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Abstract
Unidirectional information transport plays a key role in optics, microwave technology,
electronic logic circuits and devices. Spin waves (SWs) are considered to be a promising
candidate for the next-generation logic devices, which have many advantages such as
low-energydissipation and compatibility with radio-frequency-based electronic devices.
Unidirectional SWs have been demonstrated in magnetic thin films theoretically and
experimentally, offering a great opportunity to realize unidirectional transport of spin
information. In this article, we review several methods for emitting and measuring
unidirectional SWs, such as using the nonreciprocity provided by magnetostatic surface SWs
and interfacial Dzyaloshinskii–Moriya interactions. Unidirectional SWs can also be excited by
magnetic nanowire arrays as well as spatially defined spin textures. Finally, we review some
magnonic logic devices based on unidirectional SWs, such as spin-wave diodes.

Keywords: magnonics, spin waves, unidirectionality

(Some figures may appear in colour only in the online journal)

1. Introduction

Spin waves (SWs), or their quanta magnons, are a collective
precession of electron spins and they can propagate in mag-
netic systems without the motion of electrons [1–11]. The field
of magnonics, which uses SWs to carry and process informa-
tion, has recently seen rapid growth due to the promising future
of low-energy-dissipation SW devices. Functioning fromGHz
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to THz, SWs have four to five orders of magnitude smaller
wavelengths than microwaves at the same frequency, which
makes them compatible with modern nanoscale electronic
devices and circuits [12–23].

Unidirectional transport of information plays a key role in
optics [24–26], microwave technology [27] and electronics
[28]. An optical isolator, or optical diode, is an optical com-
ponent that allows the transmission of light in only one direc-
tion [29, 30]. It is typically used to ward off unwanted retrore-
flections in an optical oscillator, such as a laser cavity.

In microwave technology, unidirectional devices such
as filters, isolators, and circulators are based on gyro-
tropic properties of magnetization precession [31, 32].
These are macroscopic devices (typically of mm size),
whereas advances in nanotechnology and understanding of
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magnetization dynamics in nanostructured materials permit
the realization of nanoscale unidirectional and nonreciprocal
devices.

In the field of magnonics, unidirectionality also plays an
important role in view of the possible downscaling device
dimensions. A unidirectional SW is essential for building SW
insulators and SW diodes, which serve as building blocks for
magnonic computing architectures. If the SW transmit is not
unidirectional, other effects, such as the energy backflow, may
restrict the wide application of SW devices and circuits. A
magnetostatic surface SW (MSSW) traveling along the +y
axis is localized at the upper surface of a magnetic thin film,
while a surface wave traveling along the −y axis is localized
at the lower surface of the film. The two SWs have the same
frequency and their localization surface can be controlled by
the external bias magnetic field [33].

In the presence of an interfacial Dzyaloshinskii–Moriya
interaction (iDMI), we deal with frequency asymmetry
with two counter-propagating waves with different frequen-
cies. In this paper, we review several recently developed
methods for achieving unidirectional SW propagation and
devices.

2. Nonreciprocity of MSSWs

2.1. Theoretical background of nonreciprocal surface waves

The propagation of MSSWs is nonreciprocal due to the expo-
nential decay of the SW amplitude from the two surfaces. In
the MSSWmode configuration, the magnetization direction is
in the film plane and perpendicular to the wavevector direc-
tion, as illustrated in figure 1(a). The MSSW is often known
as Damon–Eshbach (DE) surface SWs [33] and they could
travel from the left to right across the magnetic film while no
equivalent waves can travel in the opposite direction [34]. The
wavevector of a plane wave is given as k= x̂kx+ ŷky+ ẑkz.
The reflections from the top and bottom surfaces continuously
reverse the sign of kz and a static condition can be fulfilled with
the magnetostatic potential in the film as [35]:

Ψ=Ψ0e
ikr (e

ikzz+ e−ikzz)

2
=Ψ0 cos(kzz)e

ivkyy, (1)

whereΨ0 is the arbitrary amplitude and the parameter v=±1
indicates the propagating direction (antiparallel (+1) and par-
allel (−1) to the y axis). The potential of the modes above and
below the film can be assumed as:

Ψup = Ce−kyz+ivkyy,Ψdown = Dekyz+ivkyy. (2)

The Walker’s equation for in the film can be written as

(1+χ)
(
k2z + k2y

)
= 0, (3)

which requires k2z =−k2y . Here, χ= ω0ωM

ω2
0−ω2 , where ω0 =

−γµ0H0 and ωM =−γµ0MS. The SWs propagate in the y dir-
ection, so ky is real and kz is imaginary. We could replace the
potential in the film as:

Ψ= (Ψ0+e
kz+Ψ0−e

−kz)eivky. (4)

To fulfil the boundary conditions at the film surface as well as
the normal vector, the condition gives:

[
(χ+ 2− vκ)ekd/2 −(χ+ vκ)e−kd/2

−(χ− vκ)e−kd/2 (χ+ 2+ vκ)ekd/2

][
Ψ0+

Ψ0−

]
= 0,

(5)

where κ= ωωM

ω2
0−ω2 and d is the film thickness. The dispersion

relation (frequency vs wavevector) of MSSWs can then be
obtained when the determinant of the matrix is vanishing:

ω2 = ω0 (ω0 +ωM)+
ω2
M

4

[
1− e−2kd

]
. (6)

The potential function of the MSSW can be expressed as:

