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Abstract. Deep neural networks are used to study the ambient vibra-
tions of the medieval towers of the San Frediano Cathedral and the
Guinigi Palace in the historic centre of Lucca. The towers have been
continuously monitored for many months via high-sensitivity seismic sta-
tions. The recorded data sets integrated with environmental parameters
are employed to train a Temporal Fusion Transformer network and fore-
cast the dynamic behaviour of the monitored structures. The results show
that the adopted algorithm can learn the main features of the towers’
dynamic response, predict its evolution over time, and detect anomalies.
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1 Introduction

Artificial intelligence represents a new paradigm in many fields such as science,
technology, and industry, and Deep Learning (DL) techniques are increasingly
being used in various applications. The growing availability of big data recorded
by sensor networks and computing power allows scientists and technicians to
train data-driven models that can help understanding the complexity of the real
world.

Heritage structures are complex systems characterised by nonlinear mechan-
ical behaviour, varied geometric schemes, constituent materials and building
techniques. This complexity is heightened by the difficulty in getting accurate
information on the materials’ mechanical properties due to the scarcity of doc-
umentation and the need to limit destructive in-situ tests.

For these reasons, Structural Health Monitoring (SHM) has become increas-
ingly attractive for safeguarding architectural heritage [1]-[8]. Long-term SHM
based on ambient vibration tests can effectively increase the comprehension of
the structure’s mechanical behaviour and reveal possible anomalies in the loads
acting on the structure or in its dynamic response. A crucial point in designing
these monitoring systems concerns the availability of algorithms able to process
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large data sets automatically, possibly in real time. Artificial intelligence natu-
rally fits this framework since the collected data can be used as training data
sets to extract relevant features and predict the dynamic properties at future
time instants. This approach uses DL techniques for time series forecasting and
anomaly detection. The interested reader can refer to [9] and [10] for a compre-
hensive review of the software architectures involved.

Applications of DL to SHM of heritage structures are still relatively recent
and limited [I1]-[I8]. The present paper shows the application of deep neural
networks to analyse and predict the ambient vibrations of medieval masonry
towers. The study relies on two large data sets recorded in the historic centre
of Lucca on the San Frediano bell tower [19] and the Guinigi Tower [20], [21] to
train a Temporal Fusion Transformer (TFT) network [22], predict the dynami-
cal behaviour of the buildings (in the frequency domain) and perform anomaly
detection. TFT has been experimented on electricity, traffic, retail and volatility
problems; the studies summarised in this paper and described in detail in [23]
and [10] represent the first applications of TFT to SHM.

2 The TFT network

The TFT network introduced in [22] is an attention-based deep neural network
for multi-horizon forecasting. Figure [1| (from [I0]) depicts the TFT’s forecasting
scheme. In the figure, input data are split into observed inputs z;, measured
at each t € [0,7] by the sensors, and inputs x; that are known without mea-
surements (known inputs, such as the date at a prescribed time t). Input data
and past targets are used to train the TFT model, which is then employed to
predict the scalar targets y;; (e.g. the i-th natural frequency) from ¢ on. TFT
can simultaneously predict various percentiles (e.g. the 1st, 50th and 99th) of
the targets at each future time step of interest (hence the name multi-horizon
forecasting). Each quantile forecast can be written as

9i(q, 6, T) = FolT, Vi t—kets Ze—kooty Ki—fstprs W) (1)

In equation (1)) 9;(q,t,7) is the predicted g-th quantile (e.g. 0.01, 0.5, 0.99)
of the i-th target referred to the 7-step ahead the starting time ¢, f,(-;w) is
the model induced by the TFT architecture depending on the parameters w,
Yi,t—k:t and z;_j.+ represent the past target values and the observed input from
the starting time ¢ up to k time steps before, x;_j.¢1+, are known inputs across
the entire range. The parameters vector w is calculated by the TFT network
solving a minimisation problem on the domain of the input training data: such
a minimisation procedure represents the so-called model’s training. Typically, a
portion of the input data is set aside in the training procedure and reserved for
further model refinement (validation). Finally, the network test is performed on
a third portion of the input data set, called the test set. We refer to the original
work [22] for more details on TFTs and related issues.

Exploiting its prediction capability, TF'T can detect possible anomalies or
unexpected events by inspecting how much the observed targets deviate from
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the predicted ones. Once the TFT has been trained on a set of non-anomalous
data, the prediction ¢;(0.5, t, 7) of the i-th target value along with the 1st and the
99-th percentiles ¢;(0.01,¢,7) and 9;(0.99,¢,7) are obtained. An anomaly occurs
at time ¢ + 7 if the observed value y; .y, lies outside the confidence interval
[9:(0.01,¢,7),9;(0.99,t, 7)] predicted by the network.
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Fig. 1. Illustrative diagram of multi-horizon forecasting using past and observed inputs

[10].

