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Abstract
This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the
realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and
inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of
both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the
proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered.
The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints
plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of
approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because
it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results,
we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset,
the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The
comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the
noiseless and noisy cases.

Keywords Color image interpolation · Demosaicing · Color filter array · Edge-preserving regularization · Non-convex
minimization · Color image denoising

1 Introduction

The demosaicing problem arises from acquiring RGB color
images through CCD (charged coupled devices) digital cam-
eras. In the RGBmodel, each pixel of a digital color image is
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associated with a triplet of numbers, representing the inten-
sity of the red, green, and blue, respectively. However, most
commercial cameras employ a single sensor associated with
a color filter that only permits, at each pixel, the measure-
ment of the reflectance of the scene at one of the three colors,
according to a predefined scheme or pattern, called color fil-
ter array (CFA), as illustrated in Fig. 1. This situation implies
that, for each pixel, the other twomissing colors must be esti-
mated. Although several diverse CFAs have been proposed
for the acquisition (e.g., see [31] and [35] for the square
pixel layout and [3] for the Penrose aperiodic pixel layout),
the most largely diffuse is the Bayer pattern [4], shown in
Fig. 2. Most of the literature on demosaicing is thus devoted
to algorithms designed with explicit reference to the Bayer
pattern. In [30], [46], and [56], comprehensive surveys of
the state of the art can be found. In the Bayer scheme, green
is sampled in a number of pixels double the number where
red and blue are measured to exploit the human eye’s higher
sensibility to the green wavelength.
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Fig. 1 Color image acquisition based on a CFA

Fig. 2 The Bayer pattern

By decomposing the recorded digital image into the three
color channels, one obtains three downsampled grayscale
images so that demosaicing could be interpreted as the prob-
lem of interpolating grayscale images from sparse data.

In most recreational cameras, demosaicing is part of the
processing pipeline required to convert these images into
a viewable format. The camera’s built-in firmware is sub-
stantially based on very fast, or even real-time, interpolation
algorithms.

Nevertheless, interpolation is not sufficient to produce the
high-quality images required, e.g., for professional purposes.
Indeed, interpolation is often applied to each channel sep-
arately, disregarding the mutual solid correlation between
the channels. Since interpolation algorithms are basically
low-pass filters, they performwell in the low-frequency com-
ponents but reduce the high-frequency ones, thus producing
color artifacts in the output image. A remedy to this problem
should consider the high correlation among the three color
channels, which occurs mainly in correspondence with their
high-frequency components. Indeed, the image edges, such
as object borders and textures, are largely shared by the color
channels. Unavoidably, exploiting the inter-channel informa-

tion requires more complex algorithms, which are usually
time-consuming and cannot run onboard.

Nowadays, many professional digital cameras can save
images in a raw format, thus allowing users to demosaic them
using offline software. When the raw image data is accessi-
ble, one can use various demosaicing algorithms instead of
being limited to the one built into the camera. For example,
the raw development program RawTherapee [64] gives the
user an option to choose, among around ten different algo-
rithms, which should be used. For the Bayer CFA, AMaZE
(Aliasing Minimization and Zipper Elimination), developed
by Emil J. Martinec in 2010, yields the best results in most
cases. Nevertheless, since different demosaicing algorithms
present differences in rendering the finest detail and grain
texture, photographers often prefer a particular algorithm for
aesthetic reasons related to this effect. On the other hand,
when it comes to professional applications, computational
time is less critical. Thus, there is an interest in developing
dedicated and even very sophisticated algorithms that can
provide demosaiced images where the high-frequency com-
ponents are accurately reconstructed.

To this end, this paper proposes an algorithm for image
demosaicing that falls within the framework of the edge-
preserving regularization approaches and is suited, naturally,
to deal with noisy data. More precisely, we propose an algo-
rithm for joint demosaicing and denoising. Regularization
requires the adoption of constraints for the solution. The
constraints we consider here are intra-channel (spatial) and
inter-channel (spectral) local correlation. Concerning the
intra-channel correlation, we assume the intensity of each
channel to be locally regular, i.e., piecewise smooth, so that
noise can also be removed. We describe this constraint
through stabilizers that discourage intensity discontinuities
of first, second, and third order in a selective way, i.e., per-
mitting to discontinuities associated with actual edges to
emerge. This allows us to describe scenes that are even very
complex. Indeed, first-order local smoothness characterizes
images consisting of constant patches, second-order local
smoothness describes patcheswhose pixels have values vary-
ing linearly, while third-order local smoothness is used to
represent images made up of quadratic-valued patches. As
per the inter-channel correlation, we enforce it in correspon-
dence with the intensity discontinuities using constraints that
promote their amplitude in the three channels to be equal
almost everywhere.

Note that all these constraints are not biased in favor of
one of the three channels, nor is the geometry of the sampling
pattern in any way exploited. Thus, the method we propose
is entirely independent of the CFA considered, although, in
the experimental result section, we present its application to
images mosaiced through the Bayer CFA.
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All the above constraints, including the data fidelity term,
are merged in a non-convex energy function, whose mini-
mizer is our desired solution.

The non-convexity characteristics of the energy func-
tion preclude its minimization through conventional gradient
descent optimization techniques. Stochastic and determinis-
tic methodologies offer alternative avenues for minimizing
non-convex energy functions. While stochastic techniques
often yield exact outcomes, their computational demands are
considerable (cf. [25]). Conversely, deterministic algorithms,
while not guaranteeing convergence to the global optimum,
facilitate the attainment of satisfactory reconstructionswithin
reduced computational durations (cf. [6, 8]).

Here, we adopt the graduated non-convexity (GNC) algo-
rithm [9], which is a prevalent one within the deterministic
approaches. This technique approximates the energy func-
tion through progressively refined approximation functions
converging toward the original function. Each approxima-
tion function is optimized using conventional optimization
algorithms, leveraging the minima attained in the preceding
approximation as initial values.