Ψ=Ψ0

(
ekz+

χ+ 2− vκ
χ+ vκ

ekd−kz

)
eivky. (7)

The potential function in the magnetic film decays expo-
nentially along the film thickness direction, as shown in
figure 1(a). When changing the propagation direction, the high
potential mode shifts from one surface to the other, which
is responsible for the SW nonreciprocity. In thick films with
d≫ λ (λ is the SW wavelength) and kd≫ 1, the MSSW only
propagates on the top or bottom film surface and unidirectional
SWs can be detected either electrically with a microwave
antenna patterned on top of the magnetic film [40, 41] or optic-
ally by Brillouin light scattering (BLS) spectroscopy [38, 39].
The two MSSWs waves have the same frequency and the
propagation direction on the two surfaces is defined by the
vectorial product k⃗= H⃗× n̂, where n̂ is the unit vector nor-
mal to the film surface. This suggests that by changing the dir-
ection of the external magnetic field, the nonreciprocity can
be reversed. We investigate the most relevant case for applica-
tions: the waves propagating in in-planemagnetized ferromag-
netic films at a particular angle to the applied magnetic field.
In addition, Kostylev theoretically demonstrated that the fun-
damental mode of the dipole-exchange spectrum in a thin fer-
romagnetic metallic film is localized at the film surface oppos-
ite the localization surface of the DE surface SWs [42], while
such an effect cannot affect the SW nonreciprocity of the SW
excitation by microwave antennas.

The localization of the modes on the two surfaces of the
film is explained by considering the asymmetry of the dynamic
dipolar fields, which create volume and surface magnetic
charges which in turn generate dipolar magnetic fields. On
the lower surface, the two fields add up while, on the upper
one, they partially offset each other. This asymmetry of the
dipolar field is at the origin of the localization asymmetry of
the mode at the film surfaces. To compensate for this asym-
metry, dynamic magnetization increases its amplitude by pre-
cession near the surface of the film, where the dynamic dipolar
field is smaller [43].
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Figure 1. (a) An illustration of nonreciprocal DE-mode SWs propagating on the opposite film surfaces along the y-direction. The external
magnetic field is applied perpendicular to the SW wavevector. (b) Nonreciprocity ratios of magnetic films with different thicknesses. The
experimental and theoretical calculated results of a 20 nm permalloy film, a 160 nm YIG film and a 2 µm YIG film are presented. Reprinted
from [36], with the permission of AIP Publishing. (c) BLS spectra of Ni film with the thickness of 50 µm. One can see how reversal of the
magnetic field direction changes the peak position from the Stokes to anti-Stokes side of the spectra. Reprinted from [37], with the
permission of AIP Publishing. (d) BLS spectra of Fe films on sapphire substrates with different thicknesses in the range from 5 to 120 nm.
For thickness larger than 15 nm PSSWs resonating across the thickness of the magnetic film are also visible. Reprinted from [38], with the
permission of AIP Publishing. (e) A BLS spectrum of a Fe/GaAs (100) sample of thickness 1170 Å shows the presence of several
well-resolved and sharp peaks. The first six peaks associated with the PSSWs (Vl–V6) and the surface SW mode (DE), observed only in the
anti-Stokes side of the spectrum, have been labelled. Reprinted from [39]. Copyright (1995), with permission from Elsevier.

2.2. Unidirectional SWs in thick magnetic films

Unidirectional MSSWs were detected in thick magnetic films
by microwave-based technology for several decades in thick
Yittrium Iron Garnet (YIG) slabs [40, 41]. In 2014, Wong et al
experimentally obtained the SW amplitude ratios by meas-
uring SWs propagating in opposite directions in magnetic
films with different thicknesses, including a 20 nm permal-
loy film, a 160 nm YIG film and a 2 µm YIG film [36]. Two
microwave antennas are fabricated on the top surface of the
film with a separation distance of 8 µm. By directly compar-
ing the SW amplitude extracted by scattering parameters, S12
and S21, from a vector network analyzer, the SW nonrecipro-
city is found to increase with an increasing sample thickness,
as shown in figure 1(b). However, when the thickness of the
YIG film is 254 µm, the nonreciprocity is greatly enhanced
and SW unidirectionality is achieved. In 2009, Demidov et al
found that, using a stripe antenna, the excitation of theMSSWs
is nonreciprocal in amplitude, although the decay rate of the
left and right of the antenna is the same [44]. In addition, it is
found that when using a low-damping thick YIG film, the uni-
directional SWs can convey heat and, at the sample, end up to
10 mm from the microwave source [45].

Madami et al [46] studied the focusing of magnetostatic
backward volume waves (MSBVWs) excited by a curvilin-
ear microwave coplanar waveguide in 5 mm-thick epitaxial
YIG film within an in-plane bias field oriented along the
symmetry axis of the transducer. It was shown by both the
micro-BLS technique and micromagnetic simulation that two-
dimensional maps of MSBVW beam intensity at distances lar-
ger than the focus position demonstrate nonreciprocity and
absence of mirror symmetry with respect to the direction of
the bias field. These effects result from the nonreciprocity of
MSBVWs traveling at an angle to the bias field direction.

The unidirectional SW propagation in magnetic thin films
is challenging to achieve in thin magnetic films, so engineer-
ing the nonreciprocity of MSSWs is very important. In 2016,
Kwon et al found a way to enhance the nonreciprocity by put-
ting a Ta layer on top of permalloy [47]. They found that the
nonreciprocity depends on the Ta thickness, which induces a
modification of the interfacial anisotropy. The nonreciprocity
ratio was found to reach a value of 60 in the time and frequency
domain.

