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Abstract
The many constrains introduced by the F-gas Regulation and the Kigali Amend-
ment to the Montreal Protocol have resulted in an intense search for alternatives to 
fluorinated greenhouses gases for air conditioning and refrigeration purposes (Mota-
Babiloni A, Makhnatch P, in Int J Refrig 127:101–110, 2021). With respect to the 
urge of new low-GWP and low-ODP refrigerants, blends composed of hydrofluor-
oolefins (HFO) are considered promising possible substitutes to hydrofluorocarbons 
(HFCs) and hydrochlorofluorocarbons (HCFCs) for HVAC&R applications (Sova-
cool et al., in Renew Sustain Energy Rev 141:110759), but thermophysical proper-
ties data for these blends are still scarce (Bell et al., in: J Chem Eng Data, 2021). In 
the present study, the vapor–liquid equilibrium (VLE) for the binary system (HFO-
1243zf + HFO-1234yf), for which just one set of data on the VLE is available to 
date in literature, has been experimentally studied by means of a vapor recirculation 
apparatus. The measurements have been performed at isothermal conditions in the 
range of temperatures between 283.15 K and 323.15 K, while the composition of 
both the phases in equilibrium has been measured by gas-chromatographic analysis. 
The experimental VLE data have been correlated by two different equations of state 
(EoS): the Peng-Robinson (PR) EoS combined with Mathias–Copeman (MC) alpha 
function and van der Waals (vdW) mixing rules, and the Helmoltz EoS with dedi-
cated binary interaction parameters. Correlated results showed a good agreement 
with the experimental data for the binary system.
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1  Introduction

In the air conditioning and refrigeration industry (HVAC&R), the replacement 
of existing refrigerants with fluids with a lower environmental impact plays an 
increasingly central role[1]. The Kigali Amendment to the Montreal Protocol in 
2016 [2] and even earlier, at European level, the EU Regulation No 517/2014 
(better known as F-gas Regulation [3]), called for a progressive phase down in the 
production and consumption of HFC-based refrigerants, considered potent con-
tributors to climate change due to their severe global warming potential (GWP). 
For instance, R134a and R410A, which represent the dominate refrigerants for 
air conditioning and refrigeration applications (both domestic and commercial), 
present a GWP of 1530 and 2256 respectively [4], definitely higher than the 150 
GWP limit prescribed by the F-gas Regulation [3] on the long term. In the pursuit 
for low-GWP and low-ODP refrigerants a number of constraints, including ther-
mophysical and thermodynamic properties, safety, chemical stability and com-
patibility with materials, and last but not least availability and cost, narrows the 
number of potential fluids [5]. In this perspective, blends composed of hydro-
fluoroolefins (HFO) have raised attention as the most promising alternatives to 
HFCs for HVAC&R applications  [6], since they present similar thermodynamic 
properties, together with an ODP equal to zero and extremely low GWPs,  but 
thermophysical properties data for these blends are still scarce [7]. Among HFOs, 
2,3,3,3-tetrafluoropropene (R1234yf) and 3,3,3-trifluoropropene (R1243zf), rep-
resent potential alternatives in refrigeration and heat pump systems, with ODP = 0 
and GWP < 1 [4], and their performances as pure fluids have been compared to 
that of R134a in previous research [8–10].