As mentioned, our edge-preserving regularization
approach, combined with the GNC minimization strategy,
can produce image solutions that exhibit reliable and geo-
metrically consistent discontinuities of both the intensity and
the gradients despite the necessary smoothness constraints.

In the first works proposing edge-preserving regulariza-
tion, the image discontinuities were often represented by
extra, explicit variables, the so-called line processes [25].
That way, it was relatively easy to formulate their required
properties regarding constraints. Nevertheless, the use of
explicit line variables entails significant computational costs.
Thus, so-called duality theoremswere derived (see, e.g., [26],
[15], [14]) to demonstrate the edge-preserving properties of
suitable stabilizers without introducing extra variables. In
particular, we developed duality theorems to determine the
properties required for stabilizers to manage lines with the
desired regularity features implicitly. In this paper,we choose
a suitable family of approximations for the GNC having the
peculiarity that each function satisfies the conditions required
for an implicit treatment of geometrically significant edges,
as expressed in the duality theorems proposed in [14]. This
allows for better adherence of the approximations to the ideal
energy function, resulting in better coherence with the prop-
erties required for the desired solution.

GNC, initially introduced in [9], has seen significant
advancements over the years. In [7], theGNC frameworkwas
extended to accommodate the restoration of noisy images,
by incorporating considerations on the geometry of discon-
tinuities. In [60], blur in noisy images has been considered
as well. Since then, [15] proposed GNC for deblurring and
denoising tasks, enforcing constraints such as line continua-

tion or line non-parallelism, and a GNC variant was designed
to deal with point spread functions with a vast domain [12].

The GNC methodology has found applications across
diverse domains, which stand as a testament to its versa-
tility and efficacy. Indeed, it has been successfully utilized
in addressing the combinatorial data analysis challenge of
seriation, as evidenced in [23]. Moreover, its utility extends
to tackling stochastic problems, as discussed in [32], and
resolving combinatorial optimization dilemmas defined on
the domain of partial permutation matrices, as explored in
[48]. Additionally, the GNC framework has been harnessed
for addressing the maximum a posteriori inference problem,
elucidated in [49], as well as for tasks such as pose estima-
tion, documented in [67], and spatial perception, outlined in
[71].

This paper extends the GNC methodology by explicitly
focusing on the non-parallelism constraint for the discon-
tinuities and proposing a first, initial approximation that is
componentwise convex. We call this new version of GNC
graduated componentwise non-convexity (GCNC).

The paper is organized as follows. In Sect. 2, state-of-the-
art data in the color image demosaicing and denoising field
are surveyed. Section3 is devoted to formulating the prob-
lem and adopting the specific edge-preserving regularization
strategy. In Sect. 4, the solution algorithm is described in
detail. Section5 is devoted to the quantitative comparison
between the results obtained with our method and those of
some of the most performing algorithms proposed in the
recent literature, using the Kodak image dataset [43], the
McMaster image dataset [75], the Microsoft Demosaicing
Canon Dataset [38], and the Microsoft Demosaicing Pana-
sonic Dataset [38] as benchmark sets, and with specific
reference to the Bayer CFA. Conclusions and suggestions
for prospects are given in Sect. 6, and finally, in the Appen-
dices, some mathematical aspects are developed in detail.

2 RelatedWork

A significant problem of demosaicing is avoiding over-
smoothing of the edges, so the fundamental feature of any
method is its ability to perform interpolation along and not
across the edges. Some methods perform directional inter-
polation by analyzing the variance of the color differences to
exploit the high correlation between the color planes [18]. For
example, the work in [2] proposes high-order interpolation
and Sobel operators to compute the gradients, and in [24], a
level set method is used to minimize an energy function that
gives the direction of the edges. In [19], the interpolation
direction is chosen by exploiting an edge-sensing parameter
called integrated gradient, which simultaneously considers
color intensity and color difference. In general, due to solid
correlations existing among three color channels in nature,
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performing interpolation in the relatively smooth color dif-
ference field can be easier and more convenient.

In other methods, the best reconstruction of the missing
data, first estimated by interpolating along horizontal and
vertical directions, is chosen [33], [52], or the two recon-
structions are fused [74], [75]. In particular, [33] proposes
an algorithm based on the Laplacian filter by selecting the
interpolation directions having the most minor level of color
artifacts. Instead, themethod in [17] infers themissing colors
by considering the local image geometry through the image
self-similarity.

As an alternative to color difference interpolation, the
algorithms in [41] and [72], among others, are based on
interpolation in a residual domain, where the residuals are
differences between observed and tentatively estimated pixel
values. This approach is justified because the residual field
is smoother than the color difference data field. Hence,
the methods based on residual interpolation may be advan-
tageous regarding both peak signal-to-noise (PSNR) and
subjective visual quality. In [59], the adaptive residual
interpolation method is proposed to combine the resid-
ual interpolation [39] and the minimized-Laplacian residual
interpolation [40]. The developed method is extensively
tested on large datasets in [36].

In [29] and [45], the strong correlation between the
high frequencies of the three color components is directly
exploited. In particular, the algorithmpresented in [29] forces
similarity between the high frequencies of the red and the
green and of the blue and the green.

The sparse nature of color images has also been exploited
for demosaicing. A suitable dictionary is designed and
applied with the iterative K-SVD algorithm in [50], whereas
in [58], the dictionary is constructed based on a clear distinc-
tion between the inter-channel and intra-channel correlations
of natural images and the sparse representation of the image is
found through compressed sensing. In [1], a locally adaptive
approach is used for demosaicing dual-tree complex wavelet
coefficients.

Within regularization approaches, the total-variation prin-
ciple is used in [66], while [54] proposes first a general
quadratic smoothness regularizer and then an adaptive fil-
ter in order to improve the reconstruction near the edges of
the first estimate.

