL
, Y . b) HNon-resident matrix
ATZ=n
\ A=0(n), T=0n) n
T l T H L4
L 2 T A=00Y/T210g? /), (2) O.TLF.
GP AT2 = Q(n?), T e(QUogn), oln'2)

A=0(m, T=0(n"?) {3 OPTIMAL

A=0(n"2), T=0(n) (4)

A=0(n), T=0(n) 8))

Fig.7. Upper and lower bounds for the case of strongly-sparse 8p AT2=(XH2L

A=0(n"?), T=0(n) (4)

matrices plotted in log=log scale.

T®= Q(T + n/b } = O(P).

The above observation show that 1iterative methods for the
solution of linear systoms can be perrorwed with a VLST desiyn
for matrix-vector product, with the matrix resident into the
circuite.

Boreover it is worth noting that eigenvalues computation by
Lanczos methods [1], cperations concerning polynomials,
iterative methods for unconstrained optimization {21, can be
eff%ciéntly implemented in VLSI, by using the designs for

matrix-vector multiplication presented in this paper.

REFERENCES

{1} J. cullum and RB.A. dilloughby, Lanczos Algoritanms for
Large Symmetric Eigenvalue Computations, Volel and Z, Proyress
in Scientific Computing Series, Birkhauser, Boston, 1984.

{21 R Fletcher, Pratical H#Hethods of Optimization, Wiley,
1980.

[3] HaTe Kung and C.E. Leiserson, Algorithms of VLSI Processor
hrrays, in: Cele Head and L.A. Conway, edse, Introduction to
VIST Systems (iddison-Wesley, Reading, HA, 1980) pp. 271-292.

[4] FaTe Leigthon, New Lower Bound Tecniques for VLSIe Proce
22nd Annual IEEE Symposium on Poundations of Computer Science
(3981), pp. 1-1Z.

{5] CeE- Leiserson, Area=—efficient graph layouts (for VLS5I}.
Proc. 21st Annual IEEE Symposium on Foundations of Cosputer
Science (1980), ppe 270-281.

[6] J. Ja*Ja', The VLSI Coamplexity of Selected Graph Problenms,

Je ASSOCe. COmputs MKach'a, 31 (1984), ppe 377-391.