In particular, R1234yf is by far the most investigated HFO, and a wide lit-
erature analysis regarding its thermophysical properties has been performed by 
Bobbo et al. [5], newly updated by Fedele et al. [11]. On the other hand, R1243zf 
has recently gained interest, having similar thermophysical properties of R134a 
and a lower price than R1234yf [12]; a number of studies has now been gathered 
about its thermodynamic properties, including critical point [13], vapour pressure 
[12, 14–17], pvT properties [13, 16, 18], specific heat capacity [19, 20] and speed 
of sound [21]. Analogously, also the transport properties of R1243zf, i.e. thermal 
conductivity [22], viscosity and surface tension [23, 24], have been researched 
more extensively. However, the flammability of R1234yf and R1243zf, clas-
sified as mildly flammable (A2L) and flammable (A2), respectively, and their 
reduced refrigerating capacity compared to HFCs increase their potential when 
used in blends [9]. Nowadays, several multi-component mixtures including 
either R1234yf or R1243zf have been presented as alternatives for the next-
generation refrigerants [5, 8, 9, 12, 15, 25, 26]; nevertheless, to date only one 
study has been published on the thermodynamic properties of the binary mixture 
R1234yf + R1243zf [27], and accurate vapour-liquid equilibrium measurements 
of the blend, which are essential for the evaluation of its performance potential 
in a refrigeration cycle and the designing of the eventual refrigeration system, 
are still scarce. To compensate for this lack of information in the present study 
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the isothermal vapor–liquid equilibrium (VLE) for the binary system (HFO-
1243zf + HFO-1234yf was experimentally studied by means of a vapor recircula-
tion apparatus at five temperatures in the range between 283.15 K and 323.15 K. 
The experimental VLE data were then compared with available literature and cor-
related by two different equations of state (EoS): the Peng-Robinson (PR) EoS 
combined with Mathias–Copeman (MC) alpha function and van der Waals (vdW) 
mixing rules and the Helmoltz EoS with dedicated binary interaction parameters. 
Finally, a further comparison was made with data correlated using the Helmoltz 
EoS currently implemented in REFPROP 10.0.

2 � Experimental

2.1 � Materials

Table 1 summarizes the information on the R1234yf and R1243zf samples used in 
this study. In order to remove the non-condensable gases, the samples underwent 
several freeze–pump–thaw cycles with liquid nitrogen. Their purity was then veri-
fied by gas-chromatography analysis using a thermal conductivity detector (TCD). 
The samples were then used without further purification.

2.2 � Apparatus

The experimental setup used in this study was thoroughly described in previous 
work [28], thus only its salient features are presented here. The vapor recircu-
lation apparatus consists of a visual VLE cell equipped with a magnetic pump, 
both immersed in a thermostatic water bath of about 100  l capacity. Inside the 
VLE cell, made of stainless steel and with an internal volume of 50 cm3, a faster 
thermodynamic equilibrium is reached thanks to the action of a magnetic pump, 
that ensures an intensive circulation of the vapor phase into the liquid one. The 
temperature inside the bath is stabilized by means of a PID-controlled system that 
operates on a heater immersed in the bath, while an auxiliary thermostatic bath 
is used to compensate for the heat produced by the PID-controlled system and 
to reach the desired level of temperature in the main bath. Temperature is meas-
ured with a 100Ω platinum resistance thermometer and continuously recorded 
by means of a multimeter (Hewlett-Packard 3458). Temperature stability in the 
bath is ± 1 mK, and its expanded uncertainty (k = 1) was assessed to be ± 0.02 K. 

Table 1   Chemical information 
on the samples

a GC analysis

Substance Structural formula Supplier Purity 
(mass 
fraction)a

R1234yf CH2=CF–CF3 Chemours 0.998
R1243zf CH2=CH–CF3 Mexichem 0.999
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Pressure is measured by means of a pressure gauge (Ruska 6000) with a full scale 
of 17,000 kPa and an expanded uncertainty (k = 1) of ± 1 kPa, considering both 
the accuracy of the pressure transducer and the stability of the pressure during 
the measurements. The compositions of the phases are then analyzed by a gas 
chromatograph (Hewlett-Packard 6890) connected on-line to the VLE cell and 
equipped with a TCD detector, previously calibrated by means of gravimetrically-
prepared mixtures. As explained in [28], the expanded uncertainty (k = 2) in mix-
ture preparation is estimated equal to 0.3  mg, which gave an estimated uncer-
tainty of 0.0001  mol·mol−1 in molar fraction. The calibration was carried out 
every day with 8 bottles of different known compositions. For both the calibration 
and the measurements, the number of repeated measurements on same sample 
was such that a standard deviation lower than 0.001 mol·mol−1 was obtained in 
the molar fraction on three consecutive measurements. Under these assumptions, 

Fig. 1   Schematic of the VLE apparatus. Components: cooler (CR), resistance thermometer for tempera-
ture control (CT), diaphragm (DP), equilibrium cell (EC), heating resistor (HR), magnetic pump (MP), 
resistance thermometer for temperature measurement (MT), nitrogen bottle (NB), pure refrigerant bottle 
(PB), pressure control pack (PCP), pressure gauge (PG), stirrer (ST), sampling valve (SV), vacuum pump 
(VP)
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the expanded uncertainty (k = 2) in composition measurements is estimated to be 
within ± 0.003 in mole fraction. A schematic of the experimental setup is reported 
in Fig. 1.