The methods surveyed above have been mainly designed
for noise-free data. An abundance of literature has also been
devoted to the more realistic noisy data scenario. In this
context, performing denoising as a pre-or post-processing
has significant drawbacks. In the first case, denoising must
be separately performed on the individual channel so that
the entire image resolution cannot be exploited. In addition,
denoising alters the color samples in the raw image. On the
other hand, if demosaicing is performed first, the interpola-
tion process changes the noise distribution. For instance, in

[55] [54], the authors evaluate the statistical characteristics of
the noise resulting from the demosaicing process performed
through space-varying filters, and then design an ad hoc post-
processing denoising strategy.

The method in [76] works in two steps. First, the full-
resolution green component is recovered from the difference
signals of the color channels by exploiting both spectral and
spatial correlations to suppress sensor noise and interpolation
error simultaneously. Second, the CFA channel-dependent
noise is removed from the reconstructed green channel with
a wavelet-based approach, and the red and blue channels are
also estimated and denoised. The work in [34] presents an
algorithm that uses a modified total least squared estimation
technique to estimate an ideal demosaicing filter to deal with
the noise affecting the data.

In [20], a noisy mosaiced image’s luminance and chromi-
nance channels are first reconstructed by exploiting a fre-
quency analysis of the sampling pattern induced by the
Bayer CFA. Wiener filters are then designed to denoise the
chrominances, whereas the luminance is linearly filtered as
a grayscale image. An extended variant of this approach is
also proposed, in which the demosaiced image is mosaiced
again and then demosaiced using the method in [74].

Regularization is an ideal setting for joint demosaicing
and denoising,which can be performed simultaneously based
on the same image priors. These can be manually designed,
as in [21], where a total variation (TV) prior ensures the
smooth property of the image or can be learned from the
image dataset, as in [38], where regression tree fields are
used to learn realistic image datasets. The method in [42]
models the problem as a minimization problem and uses an
image dataset to improve performance.

In recent years, many demosaicing algorithms have been
developed by exploiting the potential of convolutional neu-
ral networks (CNNs) to avoid dependence on empirically
defined priors. For instance, in [27], a deep demosaicing
and denoising network was trained on millions of artificially
degraded images. A two-stage CNN and a three-stage CNN
have been proposed in [69] and [22], respectively, and in
[68], an image demosaiced using traditional interpolation
schemes is refined using the residual network. The work in
[44] a specific network architecture is designed, inspired by
powerful classic image regularization and large-scale opti-
mization. To improve the quality of the recovered image, in
[47], the guidance of the density map and the exploitation of
edge characteristics are proposed, and in [70], the structure
of the CNN model and the loss functions are carefully stud-
ied. Finally, in [63], a CNN model is used as a prior within a
regularization setup.

Although deep learning-based methods have demon-
strated higher performance, they are highly data-dependent
and require many training images, i.e., full-resolution RGB
images. In many approaches, the authors have used as refer-
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ence images already processed; that is, they apply a mosaic
mask on images already demosaiced, thus obtaining unreal-
istic training pairs [68]. In fact, with this learning strategy, the
main problem is that demosaicing the training data artifacts
will hamper the reconstruction’s performance and overall
quality. Furthermore,methods based on learning require high
memory and computation costs,which is undesirable for inte-
grated sensor systems. For these reasons, interpolation-based
methods are still widely applied in practical use due to their
simplicity.

3 Formulation of the Demosaicing Problem
and Its Regularization

3.1 The Data GenerationModel

A color image of size n × m can be represented as a

vector x ∈ R
3nm , x = (

(x(r))T (x(g))T (x(b))T
)T

, where
x(r), x(g), x(b) ∈ R

nm are the red, green and blue channels
expressed in the lexicographic notation, respectively. The
mosaicing problem is formulated as

y = M (x + n), (1)

where x, y,n ∈ [0, 255]3nm denote the ideal color image,
the mosaiced image, and the additive noise, respectively. We
assume the noise to be independent,Gaussian,with nullmean
and variance σ 2. The matrix M ∈ {0, 1}3nm×3nm is a linear
operator associated with the acquisition pattern, consisting
of the following block diagonal matrix:

M =
⎛

⎝
M (r) O O
O M (g) O
O O M (b)

⎞

⎠ , (2)

where O ∈ R
nm×nm is the null matrix, and M (r), M (g),

M (b) are diagonalmatrices inRnm×nm . For theBayer pattern,
the diagonal elements of these matrices are given by

m(r)
(i, j),(i, j) =

{
1, i ≡2 j ≡2 0,
0, otherwise,

m(g)
(i, j),(i, j) =

{
1, i ≡2/ j,
0, otherwise,

m(b)
(i, j),(i, j) =

{
1, i ≡2 j ≡2 1,
0, otherwise,

(3)

where (i, j) is the generic pixel index.
The demosaicing problem is the inverse problem associ-

ated with the direct problem formulated in (1) and consists of
finding an estimate x̃ of the ideal image, given the mosaiced

image y and the operator M . Since M is singular, the demo-
saicing problem is ill-posed in the Hadamard sense because,
in general, it does not admit a unique solution. Given y, there
are infinitely many feasible solutions since, at each pixel, the
values of the two unmeasured channels do not contribute to
the data. Therefore, regularization techniques are necessary
to reduce the number of solutions.

3.2 The RegularizationModel

We define our regularized solution x̃ as an argument of the
minimum of the following energy function:

E(x) = ‖M(x − y)‖22 +
3∑

k=1

∑

c∈Ck

ϕ
(
Nk
c x, N

k
pk (c)

x
)

+
3∑

k=1

∑

c∈Ck

ϕ
(
V k
c x, V

k
pk (c)

x
)

, (4)

where ‖·‖2 denotes the Euclidean norm, and the first term of
the right handof (4) expresses a datafidelity constraint,which
is identically null in the noiseless case. The second term in
the right hand of (4) regulates the intra-channel smoothness
of the involved image. The third term imposes a correla-
tion between the different channels, i.e., an inter-channel
smoothness. Intra-channel and inter-channel smoothness are
measured through the operators Nk

c and V k
c , respectively,

and ϕ is a stabilizer that weights the degree of smoothness
required and relaxes it when a discontinuity is expected.