The mode localization of MSSWs can also be detected by
BLS spectroscopy, which is an optical technique based on the
inelastic scattering of photons with thermal magnons [48, 49].
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Sandercock et al studied surface magnons in thick Fe and Ni
films and, by reversing the direction of the bias magnetic field,
observed that the sharp peak associated with the DE wave
moves from one side of the spectrum to the other, as the sig-
nature of the SW nonreciprocity, as shown in figure 1(c) [37].
Grünberg et al studied perpendicular standing SWs (PSSWs)
and the DE surface wave in Fe films by BLS and found that
the remarkable Stokes-anti-Stokes intensity asymmetry indic-
ated the SW nonreciprocity [38]. For magnetic films thinner
than the penetration depth of light in metallic films (typically
of 15–20 nm), the DEmode can be detected on both the Stokes
and anti-Stokes side of the BLS spectra while, for larger film
thickness, it is observed on one side only. In a 1170 Å thick Fe
film, Hicken et al found that the surface SW mode exhibited
strong nonreciprocity, being observed on one anti-Stokes side
of the spectrum, while the PSSW modes were reciprocal, as
shown in figure 1(e) [39].

Modification of the MSSW dispersion (frequency vs
wavevector) to achieve unidirectional SW propagation can
also be achieved in exchange and dipolar-coupled ferromag-
netic films. Grassi et al [50] showed careful engineering of
the dispersion for MSSWs in a CoFeB/NiFe bilayer, where it
is possible to reduce the group velocity of waves traveling in
a particular direction to a very low value (slow waves) while
maintaining a large value for those propagating the other way.
Similar results were obtained by Mruczkiewicz et al [51] in a
NiFe/Ni bilayer.

Gallardo et al [52] demonstrated that the dipolar interaction
produced by the dynamic magnetizations between two ferro-
magnetic layers separated by a nonmagnetic spacer is a notable
source of nonreciprocity in the SW frequency, with a remark-
able property of reconfigurability that relies on control of the
relative magnetic orientation of the interacting ferromagnetic
layers.

3. Unidirectional SWs in ferromagnetic films with
DMI

3.1. Theory of spin-wave dispersion in the presence of iDMI

The DMI is the asymmetric exchange interaction in magnetic
systems, which could induce chiral magnetic textures such as
skyrmions and chiral domain walls. The DMI between two
neighbouring spins takes the form [53]:

HDMI =−D12 · (S1 ×S2) , (8)

where S1 and S2 are neighbouring spins and D12 is the DM
vector. Two types of DMI can be classified depending on the
type of inversion symmetry breaking. The iDMI corresponds
to the inversion symmetry breaking at the interface, which is
inversely proportional to the film thickness. Typical magnetic
systems which host iDMI are magnetic multilayers, where one
layer should provide strong spin–orbit couplings, such as Pt,
Ta, W and Ir. The bulk DMI is found mostly in B20 structures
such as MnSi and FeGe. In this section, we mainly focus on
the iDMI.

When SWs propagate in a magnetic system with iDMI, the
dispersion is reformed due to the inversion symmetry break-
ing. Consider that SWs propagate in the film plane and are
perpendicular to the external magnetic field in a magnetic
film with iDMI, as shown in figure 2(a). The SW dynam-
ics can be described by the Landau–Lifshitz–Gilbert (LLG)
equation as:

dm̂
dt

=−γµ0m̂×Heff +α

(
m̂× dm̂

dt

)
, (9)

where α is the damping parameter. The effective fieldHeff can
be written as:

Heff = vHx+
2A

µ0MS
∇2m̂− 2D

µ0MS

(
x× dm̂

dt

)
+Hdip, (10)

whereH is the external field, v=±1 indicates the propagating
direction, A is the exchange stiffness, D is the iDMI constant
and Hdip is the dipolar field depending on the film thickness
and the wavevector. The dispersion, by neglecting the nonlocal
magnetostatic contribution, can be expressed as:

ω = γµ0

[(
H+

2A
µ0MS

k2
)(

H+MS +
2A

µ0MS
k2
)] 1

2

+
2vD
µ0MS

k. (11)

In the small k limit, where the exchange interaction can be
neglected, the dispersion is reformed as:

ω = γµ0[H(H+MS)]
1
2 +

M2
S |k|d

4[H(H+MS)]
1
2

+
2vD
µ0MS

k. (12)

The dispersion of SWs is then asymmetric, depending
on the propagation direction, and shows a linear depend-
ence of the k when considering the iDMI. The calcu-
lated SW dispersion with D=−1.5, 0, 1.5 mJ m−2 in the
large k limit is shown in figure 1(b), where the saturation
magnetization MS = 800 kA m−1, the exchange constant
A= 1.3×10−11 Jm−1 and the thickness d= 1 nm is used in the
calculation.