3 � Results and Discussion

3.1 � Vapor pressures of pure compounds

The vapor pressures of pure R1234yf and R1243zf were measured at 5 temperature 
points from 283.15 K to 323.15 K as shown in Table 2. The data were then com-
pared with calculated results from REFPROP 10.0 [29] and the relative deviations 
of pressure between measured and calculated values are listed in Table 2, where pcal 
stands for the calculation data from the Helmholtz EoS implemented in the software 
[30, 31]. The relative deviations of pressure are graphically displayed in Fig. 2a and 
b, for R1234yf and R1243zf respectively. Figure 2a and b compare the experimental 
data from this work with several data reported in literature on the base of the EoS 
implemented in REFPROP, which thus represents the graphs baselines. Experimen-
tal data measured in this work differ from the baseline for about − 0.5 % ÷ − 0.1% 
for R1243zf and – 0.11 % ÷  + 0.18 % for 1234yf. As far as R1243zf is concerned, 
the major part of literature data is lower than the baseline in all the considered 
temperature range. In particular, as shown in Fig. 2a, data of Yang et al. [9] agree 
with our work for temperatures higher than 290  K while for lower temperatures 
data from Yin et al. [16] are consistent with our measurements. On the other hand, 
for R1234yf, data presented in this study match well the data of both Tanaka and 
Higashi [32], Di Nicola et al. [33] and Fedele et al. [34], as displayed in Fig. 2b.

3.2 � Experimental Data

Vapour-liquid equilibrium of R1243zf + R1234yf binary system was investigated 
isothermally at five temperatures, 283.15, 293.15, 303.15, 313.15 and 323.15 K, 
pressure range from 0.4  MPa to 1,2  MPa. The 41 P–T–x–y experimental data 
are summarized in Table  3 and plotted in Fig.  3, where x1 and y1 indicate the 

Table 2   Experimental and 
calculated vapor pressures of 
pure compounds

pcalc: REFRPROP 10.0 (R1243zf: Akasaka and Lemmon Helm-
holtz EoS [30]; R1234yf: Richter et  al. Helmholtz EoS [31]); 
δp = 100(pexp − pcalc)/pexp

T/K R1243zf R1234yf

pexp/kPa pcal/kPa δp/% pexp/kPa pcal/kPa δp/%

283.15 374.74 375.36 − 0.165 438.15 437.53 0.142
293.15 509.37 509.99 − 0.122 592.80 591.72 0.182
303.15 675.02 678.01 − 0.443 784.65 783.51 0.145
313.15 880.68 884.28 − 0.409 1017.01 1018.40 − 0.137
323.15 1130.17 1134.00 − 0.339 1300.83 1302.30 − 0.113
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liquid-phase and vapor-phase mole fraction of R1243zf, respectively. As shown 
in Fig.  3, the binary system demonstrated a near-azeotropic behavior over the 
entire range of composition.

3.3 � Data Reduction

The Peng-Robinson (PR) EoS and the Helmholtz EoS with dedicated binary 
interaction parameters were applied to model the experimental data. Results were 
then compared with the Helmholtz EoS implemented in REFPROP 10.0 [29] and 
literature data by Yang et al. [27].

Peng-Robinson EoS: the PR equation of state is expressed as

(1)P =
RT

v − b
−

a

v(v + b) + b(v − b)

(a)

(b)
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Fig. 2   (a) Relative deviations of vapor pressures compared with the EoS by Akasaka and Lemmon [30] 
for R1243zf. Literature data: Yang et al. [15], Yang et al. [9], Higashi et al. [14], Yin et al. [16]. (b) Rela-
tive deviations of vapor pressure compared with the EoS by Richter et al. [31] for R1234yf. Literature 
data: Tanaka and Higashi [32], Di Nicola et al. [33], Hulse et al. [35], Fedele et al. [34]
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with

where ai and bi are, respectively, the energy and the covolume parameter of the ith 
component; P, T and v are pressure, temperature and molar volume, R is the univer-
sal gas constant; Tci and pci are the critical temperature and critical pressure of the 
ith component.