Let us start by analyzing the form of the operator Nk
c ,

given by

Nk
c x =

∥∥
∥
(
Dk
cx

(r), Dk
cx

(g), Dk
cx

(b)
)∥∥
∥
2
, (5)

where Dk
c is a finite difference operator of order k applied

to a suitable set c of adjacent pixels, called clique of order
k. Therefore, from (5), it appears that Nk

c is the norm of the
vector of the finite differences of the intensities of the red,
green, and blue channels computed on the clique c of order
k. The set Ck collects all cliques of order k. Each of such
cliques is uniquely associated with a discontinuity of order
k, labeled by a hidden line element.

To reconstruct the finest details in the images, we consider
finite differences and then discontinuities of the first, second,
and third order, that is k = 1, 2, 3. The geometry of the
associated cliques is described in Appendix A.

The edges of the first order separate homogeneous patches
in the image, the edges of the second order mark the slope
of linearly varying areas, and the edges of the third order are
associated with the intensity discontinuities in regions where
intensity varies quadratically.
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As the inter-channel correlation aims to maintain the clue
of the objects in the image, the finite difference operators
should behave similarly in all three channels. So we define
the operator V k

c as follows:

V k
c x =

∥
∥∥
(
Dk
cx

(r) − Dk
cx

(g), Dk
cx

(r) − Dk
cx

(b),

Dk
cx

(g) − Dk
cx

(b)
)∥∥∥

2
, (6)

which is the norm of the vector of the inter-channel dif-
ferences of the intra-channel k-order derivatives. Again, a
hidden line variable is implicitly associated with the clique
c for each order k = 1, 2, 3. These further sets of hidden
line variables mark the discontinuities between areas having
homogeneous clues.

In (4), Nk
c and V k

c are weighted by suitable stabilizers.
These stabilizers should regulate the degree of smoothness
required in the two cases and relax it when discontinuities
are expected and dependent on their amplitude. In (4), we
adopted the same parametric stabilizer ϕ for both the oper-
ators Nk

c and V k
c and let its parameters possibly vary in the

two terms (see also [14]).
For a more accurate reconstruction, edges must not be

thick, or the object contours must not be blurred equiva-
lently. To this aim, it is advisable to inhibit the creation of
discontinuities at two adjacent cliques. Specifically, to pre-
vent double edges of order k, simultaneous discontinuities at
the cliques c and the previous one pk(c) should be inhibited
(see Appendix A for the definition of adjacent cliques).

When pk(c) is not defined for the mixed cliques and the
cliques on the border of the image, we automatically assume
that the adjacent discontinuity is null.

Having in mind the above-described properties to be fea-
tured by the stabilizer, we adopt herein a bivariate function
ϕ : R × R → R (see also [15]), defined by

ϕ(t1, t2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(t1), if |t2| ≤ s,

(
1 − 2(|t2|−s)2

(ζ−s)2

)
g1(t1) + 2(|t2|−s)2

(ζ−s)2
g2(t1),

if s < |t2| ≤ ζ+s
2 ,

2(|t2|−ζ )2

(ζ−s)2
g1(t1) +

(
1 − 2(|t2|−ζ )2

(ζ−s)2

)
g2(t1),

if ζ+s
2 < |t2| < ζ,

g2(t1), if |t2| ≥ ζ,

(7)

where

s =
√

α

λ
, (8)

and ζ is chosen in such a way that ζ − s is a positive and
sufficiently small quantity, and for i = 1, 2 it is

gi (t1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2t21 , if |t1| < qi ,

αi − τ

2
(|t1| − ri )2, if qi ≤ |t1| ≤ ri ,

αi , if |t1| > ri ,

(9)

αi =
⎧
⎨

⎩

α, if i = 1,

α + ε, if i = 2,
(10)

qi =
√

αi

λ2

(
2

τ
+ 1

λ2

)−1/2

, (11)

τ is a large enough real constant, and

ri = αi

λ2 qi
, i = 1, 2. (12)

The graph of the function in (7) for specific values of the
parameters is shown in Fig. 3 (a). Note that when ζ − s = 0
and τ tends to +∞, we have an ideal model with Boolean
line variables (see Fig. 3 (b)). We have set ζ = s+10−4 and
τ = 104 in our experimental results.

In (7)–(12) λ2 is a regularization parameter, which has
the role of determining the smoothness of the solution, α is a
cost, which we have to pay whenever we introduce the image
discontinuities.When there are some parallel discontinuities,
we add the quantity ε to this cost. Thus, the value s in (8) is
just the threshold necessary to introduce a discontinuity in
the image when there are no parallel discontinuities.

In general, the stabilizer’s analytical form determines the
amplitude of the discontinuities in the reconstructed image
by promoting on-off discontinuities of large amplitude above
a given threshold or more slowly varying discontinuities of
graded amplitudes. In the primal-dual formalism, the first
type’s stabilizers implicitly address “hard”, Boolean line ele-
ments, while the second type addresses hidden “soft” line
elements, ideally valued in [0, 1].

We recall that the functions gi , i = 1, 2, defined in (9),
are approximations of class C1 of the classical truncated
parabola defined in [9] (see also [10], [14], [15]) that, when
used as a stabilizer, implicitly addresses a Boolean line pro-
cess. In the bivariate case, the function ϕ defined in (7)
possesses the same characteristic when τ tends to+∞ and ζ

is very close to s. The actual form we propose is an approx-
imation of such a function, with the property of class C1,
which is essential for converging the minimization algorithm
(see Subsection 4.1).
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Fig. 3 (a) ϕ with λ = 1, α = 80, and ε = 80; (b) ϕ in the case of ζ = s and τ = +∞

4 Graduated Componentwise
Non-Convexity Algorithm

We observe that the function ϕ defined in (7), as a func-
tion of two variables, is not convex, and hence neither is the
energy function E(x), defined in (4) as a function of 3 n m
variables. Thus, to minimize E , we determine a finite family
of approximating functions {E (p)}p, where E (0) is compo-
nentwise convex, and E (2) is the original energy function
E . The initial point to minimize the componentwise con-
vex approximation is found using the Local Edge Preserving
(LEP) algorithm used in [13] for demosaicing. The LEP is
a high-speed algorithm consisting of two phases. In the first
phase, themissing components are determined by aweighted
mean, which guarantees the preservation of the edges. In the
second phase, the differences between the colors of the chan-
nels are imposed to be constant within homogeneous areas.
Our algorithm in its whole is called graduated component-
wise non-convexity (GCNC) and is presented in Algorithm 1.