3.2. Nonreciprocal and unidirectional SW propagation with
DMI

The asymmetric dispersion induced by iDMI results in the
nonreciprocal SWs in the frequency domain. BLS is an effi-
cient method to detect the asymmetric SW dispersion with
the wavevector resolution [57–59]. The propagating SWs with
opposite directions give rise to the Stokes and anti-Stokes
peaks, which can characterize frequency differences induced
by the asymmetric dispersion. In 2015, Di et al directly
observe the iDMI in a Pt/Co/Ni multilayer by BLS [60]. An
iDMI constant of 0.44 mJ m−2 is found and the linewidths of
the counter-propagating SWs are different, which is in agree-
ment with the theoretical simulations. Tacchi et al further
investigate the effect of the heavy metal thickness of the iDMI
in Pt/CoFeB films by BLS [54]. The authors found that by
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Figure 2. (a) Geometry of a magnetic film with iDMI. (b) Asymmetric SW dispersion induced by iDMI with large wavevectors. Reprinted
(figure) with permission from [53]. Copyright (2013), the American Physical Society. (c) Wavevector dependence of frequency difference
between Stokes and anti-Stokes modes in Pt/CoFeB films by varying the Pt thickness. Reprinted (figure) with permission from [54].
Copyright (2017), the American Physical Society. (d) Chiral SW group velocities in a YIG thin film with iDMI. Reprinted (figure) with
permission from [55]. Copyright (2020), the American Physical Society. (e) Flat bands observed in magnonic crystals with periodic iDMI.
Reprinted (figure) with permission from [56]. Copyright (2019), the American Physical Society.

increasing the Pt thickness, the iDMI increases and saturates
to a value around 0.45 mJ m−2 for Pt thicknesses larger than
2 nm, as shown in figure 2(c).

IDMI and nonreciprocal SWs can also be detected and a
chiral SW group velocity is found to be induced by iDMI in
ultrathin magnetic garnet films, where SWs propagating in the
chirally favoured direction travel faster than in the counter-
direction, as shown in figure 2(d) [55, 61]. The chirality beha-
viour of SW group velocities is attributed to a DMI-induced
drift group velocity whose direction follows a right-handed
rule as:

vDMI =
[(

n̂× Ĥ
)
· k̂

] 2γ
MS

D. (13)

The orientation of the drift velocity can be controlled
by the external magnetic field as well as the propaga-
tion direction. In the spectra extracted from the electrical

propagating SW spectroscopy, the SW group velocity can be
calculated as:

vg =
dω
dk

=∆f · s, (14)

where∆f is the frequency span indicating an SWphase change
of 2π, and s is the SW propagation distance. One can observe
in figure 2(d) that by reversing either the SW propagation dir-
ection or the external magnetic field, the SW velocity shifts
due to the iDMI-induced drift velocity. The asymmetry of SW
group velocity increases when decreasing the film thickness,
indicating that the DMI is an interfacial effect in thin YIG
films. An overview of the experimental techniques as well as
their theoretical background and models for the quantification
of the DMI constant D on iDMI measurements can also be
found in [62].

Taking advantage of the asymmetric SW dispersion
induced by the iDMI, the lowest frequency point in the SW
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dispersion shifts from k= 0. Ma et al [63] found that when
the excitation frequency is below the frequency of the mode
with k= 0, SWs can only propagate in one direction. By using
micromagnetic simulations, the authors present spatial maps
of SWs with different frequencies. Due to different velocities
and relaxation times, SWs with a frequency higher than Ferro-
magnetic Resonance (FMR) also propagate nonreciprocally in
opposite directionswith different decay lengths. Although uni-
directional SWs are found in magnetic multilayers with iDMI,
the experimental realization of the unidirectional SW propaga-
tion in such systems is still missing. Finding a magnetic thin
film with both large iDMI and low damping is required for
functional unidirectional SWbased devices.

3.3. Periodic DMI-based magnonic crystals with asymmetric
band structures

Magnonic crystals (MCs) are periodic magnetic structures that
can modify the band structure of SWs in GHz frequencies
[64–70]. The asymmetric dispersion induced by iDMI could
host nonreciprocal SW propagation. Gallardo et al investig-
ated periodic iDMI-based magnonic crystals [56] using theor-
etical calculations and micromagnetic simulations. The peri-
odic iDMI can be realized by patterning periodic heavy metal
wires with strong spin–orbit coupling on top of a ferromag-
netic thin film. Theoretical as well as numerical calculations
are performed and the simulated magnon band structures are
shown in figure 2(e). Due to the periodic iDMI, the SW dis-
persion is nonreciprocal and the magnonic band gap opens. By
increasing the iDMI value, the bottom magnon bands of the
dispersion shifts down and the first band gap is enhanced. The
indirect band gaps are observed due to the fact that the max-
imum of the first band and the minimum of the second band
shift in a different way when changing the iDMI value.

As the maximum of the first band reaches the second Bril-
louin zone, this branch becomes flat when the iDMI value is
large. The larger periodicity favours the flat bands due to the
reduction of the interlayer coupling of SWs underneath heavy
metal wires. Below the heavy metal wires, the nonreciprocal
SWs are also found to propagate, due to the non-zero phase
velocities in the regions where the iDMI is non-zero.

Recently, Silvani et al [71] also presented the impact of
the iDMI on the band structure of a one-dimensional mag-
nonic crystal using micromagnetic simulations. The authors
found flat bands at positive wavevectors when a large iDMI
strength exists. Those flat modes are separated by forbidden
gaps whose amplitudes depend on the value ofD. By perform-
ing the time evaluation of the magnetization dynamics of the
flat modes, the authors found that these modes are confined
in specific regions and propagate only along the positive x-
direction, indicating the SW unidirectionality. The formation
of the indirect band gap as well as the low-frequency flat bands
are demonstrated in the system of the magnonic crystal with
periodic DMI, which encourages further studies in the invest-
igation of chiral magnonic crystals and other related physical
properties.

