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a b s t r a c t 

Deep learning demonstrated major abilities in solving many kinds of different real-world problems in 

computer vision literature. However, they are still strained by simple reasoning tasks that humans con- 

sider easy to solve. In this work, we probe current state-of-the-art convolutional neural networks on a 

difficult set of tasks known as the same-different problems. All the problems require the same prerequi- 

site to be solved correctly: understanding if two random shapes inside the same image are the same or 

not. With the experiments carried out in this work, we demonstrate that residual connections, and more 

generally the skip connections, seem to have only a marginal impact on the learning of the proposed 

problems. In particular, we experiment with DenseNets, and we examine the contribution of residual and 

recurrent connections in already tested architectures, ResNet-18, and CorNet-S respectively. Our exper- 

iments show that older feed-forward networks, AlexNet and VGG, are almost unable to learn the pro- 

posed problems, except in some specific scenarios. We show that recently introduced architectures can 

converge even in the cases where the important parts of their architecture are removed. We finally carry 

out some zero-shot generalization tests, and we discover that in these scenarios residual and recurrent 

connections can have a stronger impact on the overall test accuracy. On four difficult problems from the 

SVRT dataset, we can reach state-of-the-art results with respect to the previous approaches, obtaining 

super-human performances on three of the four problems. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

With the advent of deep learning, the computer-vision world 

ained a huge boost in almost all its fields. One of the major inno-

ations in this field was the introduction of Convolutional Neural 

etworks (CNNs) [9] . CNNs constitute now a standard approach to 

ransform a raw matrix of pixels into some higher-level represen- 

ation, and they are used in many downstream tasks. 

Despite their success, there are many open problems with cur- 

ent deep architectures, and in particular with their abstract rea- 

oning abilities. They are still unable to distill high-level general 

oncepts that can be transferred to different domains. This brings 

o low generalization abilities and often to an overfit to the spe- 

ific domain on which the network is trained. Humans can recog- 

ize some shape patterns never seen before, and they can deduce 

ome general properties of a never seen shape (e.g., is it a closed 

hape? is it the same shape as another one but rotated?). 

In this work, we probe modern state-of-the-art vision architec- 

ures to understand their ability to draw abstract conclusions on 

he objects contained in images. We tackle the same-different tasks, 

hich consist of a set of problems having a common underlying 
∗ Corresponding author. 

E-mail address: nicola.messina@isti.cnr.it (N. Messina). 

p

o

t

ttps://doi.org/10.1016/j.patrec.2020.12.019 

167-8655/© 2021 Elsevier B.V. All rights reserved. 
ifficulty: predicting if two shapes inside the same image are the 

ame or not. It is a challenging set of tasks for convolutional archi- 

ectures since they are required not to learn specific shape patterns 

o solve the problem; instead, they require to grow some abstract 

nternal representation which is powerful enough to draw a logical 

onclusion on a fact hidden in the image (e.g., the shapes in the 

mages are the same even if they are orientated in different ways). 

Same-different problems are really interesting challenges. Hu- 

ans perceive the world as a complex set of patterns composite 

ogether to form higher-level structures, such as the repeating cho- 

us in a song. By tackling the same-different concept we can better 

nderstand the abstract abilities of current deep neural network 

odels, even outside of the computer vision world. The long-term 

esults from these studies can be applied in a wide range of disci- 

lines, from robotics to cultural heritage preservation. 

This paper is an extension of our previous work [14] , where we 

ested a variety of state-of-the-art deep convolutional architectures 

n some challenging same-different tasks. Preliminary experimen- 

al results suggested that residual connections could have been the 

ost important architectural detail for solving this task. 

In this work, instead, we show through an improved set of ex- 

eriments that ResNet-like skip connections are probably not the 

nly essential architectural details triggering the convergence. In 

his regard, we probed an extended set of state-of-the-art models. 

https://doi.org/10.1016/j.patrec.2020.12.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.12.019&domain=pdf
mailto:nicola.messina@isti.cnr.it
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Fig. 1. Positive and negative examples from the four SVRT problems. 
n particular, we try to remove the key distinctive architectural fea- 

ures from some of the previously tested models, such as residual 

onnections from ResNets or residual and/or recurrent connections 

rom the CorNet-S architectures. 

We also show that the older VGG-19 and AlexNet architectures, 

n some specific cases, are able to move away from pure chance 

ccuracy on the test set, although they cannot reach state-of-the- 

rt results on the presented problems. 

In this work, we also perform final zero-shot generalization 

ests on the converged architectures, and we show that residual 

nd recurrent connections can have possibly strong impacts on the 

nal test accuracies. 