Algorithm 1 GCNC algorithm
Input: A mosaiced image y;
Output: An estimation of the demosaiced image x;
1: initialize x by the LEP algorithm in [13];
2: p = 0;
3: while p 
= 2 do
4: find the minimum of the function E (p) starting from the initial

point x;
5: set x to the reached minimizer;
6: update the parameter p;
7: end while

Note that our algorithm can be seen as a variant of the
graduated non-convexity (GNC) algorithm (see also [7], [15],
[57], [60], [61], [62], [65]).

To construct the first componentwise convex approxima-
tion E (0), we find a componentwise convex approximation

for the stabilizers in (7), since the data term in (4) is globally
convex. Such componentwise convex approximations can be
constructed based on a componentwise convex approxima-
tion of the bivariate function ϕ, as shown in Appendix D. To
do this, we proceed as follows. First of all, we approximate
the functions gi (t1) with the following convex approxima-
tions given by

gi (t1) =
{

λ2 t21 , if |t1| ≤ qi ,
λ2 (2 qi |t1| − q2i ), if |t1| ≥ qi , i = 1, 2

(13)

(see also [60]). Moreover, we find an approximation, convex
concerning the variable t2, of the function ϕ defined in (7),
in the following way:

ϕ(t1, t2) = t2 − t22
t2

g1(t1) + t22
t2

g2(t1) = g1(t1)

+ t22
t2

(g2(t1) − g1(t1)), (14)

where t is themaximumvalue that a finite difference operator
can assume (t = 2k · √

2 · 255, k = 1, 2, 3, for the light
intensity of the images in the range [0,255]). It is easy to
check that g2 − g1 is convex since 0 < q1 < q2.

We recall that t1 = Nk
c x, t2 = Nk

pk (c)
x in the second

term of the right hand of (4), and t1 = V k
c x, t2 = V k

pk (c)
x

in the third term of the right hand of (4). Let us fix k ∈
{1, 2, 3} and c ∈ Ck , and choose 	k

c ∈ {Nk
c , V k

c }. So, t1 is a
function of x, and t1(x) = 	k

c(x). In particular, t1 depends
only on the variables involved in the clique c. Analogously,
t2(x) = 	k

pk (c)
(x) depends only on the variables involved

in the clique pk(c). Note that the function ϕ defined in (14)
is componentwise convex. However, the function 
(x) =
ϕ(t1(x), t2(x)) is not componentwise convex concerning the
components of the vector x ∈ R

3nm . This is because c ∩
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pk(c) 
= ∅. However, if we choose t2(x) = 	k
πk(c)

(x) instead

of 	k
pk (c)

(x), then the function t2 is componentwise convex
with respect to x, as shown in Appendix D, since c∩πk(c) =
∅. Thus, to define the family of the approximations for the
algorithm GCNC, we proceed as follows.
If p ∈ [0, 1], put

E (p)(x) = ‖M(x − y)‖22 +
3∑

k=1

∑

c∈Ck

ϕ
(
Nk
c x, p Nk

pk (c)
x

+ (1 − p) Nk
πk (c)

x
)

+ +
3∑

k=1

∑

c∈Ck

ϕ

×
(
V k
c x, p V

k
pk (c)

x + (1 − p) V k
πk (c)

x
)

. (15)

When p ∈ [1, 2], set

E (p)(x) = ‖M(x − y)‖22 +
3∑

k=1

∑

c∈Ck

ϕ(p)
(
Nk
c x, N

k
pk (c)

x
)

+

+
3∑

k=1

∑

c∈Ck

ϕ(p)
(
V k
c x, V

k
pk (c)

x
)

, (16)

where

ϕ(p)(t1, t2) = (2 − p) ϕ(t1, t2) + (p − 1) ϕ(t1, t2). (17)

In Appendix B, we will prove that for each p ∈ [1, 2],
ϕ(p) satisfies the duality conditions that guarantee the edge-
preserving properties and the inhibition of double edges [14].
Note that, for p ∈ [0, 1], the stabilizer ϕ(t1, t2) is equal to
ϕ(t1, t2), and hence fulfils the same properties. Furthermore,
in [11], it is proved that the associated line process is non-
Boolean. The hidden line elements become Boolean as far
as p tends to 2. However, we experimentally observed that,
in natural images, graded discontinuities can help prevent
the aliasing effect. Thus, in the experiments, we stop the
minimization algorithm at a suitable value of p different from
2, as explained in Sect. 5.

4.1 The NL-SOR Algorithm

To minimize each approximation E (p), we use a nonlinear
successive over relaxation (NL-SOR) algorithm, which is
widely used in the literature (see also [7, 9, 16]). The NL-
SOR is defined as in Algorithm 2, where ε > 0 is a fixed
threshold, ω > 0 is the accelerator parameter,

T > max
i=1,2,...,nm
e=r ,g,b

max
x

{
∂2+E (p)(x)

(∂x (e)
i )2

,
∂2−E (p)(x)

(∂x (e)
i )2

}

,

and the symbols ∂2+ and ∂2− denote the right and left second
partial derivatives, respectively.

Algorithm 2 NL-SOR algorithm

Input: An energy function E (p);
Output: An estimation of the minimizer x;
1: given the initial vector x(0)

2: l = 1;
3: while ‖∇E (p)(x)‖ > ε do
4: for i = 1, 2, . . . , nm do
5: for e = r , g, b do

6: (x (e)
i )

(l+1) = (x (e)
i )

(l) − ω

T

∂E (p)(x(l))

∂x (e)
i

;
7: end for
8: end for
9: l = l + 1;
10: end while

In our experimental results, we have set ω = 0.2 and ε =
3
√
nm, where n×m is the dimension of the involved image.