Asymmetric band structure has also been predicted and
observed in magnonic crystals without iDMI. Mruczkiewicz
et al theoretically investigated the impact of a perfect metal
overlayer on the SW dispersion relation of 1D bi-component
MCs [72] and in thin NiFe film dynamically coupled to an
array of Ni stripes [51]. In both cases, the nonreciprocity is
manifested in the shifting of themagnonic bandgap edges from
the Brillouin zone border.

4. Unidirectional emission of SWs by arrays of
nanomagnets

4.1. Theoretical analysis of chiral pumping of SWs with local
magnetic transducers

By placing an array of nanomagnets on top of a low damping
magnetic insulator thin film, unidirectional SWs can be gener-
ated by the dynamics of the nanomagnets due to the chiral spin
pumping effect [73]. Since the magnetic film is ultrathin (with
a thickness of tens of nanometres), the DE-mode-induced
SW nonreciprocity can be neglected. Typical heterostructures,
where magnetic nanowires (Co) are placed on top of the low-
damping magnetic thin film (YIG), are investigated, as shown
in figure 3(a) [73]. Assuming the magnetic thin film has poly-
crystalline structures with isotropic in-plane magnetic proper-
ties and ignoring the PSSWs, the hybrid system can be treated
as quasi-one-dimensional and the Hamiltonian can be written
as [73]:

Ĥ
ℏ

=
∑
n

(ω+
n β̂+kα̂

† +ω−
n β̂−kα̂

†), (15)

where α̂† is the creative operator of the magnon modes in the
magnetic nanowires, and β̂+k and β̂−k are creative operators
of propagating SWs in the magnetic film with opposite direc-
tions. The coupling strengths between magnon modes are:

ω+
n =−2γ

nπ
σn

√(
µ0MW

S

)(
µ0MF

S

) ˆ
m̂*

WΛ̃
*
m̂F e

kxdx

ω−
n =−2γ

nπ
σn

√(
µ0MW

S

)(
µ0MF

S

) ˆ
m̂*

WΛ̃m̂F e
kxdx (16)

with the SW wavenumbers k= πn/a with n= 2,4,6 . . .
propagating along the + y direction for ω+

n and the −y
direction for ω−

n and σn = sin
(
kw
2

)(
1− e−kh

)
. µs0MW

S
and µ0MF

S are the saturation magnetization of magnetic
nanowires and film, respectively. Here, m̂W = (m̂x, m̂y)
describes the magnetization dynamics in nanowires and m̂x =(

a
4hw

√
H0+MW

S Nyy
H0+MW

S Nxx

)1/2

and m̂y =

(
a

4hw

√
H0+MW

S Nxx
H0+MW

S Nyy

)1/2

,where

Nxx and Nyy are demagnetization factors; Λ̃=

(
1 i
i −1

)
and m̂F =

(
m̂k
x, m̂

k
y

)
describes the magnetization dynam-

ics in the magnetic film and im̂k
x = m̂k

y = i
(
1
4t

)1/2
. When

|ω+
n |̸=|ω−

n |, the interlayer dipolar coupling is chiral and the
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Figure 3. (a) An illustration of unidirectional SWs emitted by
nanomagnets. Reprinted (figure) with permission from [73].
Copyright (2019), the American Physical Society. (b) Theoretical
calculation of the magnon trap with two magnetic nanowires.
Reproduced from [74]. (c) A sketch of propagating SWs in a
low-damping YIG film with a Co nanowire array patterned on top.
Reprinted (figure) with permission from [75]. Copyright (2019), the
American Physical Society. (d), (e) Microwave transmission spectra,
S21 and S12, of unidirectional SWs with the wavelength of 60 nm.

chirality ratio of the counter-propagating SWs can be defined
as:

η =

∣∣∣∣∣∣∣
(

ω+
n

ω−
n

)2
− 1(

ω+
n

ω−
n

)2
+ 1

∣∣∣∣∣∣∣ . (17)

In the parallel state, where the magnetization in nanowires
is parallel to that of the film, ω−

n = 0 ω+
n ̸= 0 and the SWs

only propagate in one direction. In the antiparallel state,
m̂F =

(
m̂k
x,−m̂k

y

)
and ω+

n = 0 ω−
n ̸= 0. The chirality of SWs

is reversed and SWs only propagate in the opposite directions.
In addition, the unidirectional SWs emitted by a nanomagnet
are found to be perfectly trapped by a second initially pass-
ive magnet by a dynamical interference effect, as shown in
figure 3(b) [74]. Moreover, due to the chiral spin pumping
effect, the line width broadening in a magnetic heterostruc-
ture consisting of a Co nanowire grating dipolar-coupled to
a YIG film is probed by BLS microscopy, indicating tunable
magnetic damping [76]. Unidirectional SWs are found in this
system and oscillating behaviour of the magnon population
in Co nanowire grating is observed due to the magnon trap
effect.

4.2. Unidirectional exchange SWs emitted by a nanoscale
magnetic grating

An experimental investigation is also conducted using a nano-
scale magnetic array to excite unidirectional SWs [75, 77]. A
Co nanowire array is patterned on top of an ultra-low-damping
YIG thin film with a period of 600 nm. On top of the nanowire
array, two identical coplanar waveguides (CPW) are fabric-
ated to excite and detect propagating SWs. Due to the large
demagnetization field, themagnetization of Co nanowires can-
not be switched when the field is swept from positive to negat-
ive values, forming the parallel and antiparallel states, respect-
ively. Due to the magnon–magnon coupling effect [78–82],
the high-order exchange SWs with the wavelength of 60 nm
can be excited and figures 3(d) and (e) show the transmission
spectra S21 and S12, respectively. Unidirectional SWs can be
observed and, by switching the parallel and antiparallel states,
the propagation SW direction is reversed, which is in line with
the theoretical calculations.