Despite the underlying difficulty in discerning what are the key 

rchitectural factors driving the convergence of these networks, we 

hink that this work evidences in a systematic way the current 

eaknesses of current vision models. 

To sum up, in this paper, we extend the previous 

ork [14] with the following: 

• we train a new set of state-of-the-art deep image classification 

networks on the same-different tasks; 
• we probe in more detail already examined models, by removing 

some key architectural elements to understand to what extent 

they contribute to the convergence; 
• we perform an extensive evaluation of the newly trained archi- 

tectures both in terms of convergence and generalization abili- 

ties, reporting training and validation curves. 

The rest of the paper is organized as follows: in Section 2 , we

eview some of the related work in abstract reasoning literature; 

n Section 3 , we briefly describe the same-different problems from 

he SVRT dataset; in Section 4 , we present the probed architec- 

ure and the training setup; in Section 5 , we discuss our extended 

xperiments; in Section 6 we draw some conclusions on the sys- 

ematic study performed in this work. 

. Related work 

In some studies, abstract and high-level reasoning abilities are 

robed using some on-purpose generated complex relational tasks. 

mong the most interesting ones, we find benchmarks such as 

LEVR and Sort-of-CLEVR [3] , that probed neural networks on 

he complex R-VQA (Relational Visual Question Answering) task, 

hich consists in answering questions about complex dispositions 

f simple 3D shapes. CLEVR is a synthetic dataset composed of 

D rendered scenes, designed on purpose for solving the R-VQA 

ask. Sort-of-CLEVR is a simpler version of CLEVR dealing with 2D 

hapes and a mix of relational and non-relational questions. 

The work in Santoro et al. [16] tried to solve the CLEVR R-VQA 

ask by introducing an end-to-end trainable architecture composed 

f a CNN-based perception module and a novel relation network 

RN). Recently, Messina et al. [12,13] extended the relation net- 

ork model to extract relationship-aware visual features for index- 

ng purposes. 

An interesting research direction in relational and abstract un- 

erstanding is undertaken by Johnson et al. [4] and Mascharka 

t al. [11] , which developed upon the idea of dynamically assem- 

ling an explainable program conditioned on the image-question 

air, able to infer the correct answer by performing multiple rea- 

oning steps. They reached more than 99% accuracy on the CLEVR 

est set. 

Other than the recently developed CLEVR dataset, other bench- 

arks were introduced to test the relational and abstract reasoning 

bilities of artificial vision systems. 

Some works tackled the abstract reasoning abilities of neural 

etworks by using Raven’s Progressive Matrices (RPM). RPMs 

onsist of visual geometric designs with a missing part. The test 
76 
aker is given a small number of different choices to pick from 

nd fill in the missing piece. In particular, Zhang et al. [20] tried 

o establish a semantic link between vision and reasoning by 

mploying hierarchical representations suitable for relational and 

nalytical thinking. 

Instead, Santoro et al. [15] introduced Procedurally Generated 

atrices (PGMs), similar to RPMs but procedurally generated using 

 detailed algorithm to create a fully controlled environment. They 

ntroduced a novel architecture that defeated popular state-of-the- 

rt models like ResNets. 

In [19] a synthetic dataset has been introduced to test the 

bilities of a network of memorizing configurations. Although it is 

imilar in essence to 2D synthetic datasets like Sort-of-CLEVR, it is 

pecifically designed to study the behavior of working memories. 

A simple yet powerful dataset was introduced in Fleuret et al. 

1] . They introduced the Synthetic Visual Reasoning Test (SVRT) 

ataset, composed of simple images containing closed shapes. It 

as developed to test the relational and comparison abilities of 

rtificial vision systems. In [17] the authors first showed, using 

he SVRT dataset, that the tasks involving comparisons between 

hapes were difficult to solve for convolutional architectures like 

eNet and GoogLeNet [18] . 

Recently, Messina et al. [14] demonstrated that some state-of- 

he-art deep learning architectures for classifying images, in par- 

icular ResNet models, can learn this task, generalizing to some 

xtent. 

. Review of the same-different problems 

In our work, we use the Synthetic Visual Reasoning Test (SVRT) 

enchmark for probing current state-of-the-art deep networks on 

he same-different tasks. 

SVRT consists of simple 2D images containing simple black 

losed curves on a white background. Every visual problem in 

VRT is divided into two classes: the set of positive examples, 

hich are the images that satisfy the specific rule, and the set of 

egative examples, which do not satisfy the rule. 