3 Application to the ambient vibrations of two historical
masonry towers

In this section, we apply the TFT network to the San Frediano bell tower and
the Guinigi Tower, two of the most iconic monuments in the historic centre of
Lucca (Figure . Both towers have been continuously monitored via three-axial
high-sensitivity seismic stations for more than one year. The velocities recorded
have been split into hour slots and processed via the Stochastic Subspace Iden-
tification (SSI) method [24] to extract the vibration frequencies of the towers.
These frequencies and other environmental parameters (temperature, humidity,
etc.) measured on the towers or in their proximity (www.sir.toscana.it) consti-
tute the input database on which the TFT algorithm has been trained, validated
and tested. More specifically, the input database of the San Frediano bell tower
includes data from 28 Oct 2015 to 16 Oct 2016, while that of the Guinigi Tower
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goes from 1 Aug 2021 to 31 Jul 2022. Along with the frequencies and the envi-
ronmental parameters, other inputs were considered, such as the date and hour
slot, the weekend days and, for the Guinigi Tower, the hourly number of visitors
and the Root Mean Square (RMS) values of the velocities recorded.

Fig. 2. Historic centre of Lucca: the San Frediano bell tower (left) and the Guinigi
Tower (right).

Two seismic events measured on the towers have been considered to test
the sensitivity of the algorithm to potential anomalies: the Amatrice earthquake
(M 6.0, about 400 km from Lucca) occurred on 24 Aug 2016 at 1:36 UTC for
the San Frediano bell tower and the Viareggio earthquake (M 3.7, about 20 km
from Lucca) occurred on 6 Feb 2022 at 1:36 UTC for the Guinigi Tower. The
two events were recorded by the sensors installed on the buildings. Fig. |3] and
[ show anomaly detection results when the testing of the TFT network is con-
ducted over a period containing the earthquakes. In the figures, 7 introduced in
equation is set to 1. The green line represents the measured (experimental)
frequencies, the continuous red line is for the 50th percentile predicted by TFT
and the two red dashed lines represent the predicted confidence interval between
the 1st and 99th percentiles. According to the damage detection criterion intro-
duced at the end of Section 2, an anomaly occurs when at least one experimental
frequency exceeds this predicted interval. The network can capture the seismic
event as an anomaly for both case studies. In particular, the Amatrice earth-
quake affects only the first two frequencies, while the effects of the Viareggio
earthquake are visible in all the three frequencies shown in the figure. The algo-
rithm can also detect the vibrations of the San Frediano bell tower induced by
the swinging bells (Fig. 3]). This anomaly involves the second frequency (related
to the swinging direction) and corresponds to the main religious ceremonies held
in the Cathedral, particularly on Saturday (20 Aug at 17:00) and Sunday (21
Aug at h 10:00).

It is worth noting that the frequencies of the San Frediano bell tower exhibit
a very marked oscillatory behaviour over the day; this behaviour is due to the
daily temperature variations and is very well predicted by the TFT network.
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The Guinigi Tower shows different behaviour, which does not exhibit a clear
correlation between frequencies and temperature [20]. On the other hand, the
Guinigi Tower is open to the public every day from 10:00 a.m. to 5:00 p.m.
while the San Frediano bell tower was close to visitors during the monitoring
period and the instruments could measure the tower’s vibrations in undisturbed
conditions.

To visualise the anomalies identified by TFT over the test set, we can mark
each anomaly with a vertical bar and use an appropriate colour map to distin-
guish the anomaly score - i.e. the magnitude of the event (see [I0] for the rules
adopted to calculate such a score). Fig. [5| shows the anomaly plots of the Guinigi
Tower when three simulated damage scenarios are considered, in which the val-
ues of the six experimental frequencies f; < fo < ... < fs are lowered according
to the following rules and starting from the Viareggio earthquake hour slot:

— Scenario 1: by 2%,1%,0.5%, 0.5%, 0.5% and 0.5%, respectively. This dam-
age scenario is inspired by that observed on the Gabbia tower in Mantua
after the Emilia earthquake of May 2012 [25].

— Scenario 2: by 4%, 2%, 1%, 1%, 1% and 1%, respectively.

— Scenario 3: by 4% (uniform reduction of all frequencies).

The figure shows that the network can highlight the change in the tower’s
dynamic properties after the earthquake and the magnitude of the detected
anomalies increases as the damage intensity increases from Scenario 1 to Scenario
3. The anomaly is permanently highlighted after the earthquake in all the cases
considered.

Conclusions

This paper describes an application of the TFT network to the SHM of two
medieval masonry towers in the historic centre of Lucca, the San Frediano bell
tower and the Guinigi Tower. The algorithm is trained over the natural frequen-
cies of the towers, extracted from the velocity data recorded by high-sensitivity
seismic stations and other relevant input variables describing the environment
(temperature, humidity) and the loads acting on the structures (wind, number
of visitors, swinging bells, etc). The algorithm has been employed to predict
the vibrational features (natural frequencies) and detect possible anomalies or
unexpected events by inspecting how much the actual frequencies deviate from
the predicted ones. In particular, TFT has been tested on two seismic events
measured on the towers during the monitoring periods and on simulated dam-
age scenarios, in which the frequencies of the Guinigi Tower are permanently
lowered to model structural damage. The network has shown good accuracy in
predicting the towers’ frequencies and sensitivity in anomaly detection.
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Fig. 3. San Frediano bell tower, Amatrice earthquake (24 August 2016, 3:36 a.m.).
First three predicted (red line) and experimental frequencies (green line). The dashed
lines represent the 1st and 99th percentiles predicted by the model.
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Fig. 4. Guinigi Tower, Viareggio earthquake (6 February 2022, 1:36 UTC). First three
predicted (red line) and experimental frequencies (green line). The dashed lines repre-
sent the 1st and 99th percentiles predicted by the model.
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