We chose these values after a long experimental phase, where
we monitored the trend of the energy function in each step
of the algorithm to obtain high-performance results without
excessive computational time.

In [16, Theorem 2], the convergence of the algorithm is
proved when E (p) is strictly convex and of class C2. How-
ever, such a theorem cannot be applied to our setting since
our first approximation is componentwise convex andC1 but
neither strictly convex nor C2. Thus, in Appendix C, we pro-
pose an extension of [16, Theorem 2] to prove that in our
case, when p = 0, the algorithm stops in correspondence
with a stationary point. Note that for p 
= 0, we have no
guarantee of converging to a stationary point of E (p) using
the NL-SOR algorithm. However, the experimental results
confirm that excellent solutions can still be achieved (see
Sect. 5).

5 Experimental Results

In assessing the efficacy of the proposed demosaicing algo-
rithm, we analyze diverse color image datasets, encompass-
ing the Kodak image dataset [43], the McMaster image
dataset [75], theMicrosoft Demosaicing CanonDataset [38],
and the Microsoft Demosaicing Panasonic Dataset [38].
The Kodak dataset comprises 24 comprehensive full-color
images sized at 512 × 768 pixels each. Conversely, the
McMaster image dataset features 18 images with dimensions
of 500 × 500 pixels, derived from original high-resolution
images sized at 2310 × 1814 pixels. Renowned for their
widespread adoption as benchmark datasets within demo-
saicing and various other color image processing domains,
the Kodak andMcMaster datasets serve as pivotal standards.
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Table 1 Parameters used in the
noiseless case for weighting the
intra-channel smoothness
measure (5)

Derivative order

k = 1 k = 2 k = 3

λ 0.1 0.2 0.2

α 9 3 2

ε 4.5 1.5 1

Table 2 Parameters used in the
noiseless case for weighting the
inter-channel correlation (6)

Derivative order

k = 1 k = 2 k = 3

λ 0.5 0.28 0.28

α 3 3 3

ε 1.5 1.5 1.5

Moreover, the Microsoft Demosaicing Dataset Canon
encompasses 57 images at 210 × 318 pixels, while the
Microsoft Demosaicing Dataset Panasonic comprises 500
images of identical dimensions. These raw images origi-
nate from distinct camera sources, namely a Canon EOS

550D and a Panasonic Lumix DMC-LX3, respectively. Such
datasets collectively facilitate a comprehensive evaluation of
the proposed demosaicing algorithm across varied imaging
scenarios and devices.

We implement the proposed algorithm in C language and
run it in a Linux Ubuntu environment on a computer with
an i5-9400F processor at 2.90 GHz. However, minimizing a
non-convex function is a complex task; therefore, high com-
putational costs are still necessary. For example, in the case
of theKodak set, the proposed algorithm has an average com-
putation time of 12.493min for each image.

The free parameters λ, α, and ε appearing in our energy
function have been calibrated on the images of the Kodak
dataset and then used for the other datasets. We employed a
trial-and-error strategy to look for the parameters that give
the best average color peak signal-to-noise ratio (CPSNR)
on all the 24 images. The CPSNR quality index, a key metric
in our calibration process, is defined as:

CPSN R = 10 log10

(
2552

MSE

)
, (18)

Table 3 CPSNRs for noiseless Kodak images

Image [29] [33] [50] [54] [24] [19] [1] [2] [58] [41] [59] Proposed

1 37.70 35.17 39.37 38.22 35.64 39.96 37.31 39.86 37.81 36.28 38.84 40.71

2 39.57 39.34 40.71 38.18 36.46 40.99 38.90 40.99 38.61 40.25 39.70 40.90

3 41.45 41.52 43.19 42.04 37.25 43.26 41.76 42.86 37.28 42.66 42.94 43.32

4 40.03 38.87 41.29 40.04 36.74 40.56 40.40 41.25 41.05 41.20 40.84 41.84

5 37.46 35.70 38.70 38.04 35.45 38.31 37.44 38.41 37.91 37.36 38.29 38.95

6 38.50 37.55 40.05 39.70 36.39 41.00 39.59 40.31 39.34 38.70 40.67 40.22

7 41.77 40.87 42.83 42.10 37.07 42.64 41.85 42.94 41.59 42.55 42.85 43.62

8 35.08 33.80 36.42 36.08 34.59 37.35 34.58 37.05 35.49 34.55 35.30 37.25

9 41.72 41.10 43.28 42.15 37.46 43.42 41.77 43.44 42.40 42.06 41.59 43.31

10 42.02 40.77 42.70 42.15 37.26 42.83 41.80 43.12 42.27 42.06 41.98 42.70

11 39.14 37.48 40.22 39.78 36.41 40.66 39.09 40.92 39.22 38.96 39.82 40.51

12 42.51 41.81 43.53 42.94 37.56 44.13 43.01 44.01 43.49 42.86 43.56 44.41

13 34.30 31.41 35.29 34.94 33.68 36.03 34.97 35.94 34.19 32.61 35.40 36.27

14 35.60 35.50 37.95 36.34 35.07 37.10 35.79 36.99 36.27 37.59 37.50 38.26

15 39.35 38.02 40.21 39.15 36.22 39.84 39.39 40.03 39.30 38.90 38.85 40.37

16 41.76 41.37 43.62 43.27 37.53 44.47 43.62 43.74 42.65 42.58 43.56 43.77

17 41.11 39.25 42.01 41.83 41.09 41.77 41.17 42.24 41.15 40.88 41.31 41.54

18 37.45 35.20 37.47 37.13 35.98 37.96 37.12 37.89 37.05 35.88 37.09 37.45

19 39.46 38.44 41.27 40.15 40.20 41.79 39.78 41.46 40.15 39.56 40.54 41.11

20 40.66 39.23 41.00 40.39 32.49 41.71 40.46 41.85 40.72 40.28 41.23 41.59

21 38.66 36.56 39.74 39.27 36.47 39.99 38.57 40.37 38.48 37.82 39.44 40.20

22 37.55 36.46 38.87 38.25 37.32 38.48 37.33 38.69 38.40 38.39 38.26 38.51

23 41.88 41.88 42.41 40.40 39.45 43.20 42.00 43.04 38.75 43.28 43.30 43.91

24 34.78 33.42 35.63 35.37 34.32 35.39 34.52 35.21 35.37 34.33 35.64 34.80

mean 39.15 37.95 40.32 39.50 36.59 40.54 39.26 40.53 39.12 39.23 39.94 40.65

Bold indicates the best result
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Table 4 CPSNRs for McMaster noiseless images