In [6] the authors proposed an exhaustive evaluation of sim- 

le CNN-based networks on all the 23 different sub-tasks of the 

VRT dataset. According to their findings, the most difficult same- 

ifferent problems are the ones related to shape comparison under 

ifferent geometric transformations (problems no. 1, 5, 20, 21). For 

his reason, in this work, we tackle in great detail these four chal- 

enging problems. 

In particular, to solve them we are requested to handle the 

ollowing challenges: Problem 1 (P.1) - detecting the very same 

hapes, randomly placed in the image, with the same orienta- 

ion and scale; Problem 5 (P.5) - detecting two pairs of identical 

hapes, randomly placed in the image. The two images inside ev- 

ry pair have the same orientation and scale; Problem 20 (P.20) - 

etecting the same shape, translated and flipped along a randomly 

hosen axis; Problem 21 (P.21) - detecting the same shape, ran- 

omly translated, orientated, and scaled. 

Fig. 1 shows examples of positive and negative samples for each 

f the same-different problems under consideration. 
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Fig. 2. Overview of the network for training on the same-different problems. The 

architecture of the network in the large light-gray box depends on the specific con- 

volutional network being probed. It is usually composed of a core built of CNN lay- 

ers plus final FC layers with ReLU activations outputting a fixed-sized vector. We 

linearly project the output to a single scalar value using a single FC layer. We then 

normalize this value in the range [0 , 1] with a sigmoid activation function before 

computing the Binary Cross-Entropy (BCE) loss. 
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. Method 

This work is aimed at probing state-of-the-art architectures 

orming the basis of modern computer vision models, and at mea- 

uring their abilities to intrinsically perform some abstract reason- 

ng on images. 

In our previous work [14] , we probed the following state-of- 

he-art architectures for image classification: AlexNet [7] , VGG- 

9 [10] , three variants of the ResNet [2] : in order of increasing

omplexity ResNet-18, ResNet-34 and ResNet-101, and a recently 

ntroduced biologically inspired network called CorNet-S [8] . 

In this paper, our aim is trying to draw some better conclusions 

n the architectural factors that contribute to solving the same- 

ifferent problems. 

For this reason, we probe also two versions of the DenseNet 

rchitecture, DenseNet-121 and DenseNet-201, which implement 

on-residual skip connections, and we explored the Batch Nor- 

alized version of the VGG-19. Furthermore, we try to remove 

mportant architectural building-blocks from previously converg- 

ng architectures to try to isolate the important architectural fac- 

ors triggering the convergence. In this regard, we try ResNet-18 

nd ResNet-34 without residual connections, and three variations 

f the CorNet-S obtained by removing recurrent and/or residual 

onnections. 

Following, we describe in more detail the architectures that we 

ill probe on the same-different problems. 

VGGs VGG-19 contains a simple convolutional architecture com- 

arable with the AlexNet structure, but it is significantly deeper. 

he original VGG-19, however, does not include in its convolutional 

odules a batch normalization layer. This could be quite an impor- 

ant detail for reaching network convergence and better stability, 

specially if the input image is non-normalized. For this reason, 

e experimented also with the VGG-19-BN architecture, which is 

he Batch Normalized version of the VGG-19. It simply includes a 

atchNorm layer after each Conv2D , before the ReLU activation. 

ResNets ResNets introduce residual connections. This kind of 

kip connection helps the model to produce incremental differ- 

nces in the hidden representations, dynamically refining the data 

assing through the network until it is sufficiently informative for 

he downstream task. 

The experiments on residual-connection removal from previ- 

usly converging ResNet-18 and ResNet-34 (namely ResNet-18-WS 

nd ResNet-34-WS, where WS = Without Skip-connections ) can 

ighlight the role of residual connections in solving the same- 

ifferent task. 

DenseNets The novel experiments conducted on DenseNets can 

pot the differences between a residual network and a network 

ased on generic skip connections. In fact, the DenseNets, differ- 

ntly from ResNets, introduce multiple non-residual skip connec- 

ions moving lower-level information to each one of the higher- 

evel layers. 

CorNet-S Kar et al. [5] introduced this biologically-inspired net- 

ork which evolves the ResNet architecture by introducing recur- 

ent connections. CorNet-S is inspired by some experimental evi- 

ence reported by the authors on primates brain, claiming that the 

isual cortex could be comprised of recurrent connections. CorNet- 

 is designed to mimick four different brain cortical areas involved 

ith vision; each one of these four blocks is composed of a recur- 

ent connection together with a residual skip connection. 

Thanks to the weight-sharing among timesteps, this architec- 

ure has considerably less learnable parameters than ResNets, and 

t is therefore an overall cheaper architecture. 