Since the demagnetization field in YIG film is very small,
we could rotate the external field angle to change the angle
between the magnetization of the nanowires and YIG film.
When the external field is tilted away from the parallel dir-
ection to the nanowire, the chirality is broken and the SWs
are not unidirectionally propagating anymore. We find that at
the angle around 60◦, the SW nonreciprocity is totally sup-
pressed. The material engineering of such devices could fur-
ther enhance device functionalities. It is promising to use anti-
ferromagnetic materials for exciting, even shorter wavelength
unidirectional SWs due to the sub-THz resonance frequencies.

5. Unidirectional SWs in spin textures

5.1. Nonreciprocal and unidirectional SW propagation along
spin textures

Spin textures are non-collinear magnetic orders in the mag-
netic ground state, which are due to the interplay between
dipolar interaction, symmetric Heisenberg exchange interac-
tion and DMI [83–97]. By combining with spin textures such
as domain walls, vortices and skyrmions, multiple functional-
ities can be realized in SW-based devices. Magnetic domain
walls are boundaries between different magnetic domains and
SWs can be channelled inside the domain wall. In 2015,
Garcia-Sanchez et al demonstrated that SWs can propagate
in narrow magnonic waveguides based on domain walls [98].
They found that SWs can travel in both Bloch- and Néel-type
domain walls. In Néel-type domain walls, SWs are strongly
nonreciprocal due to the iDMI. In 2016, Wagner et al experi-
mentally demonstrated that magnetic domain walls can serve
as a reconfigurable SW nanochannel [99]. SWs propagat-
ing inside magnetic-vortex-stabilized domain walls are also
imaged using BLS and scanning transmission x-ray micro-
scopy (STXM), respectively [100, 101].

Unidirectional SWs can also propagate in a Bloch-type
domain wall (see figure 4(a)), which has recently been demon-
strated by Henry et al [102]. In an array of parallel domain
walls in the stripe domain configuration, SW dispersion is
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Figure 4. (a) A sketch of a magnetic domain wall separating
neighbouring perpendicularly magnetized domain walls. Reprinted
(figure) with permission from [102]. Copyright (2019), the
American Physical Society. (b) Unidirectional propagating of SWs
inside the neighbouring Bloch-type domain walls. Reprinted (figure)
with permission from [102]. Copyright (2019), the American
Physical Society. (c) Magnetic skyrmion strings in a Cu2OSeO3

lamella placed on top of two CPWs. Reproduced from [104]. CC
BY 4.0. (d) Microwave transmission spectra of propagating SWs
along skyrmion strings in counterclockwise (CCW), breathing and
clockwise (CW) states. Reproduced from [104]. CC BY 4.0.

modified due to the sequence of up/down domain walls with
opposite nonreciprocity. If SWs are excited within the gap
formed between two domain wall channelled branches in its
dispersion, unidirectional SWs can be launched, as shown in
figure 4(b). Furthermore, if a nanomagnet array is placed on
top of a Néel-type domain wall, unidirectional SWs can also
be emitted due to the chiral spin pumping effect [103].

The interplay between SWs and skyrmions has attracted
considerable attention recently. When extended to a three-
dimensional system, a skyrmion can form a string-like struc-
ture consisting of stacks of two-dimensional skyrmions, as
shown in figure 4(c) [104]. Materials like Cu2OSeO3 can host
those skyrmion strings in cryogenic temperatures [105]. Using
all-electrical SW characterizations, Seki et al investigated the
propagating SWs inside skyrmion strings in Cu2OSeO3 lamel-
las [104]. The authors find that the propagating SWs are recip-
rocal in frequencies and decay lengths as well as group velocit-
ies, which strongly depend on the excitation modes, namely,
clockwise, counter-clockwise and breathing modes, as shown
in figure 4(d). The nonreciprocal SWs in skyrmion strings
show properties for unidirectional information transfer in a
topological object. Theoretical studies have also demonstrated
the elementary process for the skyrmionmotion driven by SWs
[106]. It is found that propagating SWs can be scattered by the
skyrmion by solving the LLG equation, which is determined
by the skyrmion Hall angle. The Gilbert damping as well as
the SW amplitude could influence the speed of the skyrmion
motion. Due to topological protection, the skyrmion cannot
easily be deteriorated by SWs. Beyondmagnetic domain walls
and skyrmions, the investigation of unidirectional SWs in

other magnetic textures, such as vortices and helimagnetic
spirals, is required.

5.2. Unidirectional SWs excited by spin texture-based
magnonic nanoantennas

Magnetic textures can also be used to excite SWs with their
high-frequency dynamic properties. In 2016, Van de Wiele
et al proposed a method using pinned magnetic domain walls
to excite SWs with short-wavelengths [107]. Then, Holländer
et al demonstrated that magnetic domain walls can be an
effective antenna for generating broadband SWs [108]. In
2020, Albisetti et al found that by using patterned shaped
micro-antennas such as domain walls in synthetic antiferro-
magnetic thin films, spatially shaped SW wavefronts can be
fully controlled, as shown in figure 5(a) [109]. By sweep-
ing a heated scanning probe, the exchange bias direction can
be modified as well as the underlayer CoFeB magnetization,
and domain walls can be patterned in a reconfigurable manner
[110]. Using STXM, the focusing of SWs emitted by a curved
domain wall can be imaged, as shown in figure 5(b). The spa-
tial profile extracted at the focal point shows the full width at
half maximum of the beam amplitude is around 340 nm. This
type of curved domainwalls emitting SWs shows a strong non-
reciprocity due to the particular spin textures.