Image [29] [33] [17] [75] [41] [59] Proposed

1 25.59 26.63 27.69 29.56 29.41 29.74 30.02

2 32.46 33.64 34.47 35.67 35.35 35.30 35.51

3 31.63 31.42 32.93 33.29 34.05 34.92 34.17

4 33.23 33.63 36.28 36.63 38.00 38.07 38.48

5 29.98 31.01 32.00 34.79 34.43 35.52 35.52

6 31.98 33.87 35.55 39.26 38.83 39.54 39.81

7 37.82 35.99 36.87 36.00 37.04 39.87 39.81

8 36.62 36.46 37.47 37.76 37.30 39.53 38.93

9 33.28 34.51 36.21 37.84 36.84 37.93 38.18

10 34.97 36.01 37.56 39.24 39.12 39.34 39.57

11 35.97 36.73 38.39 40.02 40.21 40.38 39.81

12 35.78 36.64 37.39 39.15 39.84 40.26 39.27

13 37.47 38.76 40.34 41.60 40.66 41.02 41.63

14 36.25 37.43 38.53 39.45 39.11 39.14 39.26

15 36.35 37.33 38.29 39.54 39.25 39.48 39.44

16 29.02 30.05 31.17 34.03 35.42 35.68 34.36

17 27.99 28.63 30.41 33.56 33.19 34.41 35.20

18 32.49 33.30 34.20 35.38 36.41 36.56 35.10

mean 33.27 34.00 35.32 36.82 36.92 37.59 37.45

Bold indicates the best result

Table 5 CPSNRs for Microsoft
images—noiseless

Dataset [59] Prop

Canon 42.27 43.54

Panasonic 39.55 41.24

Bold indicates the best result

Table 6 Regularization parameters depending of the noise standard
deviation σ

Derivative order

k = 1 k = 2 k = 3

λ 0.156σ 0.094σ 0.094σ

α 0.391σ 2 0.078σ 2 0.078σ 2

ε 0.195σ 2 0.039σ 2 0.039σ 2

where MSE is the mean square error between the origi-
nal image and the demosaiced one that, for color images, is
defined as the arithmetic average of the mean square errors
on the three channels.

We chose to increase p with a step of 0.01. Note that,
for p = 2, the discontinuities present in the reconstructed
image are Boolean, whereas, for p 
= 2, we have reconstruc-
tions with non-Boolean line variables, as stated in the duality
theorem given in [15].

Reconstructions obtainedwithBoolean lines are often dis-
turbed by the aliasing effect, so that it may be preferable to
stop the algorithm at a value p̄ smaller than 2. The optimal

value of p̄ has been set as the one for which the sum of the
MSEs of all the 24Kodak images reconstructedwith that p is
minimum. Calling η j (p) the MSE between the ideal image
and the minimizer of the approximated energy function for
the j − th image at a given p, it is:

p̄ = argmin
p

⎧
⎨

⎩

24∑

j=1

η j (p)

⎫
⎬

⎭
. (19)

The proposed algorithm has been applied to both noise-
less and noisy images, and the performance of the method
has been compared with some of the most popular and best-
performing methods in the literature.

5.1 Noiseless Images

In the energy E (4), stabilizer ϕ depends on the free parame-
ters λ, α and ε. In the second addend of the right hand of (4),
we used ϕ with the free parameters reported in Table 1, which
we found to be the best for noiseless mosaiced images.
In the third term of the right hand of (4), the best free param-
eters for stabilizer ϕ to be used in the noiseless case are
indicated in Table 2.

Given all these free parameters, we found p̄ = 1.42.
For the noiseless Kodak dataset, we compared the pro-

posed method with the algorithms in [29], [33], [50], [54],
[19], [1], [2] [58], [41], and [59]. In particular, we used
the source code available on the web to obtain the results
of the algorithm in [59]. The results obtained on the Kodak
dataset are reported in Table 3. As usual with the Kodak
images, we removed the 3 pixels wide external frame to com-
pute the errors. Our method exhibits the highest CPSNR in
more images than the other methods (the highest CPSNR
is highlighted in boldface for each image). Furthermore, the
proposed method achieves the best result on average.

For the noiseless McMaster dataset, a comparison has
been made with the algorithms in [29], [33], [17], [75], [41],
and [59], respectively. In particular, to collect the results of
the algorithm in [29], we used the original MATLAB code
provided by the authors, and for the results of the algo-
rithms in [41] and [59], we used the source code available on
the web. The results obtained are reported in Table 4. The
proposed method achieved the best result in more than 44%
of cases. However, this time, the method presented in [59] is
slightly better on average.We thus used theMicrosoft Demo-
saicing Canon Dataset [38] and the Microsoft Demosaicing
Panasonic Dataset [38] to further compare our method with
the one proposed in [59]. Table 5 presents the obtained aver-
age results on both datasets; the proposed algorithm always
obtains the best results.
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Table 7 CPSNRs for noisy
Kodak images, σ = 16