The introduced architecture CorNet-S-WR, where WR = Without 

ecurrent-connections , is identical to the CorNet-S model but has 

ecurrent connections removed. This modified network is aimed at 

potting out what is the influence of recurrent connections as far 
77 
s the same-different problems are concerned. Similarly, CorNet- 

-WS removes the residual connections from the basic CorNet-S 

odel. We try also to remove both the recurrent and the residual 

inks, giving rise to the CorNet-S-WR-WS model. 

Note that CorNet-S-WR, when unrolled, constitutes a very shal- 

ow network. To conserve the original depth, we stack in sequence 

he internal modules a number of times equal to the original 

imesteps proposed by the authors. In this way, CorNet-S-WR is ef- 

ectively an unrolled version of CorNet-S, with non-shared weights 

mong timesteps. 

.1. Training 

All the previously described architectures come with a final 

lassification head since they have been mostly used for the task of 

mage classification. In our scenario, instead, the output must be a 

inary value indicating if the shapes in the figure correctly satisfy 

he rules of the specific SVRT problem or not. 

For this reason, we replace the final classification head with a 

ully-connected layer outputting a single scalar value, normalized 

n the range [0 , 1] using a final sigmoid activation function. The 

hole network is then trained end-to-end using a binary cross- 

ntropy loss ( Fig. 2 ). 

. Experimental setup 

For each one of the four same-different benchmarks and ev- 

ry model described in Section 4 , we use 400k images for train- 

ng, 100k for validation, and 100k for testing. Differently from 

ur previous work where we reported the final accuracy val- 

es on the validation set, here we use a separate test set. All 

he generated images in the SVRT dataset have a size of 128 ×
28 pixels. 

Using 400k training examples could in principle bring to over- 

tting since the variability of synthetic datasets is often limited. 

evertheless, we claim that being the figures randomly generated 

n a 128 × 128 pixels grid, the probability of generating the same 

mage twice is very low. Furthermore, humans can indeed learn 

he proposed problems using only a few samples. However, hu- 

ans use a lot of pre-learned priors to solve these tasks, like the 

otation/scale invariance, the concept of shape and closed shape, or 

he mirroring invariance. Humans, differently from this setup, ac- 

uire this knowledge from the experience acquired on a multitude 

f other tasks, usually by performing transfer learning. 

All the positive and negative examples are perfectly balanced in 

ll the training, validation, and test sets. For all the probed mod- 

ls, we use SGD as the optimization algorithm, with a momen- 

um of 0.9, weight decay of 1e4, and a learning rate of 0.1. We 

o not use pre-trained weights if they are available. In fact, since 

hese networks are trained on image classification from real-world 
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mages, the pre-trained weights cannot deal with the very different 

istributions of the synthetic SVRT dataset. 

The input images are resized to the standard 224 × 224 for 

esNets and DenseNets architectures. We perform more experi- 

entation on the VGG-19 and AlexNets models since they are 

he ones demonstrating major strain. In particular, for these ar- 

hitectures, we try both to resize the input images to 224 × 224 

nd to keep the original 128 × 128 dimensions. Furthermore, since 

lexNet is designed with no batch-normalization layers, we tried 

o normalize the input images by subtracting the mean and divid- 

ng by the standard deviation of the SVRT dataset. 

.1. Experiment 1: convergence 

In this first experiment, we aim to understand if the explored 

etworks can converge on the four same-different problems. Thus, 

n this setup, we train the various models, measuring their accu- 

acy on the test set of the same same-different problem. In this 

xperimental scenario, we are also interested in measuring what 

s the strain perceived by the network during the training phase. 

or this reason, we desire to capture fine-grained insights during 

he training phase, for understanding what is the effect of different 

rchitectures (or small modifications of the same) on the training 

urves. Reporting the training curves for all the explored networks 

s infeasible; however, we can extract some relevant information 

rom the training curves and summarize them under the form of a 

imple index. 

To this aim, similarly to [6] , we extract from the training curves 

he point (expressed in epochs or fraction of epochs) in which the 

alidation accuracy reaches 90%. We assume that the more the net- 

ork is strained, the more examples it needs during the training 

hase to reach a good accuracy. We call this particular point con- 

ergence epoch (CE). 

Together with our measurements, we also report the values 

s measured by Fleuret et al. [1] , Stabinger et al. [17] on LeNet,

oogLeNet, and AdaBoost (using feature group 3). 