SWs can also be emitted by magnetic skyrmions. In 2020,
Díaz et al found that skyrmion–antiskyrmion bilayers can
form topological charge dipoles and can efficiently emit
SWs with the wavelength down to 100 nm, as shown in
figure 5(c) [111]. The different SW patterns are found to
depend on the spiral or antispiral spatial profiles. Recently,
Chen et al proved that chiral SWs can be generated by a
magnetic skyrmion on top of a low-damping magnetic thin
film, as shown in figure 5(d) [112]. The chirality of the
SWs results from the dynamical dipolar coupling between the
magnetic bilayer and is determined by the magnetization dir-
ections of the magnetic film as well as the film normal direc-
tion. Unidirectional SW propagation is observed in a certain
direction.

6. Magnonic devices based on unidirectional SWs

6.1. SW diodes and circulators

Unidirectional information transfer is a basic element for mod-
ern logic architectures. A diode is a two-terminal electronic
device that conducts an electrical current in one direction. The
excitation and propagation of unidirectional SWs could res-
ult in a crucial functionality in magnonic logic and computing
devices, for the ability to build SW diodes, SW insulators, SW
interferometers, etc. An SWdiode can be designed in imitation
of manganic electronic diodes. In 2015, Lan et al proposed a
method for a reconfigurable SW diode based on chiral bound
states in magnetic domain walls with iDMI [113]. In a mag-
netic film with a Bloch-type domain wall separating neigh-
bouring domains, the bound SWs can propagate identically in
both directions in the domain wall without iDMI. However, in
the presence of iDMI, SWs propagating in opposite directions
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Figure 5. (a) An illustration of a domain-wall-based magnonic nanoantenna. [109] John Wiley & Sons. (Copyright © 2020 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim.) (b) An STXM image of SWs emitted by a thermal probe patterned domain wall in a
ferromagnetic–antiferromagnetic heterostructure. The line plot indicates the width of the SW packet marked as a yellow dotted line in the
STXM image. [109] John Wiley & Sons. (Copyright © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.) (c)
Skyrmion–antiskyrmion bilayers form a topological charge dipole for exciting SWs with the wavelength down to 100 nm. Reproduced from
[111]. (d) A sketch of the chiral emission of exchange SWs in a low-damping YIG film with a skyrmion. Reprinted with permission from
[112]. Copyright (2021), the American Chemical Society.

Figure 6. (a) A conceptual illustration of an SW diode based on magnetic domain walls with iDMI. When SWs propagate from the bottom
to the top, they can pass by travelling in the left part to the domain wall. SWs cannot pass in the reversed process. Reproduced from [113].
CC BY 3.0. (b) Micromagnetic simulations of the SW diode. Reproduced from [113]. CC BY 3.0. (c), (d) An SW diode and circulator
designs based on the unidirectional magnetostatic coupling with iDMI in vertical structures. Reprinted (figure) with permission from [114].
Copyright (2020), the American Physical Society.

are spatially separated to different edges of the domain wall. If
two-terminal conduits are placed at the left of the domain wall,
a prototypical function of the SW diode can be realized, as

shown in figure 6(a). If SWs are excited from the top terminal,
they can pass the left part of the domain wall and reach the
bottom terminal, while the opposite direction is forbidden due
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Figure 7. (a), (b) An SW beam splitter and interferometer based on topological chiral edge SWs. Reprinted (figure) with permission from
[116]. Copyright (2018), the American Physical Society. (c) A sketch of a nanoscale SW interferometer with two Co nanowires on top of a
YIG thin film. Reprinted with permission from [117]. Copyright (2021), the American Chemical Society. (d) SW interference patterns in the
frequency domain with varying d and k. Reprinted with permission from [117]. Copyright (2021), the American Chemical Society.

to the fact that SWs can only propagate through the right
part of the domain wall. Figure 6(b) shows the micromagnetic
simulation results of the SW diode in the forward and reverse
directions.

The concept of an SW diode based on the chiral dipolar
coupling in two exchange-coupled ferromagnetic layers was
proposed by Grassi et al [50] They showed that the diode had a
wide operation frequencywindow in theGHz range that can be
adjusted by tuning the amplitude of the applied magnetic field,
and its forward and reverse directions can be interchanged by
switching the polarity of the field.

By using unidirectional magnetostatic coupling induced by
the iDMI, SW diodes and circulators can also be designed in
a magnetic multilayer system [114]. The concept of the SW
diode is shown in figure 6(c). A Py (3 nm)/NM (5 nm)/Co
(2 nm)/Pt multilayer is investigated and, due to the unidirec-
tional coupling direction, propagating SWs can only transport
in a single direction in Py thin film. A circulator design is
also proposed in a similar multilayer structure, as shown in
figure 6(d). SWs in Co film can only propagate from port 1 to
port 2 due to the weak coupling with the Py. However, if SWs
travel from port 2 to port 3, the coupling with Py is strong
and the energy can only be transferred between two Co lay-
ers. The SW diode and circulator show promising potential as

logic elements in energy-efficient magnonic circuits. The uni-
directional SW diodes discussed above are mostly investig-
ated using theoretical calculations and numerical simulations.
Practical unidirectional SW diodes with more functionalities
and sizes in the submicrometric range are required to build-
magnonic computing elements and circuits.