In order to obtain a more accurate prediction for pure vapor pressure, for �i(T) the 
following alpha function proposed by Mathias and Copeman was followed:

(2)ai = 0.45724
R2T2

ci

pci
�i(T)

(3)bi = 0.07780
RTci

pci

Table 3   Experimental VLE data for R1243zf (1) + R1234yf (2) at T = 283.15, 293.15, 303.15, 313.15, 
323.15 K

T = 283.15 K T = 293.15 K T = 303.15 K

x1 y1 pexp/kPa x1 y1 pexp/kPa x1 y1 pexp/kPa

0.858 0.8368 384.8 0.8661 0.8475 520.0 0.8779 0.8618 691.5
0.7866 0.7606 389.8 0.7858 0.7614 528.0 0.7909 0.7688 702.2
0.6297 0.5974 401.3 0.666 0.6379 539.0 0.6988 0.6639 713.3
0.5586 0.5254 406.2 0.6144 0.5866 545.5 0.5775 0.5486 726.8
0.4535 0.4224 412.5 0.422 0.395 559.2 0.437 0.4097 741.6
0.3427 0.3168 419.3 0.361 0.3318 564.5 0.358 0.3326 750.2
0.2204 0.2018 425.7 0.2399 0.2217 573.8 0.2399 0.2232 760.2
0.1467 0.1329 430.7 0.12 0.1101 581.9 0.1374 0.124 771.3

0.0578 0.0513 586.5

T = 313.15 K T = 323.15 K

x1 y1 pexp/kPa x1 y1 pexp/kPa

0.9015 0.8866 897.7 0.8754 0.8614 1156.3
0.8007 0.7803 913.5 0.8438 0.8273 1161.7
0.7017 0.6757 928.6 0.788 0.7661 1173.5
0.5777 0.5494 946.8 0.6882 0.664 1192.3
0.44 0.4166 961.2 0.5834 0.5578 1210.4
0.3255 0.2984 976.2 0.488 0.4579 1228.1
0.1956 0.1804 991.5 0.3838 0.3614 1245.2

0.284 0.2625 1261.6
0.1449 0.1324 1281.7
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(4)�i(T) =

[

1 + C1

(

1 −

√

T

Tci

)

+ C2

(

1 −

√

T

Tci

)2

+ C3

(

1 −

√

T

Tci

)3
]2
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Fig. 3   VLE for the R1243zf (1) + R1234yf (2) binary mixture at 5 different temperatures. Solid points: 
experimental data; Solid lines: Helmholtz model; dashed lines: PR-MC-VdW model

Table 4   Critical parameters and 
values of C1,C2 and C3 of the 
pure fluids

Fluid Tc /K pc /kPa C1 C2 C3

R1243zf 376.93 3517.9 0.80529 -0.5758 1.6418
R1234yf 367.85 3382.2 0.8049 -0.4242 1.7469
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Critical properties of R1234yf and R1243zf Tci and pci were taken from 
REPROP 10.0 [29], while for the coefficients C1,C2,C3 of the two pure fluids 
used in Eq.  4, values taken from the literature were used [9, 36]. The critical 
properties and the coefficients of MC alpha function are reported in Table 4.

To calculate the energy and the covolume parameters of the EoS for the mix-
ture, a and b respectively, the Van der Walls one-parameter mixing rule was 
applied:

where xi is the mole fraction of the ith component and kij is the binary interaction 
parameter, satisfying the condition kij = kji and kii = kjj = 0. The binary interac-
tion parameter was regressed to the experimental data by minimizing the objective 
function:

where the subscripts exp,i and calc,i are referred to the experimental and calculated 
liquid, x, and vapour, y, mole fractions of the i-th component. N is the number of 
experimental data. The regressed value for the binary interaction parameter is shown 
in Table 5.