Looking at Table 1 , it is clear that most of the configurations de-

ived from AlexNet and VGG-19 architectures are unable to learn or 

re particularly strained. More in detail, almost all the VGG-19 con- 
able 1 

ccuracy values (%) measured on the test set of the probed architectures, for each of the

n gray. The values reported from [1,17] did not report any convergence information (CE 

s in the original papers. 

Problem 1 Problem 5 

Model Acc. CE Acc. 

LeNet [17] 57 n.a. 54 

GoogLeNet [17] 50 n.a. 50 

AdaBoost [1] 98 n.a. 87 

AlexNet 50.0 – 50.0 

AlexNet 50.0 – 50.0 

AlexNet norm.input 80.1 – 50.0 

VGG-19 50.0 – 50.0 

VGG-19 50.0 – 50.0 

VGG-19-BN 50.0 – 50.0 

VGG-19-BN 93.8 1.5 93.1 

ResNet-18 99.2 0.5 99.9 

ResNet-18-WS 98.9 0.5 99.5 

ResNet-34 98.2 4.5 98.7 

ResNet-34-WS 98.6 1.0 97.6 

ResNet-101 99.1 3.5 96.0 

CorNet-S 96.9 1.0 96.8 

CorNet-S-WS 95.6 1.5 97.1 

CorNet-S-WR 94.2 1.5 91.0 

CorNet-S-WS-WR 93.5 1.5 92.7 

DenseNet-121 99.6 1.0 98.2 

DenseNet-201 99.5 0.5 99.3 

Human [1] 98 90 

78 
gurations remain on the chance level accuracy of 50%, apart from 

he VGG-19-BN resized to . Nevertheless, this configuration can 

onverge on only two out of four problems, and with accuracies 

ar below the state-of-the-art reached with ResNets and DenseNets. 

his is the case even for the AlexNet with normalized input im- 

ges. 

Residual networks, as well as DenseNets, are always able to 

onverge obtaining state-of-the-art performances on the proposed 

asks. Also, residual and dense networks defeat humans on three 

f the four tasks. 

The fact that both residual and dense networks behave so well 

uggests that there is no significant difference between the resid- 

al connections and the DenseNet-like skip connections in this 

cenario. Furthermore, the ResNets without recurrent connections, 

ResNet-18-WS and ResNet-34-WS) reach almost the same accu- 

acies of the full ResNets, except in the P.21 where ResNet-34- 

S obtains a lower accuracy with a higher CE, indicating a little 

train with respect to the full ResNet-34. Overall, these results sug- 

est that residual connections may be architectural building-blocks 

ith little impact on the final test accuracy, as far as the conver- 

ence is concerned. 

The comparison among the CorNet-S-WS and CorNet-S-WR 

hows that the lack of recurrent connections in CorNet-S has a 

tronger impact than the lack of the residual ones. Without recur- 

ent connections, CorNet-S cannot reach 90% validation accuracy 

n P.21, leaving the CE for this experiment uncharted. 

Furthermore, the CorNet-S-WS-WR experiment, which lacks 

oth residual and recurrent connections, reaches accuracies on the 

est set perfectly comparable with the CorNet-S-WR network, sug- 

esting that the removal of residual connections has not a strong 

mpact on the overall convergence accuracies. 

We claim that recurrent connections, which implies sharing the 

eights among timesteps, help in regularizing and stabilizing the 

etwork, and they impact considerably on the overall test accuracy 

hen removed. 

In Fig. 3 a and b we report also some detailed training insights 

or some of the architectures present in Table 1 and trained on P.1 

nd P.21 respectively. In particular, Fig. 3 b shows how P.21 looks 

mmediately more difficult when considering the training curves. 
 four SVRT problems. Experiments reaching a perfect chance accuracy are reported 

is n.a.); also, these values are reported with the same number of significant digits 

Problem 20 Problem 21 

CE Acc. CE Acc. CE 

n.a. 55 n.a. 51 n.a. 

n.a. 50 n.a. 51 n.a. 

n.a. 70 n.a. 50 n.a. 

– 50.0 – 50.0 –

– 50.0 – 50.0 –

– 76.1 – 84.1 –

– 50.0 – 50.0 –

– 50.0 – 50.0 –

– 50.0 – 50.0 –

6.0 50.0 – 50.0 –

2.5 95.5 2.0 96.2 17.5 

2.0 95.7 1.0 96.7 8.5 

1.5 93.8 6.5 96.9 13.0 

1.5 93.6 1.0 90.8 17.5 

3.5 95.8 4.0 91.1 20.5 

2.0 95.0 2.0 96.9 17.0 

2.0 92.7 3.0 90.7 18.5 

7.5 91.5 4.0 88.3 –

8.0 91.3 7.5 86.5 –

2.5 94.2 1.5 95.1 7.0 

1.5 94.3 1.5 97.5 17.0 

98 83 
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Fig. 3. Training curves for some of the networks trained on P.1 (a) and P.21 (b). The red vertical line is placed in the correspondence of the convergence epoch (CE). Note 

that it is not present for the methods that do not reach at least 90% accuracy on the validation set. For performance reasons we validate the model every half epoch, so we 

can provide the CE with a resolution of 0.5 epochs. 