6.2. SW interferometers and beam splitters

Topologically protected chiral edge SW modes have been
predicted in both magnonic crystals and two-dimensional hon-
eycomb lattices [115, 116]. These SWs are topologically non-
trivial and propagate in a unidirectional manner without back-
ward scattering. Using these unique features of chiral edge
SWs, wave splitter and interferometer functions can be real-
ized. A 1:4 SW beam splitter using three-domain walls to con-
duct the edge SWs is shown in figure 7(a). SWs are split at the
edge of the structure and four output beams are observed with
the same amplitude. A design of the chiral edge SW interfero-
meter is also proposed in figure 7(d). The process can be rep-
resented in the diagram in figure 7(d), which is the same as the
concept of the Mach-Zehnder interferometer in optics. Topo-
logically protected chiral edge SWs are robust against defects
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and also possess a unidirectional nature, which is promising
for topological magnonic devices and circuits.

A prototype of a magnonic interferometer based on uni-
directional SWs generated by nanomagnets has been proposed
recently [117]. Two identical Co nanowires are patterned on
top of a low-damping YIG thin film. Two beams of uni-
directional exchange SWs can be excited respectively from
two nanowires. Because SWs excited by two nanowires are
emitted from a different position, a phase shift of ∆ϕ= kd
exists between two beams of SWs. When the phase shift
∆ϕ= kd= nπ, where n is an odd number, two beams of SWs
interfere destructively, as shown in figure 7(c). In contrast,
when the phase shift ∆ϕ= kd= nπ, and n is an even num-
ber, two beams of SWs interfere constructively and the SW
amplitude is enhanced. The interference conditions depend on
the separation distance d as well as the wavevector k. By vary-
ing these two parameters, the SW interference patterns in the
frequency domain can be observed, as shown in figure 7(d).
The unidirectional SW devices discussed above are mostly
in the microwave regime of coherent SWs. In a very recent
paper by Han et al nonreciprocal transmission of incoherent
magnons with asymmetric diffusion lengths are found in a
magnetic bilayer structure by the spin Hall effect [118]. Inco-
herent magnons cover the spectrum from gigahertz up to tera-
hertz and the SW nonreciprocity can be controlled in a non-
volatile manner, which could lead to the passive directional
signal isolation device in the diffusive regime.

Beyond the methods discussed above for the realization
of unidirectional SW propagation, it is found that a satura-
tionmagnetization gradient of a perpendicular magnetized fer-
romagnetic film raises an asymmetric dispersion for nonre-
ciprocal SW propagation [119]. Under certain circumstances,
unidirectional SW propagation can also be achieved. In addi-
tion, very recently, it has been demonstrated that a simple
design of a vortex core in a teardrop-shaped nano patch can
serve as a unidirectional SW emitter [120].

7. Conclusions

In this review, we discuss several research developments
concerning unidirectional SW propagation and devices.
Unidirectional transport of electrons opens a new horizon
for the electronic circuits industry. In an analogous way,
the unidirectional propagation of SWs also provides a new
playground in the field of magnonics. Although conventional
MSSWs could host unidirectional SWs easily by enhancing
the film thickness, it is difficult to use cutting-edge nan-
otechnology to fabricate devices that are compatible with
modern nano-electronic circuits. IDMI as well as chiral spin
pumping effects offer the opportunity to realize unidirectional
SW propagation in nanometre-thick magnetic films, which
could result in practical magnonic devices. Magnetic textures
provide a new platform for the investigation of unidirectional
SWs and more functionalities are expected to be explored.
For example, unidirectional SWs could be channelled into a
waveguide with the width of a few nanometres in a domain
wall, offering more possibilities for nanomagnonic devices

and circuits. The most convenient way to control the uni-
directional transport of SWs is to manipulate the external
magnetic field. By switching the field direction, the unidirec-
tionality induced by MSSWs, iDMI and chiral spin pumping
effects is reversed. Unidirectional SWs can be controlled with
more possibilities in reconfigurable magnetic textures. While
several methods have been proposed to contribute to the realiz-
ation of unidirectional SWs, the fabrication of practical, com-
pact and low-energydissipative unidirectional SW devices is
still missing. The active control of SW unidirectionality via
an electric current or voltage in a magnetic system is also
worth investigating in view of applications. For most cases,
external magnetic fields are requisite for SWs, while the field-
free efficient transport of unidirectional SWs is essential for
future magnonic applications [121, 122]. It is still very chal-
lenging to realize high-speed unidirectional SW devices in the
THz regime for application in antiferromagnetic magnonics
[123, 124]. Furthermore, the hybrid magnonic systems such
asmagnon–photon [125–127] andmagnon–phonon [128, 129]
coupled systems also favour nonreciprocal information trans-
port that could lead to new functional devices, circuits and
coherent information processing [130]. Meanwhile, unidirec-
tional SWs may allow new computing concepts and architec-
tures for SWs, such as neuromorphic computing, where the
information transfer between neurons via a synapse is intrins-
ically unidirectional [131, 132]. These unique features may
trigger new spintronic devices and circuits based on unidirec-
tional SWs.
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