Helmoltz EoS: a further EoS was used to model the thermodynamic behav-
ior of the mixture, i.e. the Kunz and Wagner [37] multi-fluid Helmholtz energy 
model, based on the fact that all the thermodynamic properties can be formulated 
as function of the Helmholtz energy, such as:

(5)a =
∑

i

∑

j

xixjaij

(6)aij = (1 − kij)
√

aiaj

(7)b =
∑

i

xibi

(8)Fobj =

√

1

N

∑

i

(

xexp,i − xcalc,i
)2

+

√

1

N

∑

i

(

yexp,i − ycalc,i
)2

(9)p = �RT
(

1 + �
��r

��
(�, �)

)

Table 5   Binary interaction parameters and objective functions of PR-MC-VdW and Helmholtz models

PR-MC-vdW EoS

k12 OF

0.001122 0.0243

Helmoltz EoS

βt γt βv γv OF

0.99981 0.99777 1 1 0.0157
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The model is built as function of reduced temperature � and reduced density �:

where ρ represents the density of the mixture; xi and xj are the molar fraction of 
the i-th and j-th components of the mixture and �r is the residual part of the dimen-
sionless Helmholtz free energy. Subscripts T and v are referred to temperature and 
volume for the binary interaction parameters βT,ij, γT,ij, βv,ij, γv,ij, which need to be 
tuned with experimental data. Since the amount of data was limited and concerned 
only VLE data, only the parameters βT,ij and γT,ij have been fitted [40]. The tuning of 
the parameters was performed through a heuristic optimization algorithm, Adaptive 
Search Development Particle Swarm Optimization (ASD-PSO) [38], by minimizing 
the objective function of Eq. 8. Thermodynamic properties were then computed by 
REFPROP 10.0 subroutines as bubble and dew point calculations with temperature, 
vapor and liquid compositions as inputs.

Regressed binary interaction parameters are shown in Table  5. Concerning the 
fitted parameter for the cubic equation, a first test was made fitting the parameter 
for each isotherm in order to observe if a dependence on temperature exists. Then, 
only one parameter has been shown in this work since a standard deviation of 1.4e−6 
was obtained among the parameters for the single isotherms. Thus, the temperature 
dependence of k12 can be considered negligible.

3.4 � Discussion

Figure 3 shows the phase diagram of the R1243zf/R1234yf binary system calculated 
by the PR-MC-VdW and the Helmholtz-type models for each analyzed temperature. 
On the whole, both the PR-MC-VdW and the Helmholtz models can describe well 
the experimental data and the near-azeotropic behavior of the mixture, with minor 
difference between one model and the other.

Figures 4 and 5 show the relative deviations of pressure and the absolute devia-
tions of vapor phase composition calculated by the two models, while numerical 
values are reported in Table 6. The overall average absolute deviation of pressure 
(AAD(p)) and the average absolute deviation of vapor phase mole fraction (AAD(y)) 
are equal to 0.409 % (AAD(p)) and 0.002 m(AAD(y)) with the PR-MC-VdW model 
and 0.192 % (AAD(p)) and 0.002 (AAD(y)) with the Helmholtz model.

(10)� = �∕�c(x)

(11)� = Tc(x)∕T

(12)Tc,ij = �T ,ij�T ,ij

xi + xj

�2
T,ij
x
i
+ xj

(Tc,iTc,j)
1∕2

(13)
1

�c,ij
= �v,ij�v,ij

xi + xj

�2
v,ij
x
i
+ xj

1

8
(

1

�c,i
1∕3

+
1

�c,j
1∕3

)3
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The thermodynamic consistency of the isothermal experimental data was verified 
by applying the point-to-point test method proposed by Van Ness et al. [39]. The test 
is based on the average absolute deviation of vapor phase mole fraction (AAD(y)), 
which must be less than 0.01 [12]. Since, as shown in Fig. 5, values of ∆y are always 
lower than 0.01, the AAD(y) is necessarily lower than the threshold value, even con-
sidering the vapor phase composition uncertainties, and thus the thermodynamic 
consistency for the experimental values can be considered satisfied.