T

r

o  

c

r

a

m

a

h

w

d

5

m

p

s

n

I

a

a

t

h

s

t

t  

p

o

T

A

t

Table 3 

Accuracy values measured on the probed architectures, by training on P.21 and test- 

ing on the test sets of the other three problems. 

Model Test P.1 Test P.5 Test P.20 

ResNet-18 97.9 54.2 96.0 

ResNet-18-WS 98.3 53.3 96.6 

ResNet-34 98.3 59.4 96.6 

ResNet-34-WS 94.2 63.4 91.7 

CorNet-S 98.6 54.2 97.0 

CorNet-S-WS 95.6 59.1 91.7 

CorNet-S-WR 92.4 61.4 89.9 

CorNet-S-WS-WR 91.7 62.4 87.9 

DenseNet-121 96.9 55.7 95.1 

DenseNet-201 98.9 50.8 97.4 

5

i

r

c

P

s

i

s

v

c

t

3

w

C

t

he convergence epochs are very noisy and visibly shifted to the 

ight. 

It is worth to mention that P.20 is the only problem that, as 

f now, is still overtaken by humans (last row of Table 1 ). This

an be due to the intrinsic difficulties of deep convolutional neu- 

al networks to discern flipped shapes, on which humans instead 

re very good. It is also interesting to note that the greatest perfor- 

ance gaps among deep networks and humans can be found in P.5 

nd P.21, probably the most complex problems. Here, humans are 

eavily defeated by state-of-the-art convolutional neural networks, 

hich probably develop a finer intuition on problems with many 

egrees of freedom. 

.2. Experiment 2: generalization 

Following, we test the generalization abilities of the converged 

odels by measuring their performance on the test set of other 

roblems. 

We probe the models trained on P.21 and P.1. In particular, P.21 

hould force the models to learn most of the required invariances 

eeded to solve all the other problems (translation, scale, rotation). 

t is interesting to understand if the networks trained on P.21 are 

lso able to solve P.1 and P.5 and to measure their generalization 

bilities to shapes mirroring (P.20). 

On the other hand, P.1 only requires the networks to learn 

ranslation invariance; therefore, it is interesting to understand 

ow well networks trained on this task can deal with rotation, 

cale, or mirroring invariance (P.20, P.21). It is also worth trying 

he P.1 generalization abilities to multiple shapes (P.5). 

Table 2 reports the accuracies for the most promising models 

rained on P.1 on the test sets of P.5, P.20, and P.21. Instead, Table 3

rovides the accuracies for the most prominent networks trained 

n P.21 on the test sets of P.1, P.5, P.20. 
able 2 

ccuracy values (%) measured on the probed architectures, by training on P.1 and 

esting on the test sets of the other three problems. 

Model Test P.5 Test P.20 Test P.21 

ResNet-18 56.5 55.6 51.6 

ResNet-18-WS 56.4 58.4 51.2 

ResNet-34 84.4 61.6 51.5 

ResNet-34-WS 75.4 61.3 51.5 

CorNet-S 73.6 78.7 52.0 

CorNet-S-WS 64.6 76.8 51.7 

CorNet-S-WR 63.9 71.3 52.5 

CorNet-S-WS-WR 60.7 76.2 52.4 

DenseNet-121 58.8 55.3 51.2 

DenseNet-201 56.2 54.5 51.3 

s
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.2.1. Discussion: training on P.1 and testing on the others 

Looking at Table 2 it turns out that none of the models obtain- 

ng almost-perfect test accuracy on P.1 can understand P.21. This is 

easonable since P.21 requires rotation and scale invariances, diffi- 

ult to acquire for an architecture trained on P.1. 

On the other hand, ResNet-34 can generalize quite well to 

.5. Note that P.5 requires the models to understand that objects 

hould be clustered into two pairs of possibly identical shapes, and 

t is not trivial to deduce this information by learning only from 

ingle pairs figures. 