Figure 6 shows the relative volatilities obtained with the two models compared 
with the experimental ones, which are represented by the solid red curve. The rela-
tive volatility is calculated as in Eq. 14
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Fig. 4   Relative deviations of pressure for the R1243zf (1) + R1234yf (2) binary mixture from PR-MC-VdW 
and Helmholtz model. x: 283.15 K (PR-MC-VdW model); ӿ: 283.15 K (Helmholtz model); ◊: 293.15 K; ○: 
303.15 K; □: 313.15 K; ∆: 323.15 K. Solid points: PR-MC-VdW model; empty points: Helmholtz model
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where the subscripts 1 and 2 refer to R1243zf and R1234yf, respectively. As it can 
be seen, both the Helmholtz model and the PR-MC-VdW model are in good agree-
ment with the experimental volatilities, with deviations always within 5 % from the 
red curve (except for one outlier). Moreover, in Fig. 6, data are further compared 
with predicted values calculated using the Helmholtz-type EoS implemented in 
REFPROP 10.0. Since no thermodynamic data for this binary mixture have been 
published but the one from Yang et al. [27], in this software no dedicated param-
eters of the Helmholtz EoS are adopted for the R1243zf/R1234yf system; instead, 
the binary interaction parameters for the mixture R1234yf/R1234zeE are used and a 
mismatch from the experimental relative volatilities is evident, thus underlining the 
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Table 6   Calculation deviations 
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Fig. 6   Relative volatilities of the R1243zf (1) + R1234yf (2) binary mixture. ●: values from the REF-
PROP 10.0 software; ∆: PR-MC-VdW EoS as in Eq. 1; □: Helmholtz EoS as in Eq. 9; Solid line: experi-
mental values from this work; dashed lines show ± 5 % from experimental data
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fact that the Helmholtz EoS may not be effective when dedicated parameters are not 
regressed, unlike in the present work.

Finally, to further evaluate the consistency of the experimental data and to quan-
tify the error committed by applying the BIPs implemented in REFPROP Fig.  7 
shows the relative deviations of pressure between values measured in this work, the 
12 bubble points measured by Yang et al. [27] and the REFPROP 10.0 predictions, 
where the baseline represents the Helmholtz EoS with dedicated binary parameters 
as in Eq. 9. As already shown in Fig. 4, the two models applied in this study agree 
well with the experimental data in terms of relative pressure, whereas the exper-
imental data from Yang et  al. [27] show scattered deviations from the Helmholtz 
model up to − 1.93 % at 333.15 K. As regards the REFPROP 10.0 model, U-shaped 
systematic deviations are observed, with a maximum deviation of—4.2 % relative 
pressure.

4 � Conclusion

In this study the VLE of the R1243zf/R1234yf binary mixture was isothermally 
measured with high reliability using a vapor recirculation apparatus at 5 tempera-
tures from 283.15 K to 323.15 K, while in the same temperature range 10 vapour 
pressure data of the pure compounds were measured and compared with literature 
data and the Helmholtz EoS implemented in REFPROP 10.0. A modified PR EoS 
and a Helmholtz-type EoS were implemented to successfully reproduce the exper-
imental VLE data. The average absolute deviation of pressure (AAD(p)) and the 
average absolute deviation of vapor phase mole fraction (AAD(y)) are 0.409 % and 
0.002, respectively, for PR-MC -VdW model, and 0.192 % and 0.002, respectively, 
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Fig. 7   Relative deviations of pressure between experimental and calculated data from this work and pre-
dictions of the REFPROP 10.0 software for the R1243zf (1) + R1234yf (2) binary mixture. ●: experi-
mental data by Yang et al. [27]; □: experimental data from this work; dashed line: pressure values from 
the PR-MC-VdW EoS as in Eq. 1; ∆: pressure values from the REFPROP 10.0 software. The baseline 
represents calculated values from the Helmholtz EoS as in Eq. 9
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for the Helmholtz model. Furthermore, predictions from the Helmholtz-type EoS 
currently implemented in the REFPROP 10.0 software for the binary mixture dem-
onstrated systematic deviations of up to 4.5 % from the experimental data from this 
work, highlighting the importance of regressing dedicated binary interaction param-
eters on experimental thermophysical data.
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