The architectural changes made to ResNets and CorNet-S have a 

isible impact on this generalization scenario, especially when re- 

urrent and residual connections are removed. For example, when 

esting on P.5, ResNet-34 without residual connections (ResNet- 

4-WS) loses around 10% with respect to the basic architecture, 

hile CorNet-S-WS and CorNet-S-WR lose 13% when compared to 

orNet-S. The lack of both recurrent and residual connections in 

his scenario brings to a huge loss in accuracy (18%). ResNet-18 

eems to be an outlier to this trend: on P.20, it obtains a better 

ccuracy when the residual connections are removed. 

On P.20, the higher accuracy is reached by CorNet-S. Although 

pproaching a test accuracy far below the optimal one, the clear 

eviation from chance accuracy suggests that this architecture can 

artially understand flipped shapes. 

Remarkably, the DenseNet networks cannot generalize very well 

o any of the three test problems. 

.2.2. Discussion: training on P.21 and testing on the others 

Table 3 shows how the models trained on P.21 can understand 

lso P.1. This is expected since P.1 is a subset of P.21 that does not

eal with scales and orientations of the shapes. 

A remarkable result can be observed on the networks tested on 

.20: the great part of the networks trained on P.21 can solve this 
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roblem almost perfectly, although P.21 does not carry the concept 

f shape mirroring. In particular, DenseNet-201 can reach state-of- 

he-art results on both P.1 and P.20. 

In this generalization scenario, CorNet-S and ResNets suffer 

rom the removal of residual and recurrent connections only when 

ddressing P.1 and P.20, reaching the minimum accuracy on these 

roblems with the CorNet-S-WS-WR, where both the residual and 

ecurrent links are missing. ResNet-18-WS defines an exception to 

his trend since it can perform better than the full ResNet-18 on 

hese two problems. 

However, there is an interesting trend when comparing P.1 or 

.20, with P.5. If we concentrate on the various CorNet-S versions, 

e notice that there is a decreasing accuracy trend on P.1 and P.20 

hen the recurrent and skip connections are gradually removed. 

nstead, an increasing trend is visible for P.5, although the abso- 

ute values for P.5 remain very low. The same thing happens for 

esNets and DenseNets. 

The low absolute accuracy values obtained in P.5 suggest that 

t is not sufficient to be invariant to rotation, scale, or translation 

o understand this problem. In general, zero-shot generalization to 

.5 is difficult: it is needed to observe a few samples of the target

roblem to understand the new rules. 

. Conclusions 

In this work, we analyzed to what extent very-deep convolu- 

ional neural networks can deal with the same-different challenging 

asks. 

Considering the SVRT visual challenge, our results show that 

esNets, DenseNets, and CorNet-S (a biologically-inspired architec- 

ure similar to ResNet architecture) can correctly understand the 

hallenging images and generalize to never seen shapes. We found 

hat all these architectures found P.21 the harder to learn. Older 

odels such as AlexNet and VGG cannot in many cases converge 

n the proposed problems. 

In this paper, we conducted additional experiments with re- 

pect to our previous work [14] , that demonstrated how residual 

onnections are not the only significant architectural details for 

olving the same-different task. Also, it seems that residual and 

ecurrent connections have important roles in the zero-shot gen- 

ralization to similar problems. 

In the end, we showed that recent convolutional networks for 

mage classification can reach state-of-the-art results on all these 

hallenging same-different problems from the SVRT dataset. Also, 

e found that they can reach super-human performances on P.1, 

.5, and P.21. 

We think that the development of the abstract and relational 

bilities of neural networks is an important leap towards achieving 

ome interesting new tasks, such as aesthetic judgment in images 

nd even in music, with wide applications in many fields (e.g., cul- 

ural heritage preservation). 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 
80 
cknowledgments 

This work was partially supported by “Intelligenza Artificiale 

er il Monitoraggio Visuale dei Siti Culturali” (AI4CHSites) CNR4C 

rogram, CUP B15J19001040004 and by the AI4EU project, funded 

y the EC ( H2020 - Contract no. 825619 ). 

eferences 

[1] F. Fleuret , T. Li , C. Dubout , E.K. Wampler , S. Yantis , D. Geman , Comparing ma-
chines and humans on a visual categorization test, Proc. Natl. Acad. Sci. 108 

(43) (2011) 17621–17625 . 

[2] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,
in: Proceedings of the IEEE CVPR, 2016, pp. 770–778 . 

[3] J. Johnson , B. Hariharan , L. van der Maaten , L. Fei-Fei , C. Lawrence Zitnick ,
R. Girshick , Clevr: a diagnostic dataset for compositional language and elemen- 

tary visual reasoning, in: Proceedings of IEEE CVPR, 2017, pp. 2901–2910 . 
[4] J. Johnson , B. Hariharan , L. Van Der Maaten , J. Hoffman , L. Fei-Fei , C. Lawrence

Zitnick , R. Girshick , Inferring and executing programs for visual reasoning, in: 
Proceedings of IEEE CVPR, 2017, pp. 2989–2998 . 

[5] K. Kar , J. Kubilius , K. Schmidt , E.B. Issa , J.J. DiCarlo , Evidence that recurrent

circuits are critical to the ventral streams execution of core object recognition 
behavior, Nat. Neurosci. 22 (6) (2019) 974–983 . 

[6] J. Kim , M. Ricci , T. Serre , Not-so-CLEVR: visual relations strain feedforward
neural networks, in: International Conference on Learning Representations 

(ICLR), 2018 . 
[7] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con- 

volutional neural networks, in: Advances in Neural Information Processing Sys- 

tems, 2012, pp. 1097–1105 . 
[8] J. Kubilius, M. Schrimpf, A. Nayebi, D. Bear, D.L. Yamins, J.J. DiCarlo, Cornet: 

modeling the neural mechanisms of core object recognition, BioRxiv (2018) 
408385. 

[9] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 . 

[10] S. Liu , W. Deng , Very deep convolutional neural network based image classi- 

fication using small training sample size, in: 2015 3rd IAPR Asian Conference 
on Pattern Recognition (ACPR), IEEE, 2015, pp. 730–734 . 

[11] D. Mascharka , P. Tran , R. Soklaski , A. Majumdar , Transparency by design: clos-
ing the gap between performance and interpretability in visual reasoning, in: 

Proceedings of IEEE CPVR, 2018, pp. 4 942–4 950 . 
12] N. Messina , G. Amato , F. Carrara , F. Falchi , C. Gennaro , Learning relation-

ship-aware visual features, in: Proceedings of the European Conference on 

Computer Vision (ECCV), 2019, pp. 486–501 . 
13] N. Messina , G. Amato , F. Carrara , F. Falchi , C. Gennaro , Learning visual features

for relational CBIR, Int. J. Multimed. Inf. Retr. (2019) 1–12 . 
[14] N. Messina , G. Amato , F. Carrara , F. Falchi , C. Gennaro , Testing deep neural net-

works on the same-different task, in: 2019 International Conference on Con- 
tent-Based Multimedia Indexing (CBMI), IEEE, 2019, pp. 1–6 . 

[15] A. Santoro , F. Hill , D. Barrett , A. Morcos , T. Lillicrap , Measuring abstract rea-

soning in neural networks, in: International Conference on Machine Learning, 
2018, pp. 4 477–4 486 . 

[16] A. Santoro , D. Raposo , D.G. Barrett , M. Malinowski , R. Pascanu , P. Battaglia ,
T. Lillicrap , A simple neural network module for relational reasoning, in: Ad- 

vances in Neural Information Processing Systems, 2017, pp. 4 967–4 976 . 
[17] S. Stabinger , A. Rodríguez-Sánchez , J. Piater , 25 years of CNNs: can we com-

pare to human abstraction capabilities? in: International Conference on Artifi- 

cial Neural Networks, Springer, 2016, pp. 380–387 . 
[18] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-

houcke , A. Rabinovich , Going deeper with convolutions, in: Proceedings of IEEE 
CVPR, 2015, pp. 1–9 . 

[19] G.R. Yang , I. Ganichev , X.-J. Wang , J. Shlens , D. Sussillo , A dataset and architec-
ture for visual reasoning with a working memory, in: European Conference on 

Computer Vision, Springer, 2018, pp. 729–745 . 
20] C. Zhang , F. Gao , B. Jia , Y. Zhu , S.-C. Zhu , Raven: a dataset for relational and

analogical visual reasoning, in: Proceedings of IEEE CVPR, 2019, pp. 5317–

5327 . 

https://doi.org/10.13039/100010661
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0001
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0002
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0002
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0002
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0002
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0002
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0003
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0004
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0005
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0006
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0007
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0009
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0010
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0011
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0012
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0013
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0014
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0015
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0016
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0017
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0018
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0019
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0020
http://refhub.elsevier.com/S0167-8655(21)00003-9/sbref0020

	Solving the same-different task with convolutional neural networks
	1 Introduction
	2 Related work
	3 Review of the same-different problems
	4 Method
	4.1 Training

	5 Experimental setup
	5.1 Experiment 1: convergence
	5.2 Experiment 2: generalization
	5.2.1 Discussion: training on P.1 and testing on the others
	5.2.2 Discussion: training on P.21 and testing on the others


	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