Image Bilinear [29] [34] [76] [55] [20] [20] variant proposed

1 23.38 24.24 22.35 27.63 27.71 28.18 28.14 28.11

2 25.86 24.50 23.55 28.75 30.86 31.01 28.98 31.47

3 25.98 24.47 23.84 31.51 31.81 32.58 32.67 32.71

4 25.84 24.38 23.48 30.10 30.82 31.34 30.69 31.36

5 23.68 24.42 22.85 27.70 28.02 28.51 28.60 28.27

6 24.09 24.40 23.09 28.84 28.87 29.51 29.40 29.01

7 25.78 24.43 23.47 30.67 31.24 32.29 31.96 32.03

8 21.89 24.18 22.18 27.19 27.37 28.40 28.32 27.66

9 25.57 24.36 23.66 31.42 31.51 32.61 32.83 32.53

10 25.58 24.38 22.85 31.11 31.38 32.58 32.60 32.21

11 24.78 24.45 23.28 29.36 29.62 30.20 30.17 30.02

12 25.69 24.44 23.72 31.13 31.44 32.27 32.19 32.34

13 22.03 24.12 21.99 26.51 26.43 26.78 26.63 26.67

14 24.76 24.25 22.96 28.35 28.44 27.99 28.65 29.01

15 25.64 24.79 23.94 30.14 30.85 31.21 30.76 31.30

16 25.31 24.36 23.44 30.52 30.50 31.33 31.37 30.85

17 25.70 24.68 23.79 30.90 31.02 31.97 32.05 31.81

18 24.29 24.39 23.01 28.01 28.56 28.99 28.35 28.83

19 24.30 24.35 22.93 29.59 29.78 30.74 30.56 30.21

20 26.00 25.44 24.80 29.95 30.45 30.82 30.77 30.93

21 24.43 24.32 23.21 29.06 29.40 30.07 29.76 30.00

22 25.13 24.28 23.16 29.22 29.55 29.87 29.69 29.91

23 26.07 24.47 23.96 31.02 32.48 33.10 31.65 33.31

24 26.98 25.26 25.50 27.98 28.20 28.81 28.64 28.48

mean 24.95 24.47 23.38 29.44 29.85 30.47 30.23 30.38

Bold indicates the best result

5.2 Noisy Images

In a second set of experiments, we considered noisy images
corrupted by independent Gaussian noise, with zero mean
and different standard deviation values σ . This time, the best
free parameters for stabilizer ϕ to be used in the second and
third addend of the right hand of (4) are shown in Table 6 .

As done for the noiseless images, for each value of the
noise variance, the suitable value p̄ for stopping the algorithm
has been determined according to the criterion established in
(19). The following empirical law that relates p̄ to σ has also
been found:

p̄(σ ) = 3

40
σ + 4

5
. (20)

In the noisy case, we compared our method with the algo-
rithms in [29] and [34] by using the original MATLAB code
provided by the authors and with the algorithms in [20], [76],
and [55], by using the source codes available in the authors’
web pages. TheCPSNRvalues computed for the caseσ = 16
on the Kodak dataset are shown in Table 7.

Although the performance of our method is still satisfac-
tory, this time, the method in [20] is slightly superior.

We then computed another quality index, sometimes used
in the demosaicing problem, i.e., the S-CIELABmetric. This
metric indicates the percentage of color distortion between
two images and accounts for the spatial-color sensitivity of
the human eye [73] [37]. Since it returns a pixel-by-pixel
matrix of errors, we assumed the mean of the S-CIELAB
matrix coefficients as the representative error index for the
entire image. The results obtained for the case σ = 16 on the
Kodak dataset, along with the results of the most perform-
ing among the methods used for comparison, are shown in
Table 8.

The results in this case are excellent. The situation is even
better when the noisy mosaiced McMaster images are pro-
cessed. The CPSNR results obtained for the same amount of
noise (σ = 16), along with the results of the most perform-
ing methods used for comparison on the Kodak dataset, are
shown in Table 9.

It is apparent that this time, our method outperforms the
other, with much higher values of CPSNR, which are only
slightly lower than thosewe obtained in the noiseless case for
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Table 8 S-CIELAB errors for noisy Kodak images, σ = 16

Image [76] [55] [20] [20] variant Proposed

1 4.11 4.22 3.82 3.82 3.41

2 3.34 2.81 2.74 3.19 2.64

3 3.28 3.24 2.97 2.89 2.52

4 3.44 3.32 3.16 3.23 2.89

5 4.20 4.07 4.02 3.92 3.81

6 3.86 3.83 3.47 3.48 3.23

7 3.54 3.43 3.14 3.21 2.82

8 4.48 4.57 4.08 4.02 3.96

9 3.10 3.19 2.85 2.72 2.38

10 3.16 3.21 2.81 2.73 2.54

11 3.26 3.31 3.02 2.98 2.79

12 3.10 3.00 2.75 2.74 2.30

13 4.65 4.78 4.42 4.47 4.30

14 3.87 3.97 3.93 3.67 3.39

15 3.09 2.82 2.82 2.79 2.56

16 3.23 3.36 2.97 2.89 2.68

17 2.67 2.81 2.46 2.32 2.24

18 4.28 3.90 3.80 4.14 3.62

19 3.69 3.66 3.32 3.37 3.02

20 3.85 3.36 3.26 3.30 3.09

21 3.67 3.63 3.26 3.30 2.90

22 4.14 3.92 3.77 3.92 3.59

23 3.22 2.94 2.76 2.99 2.58

24 4.28 4.10 3.72 3.81 3.58

mean 3.65 3.56 3.31 3.33 3.04

Bold indicates the best result

the same dataset. This excellent performance can be ascribed
once again to our very fine modeling of natural images in
terms of local variations inside and between the color chan-
nels.

Furthermore, in Table 10, it is possible to observe the
excellent behavior of the proposed method on the two
Microsoft datasets, compared with the method in [59] and
for different values of the standard deviation σ of the noise
corrupting the data.

6 Conclusion

We approached the joint demosaicing and denoising of color
images within a regularization framework, irrespective of
the CFA employed to generate the data. A central feature
of our method is adopting local image smoothness models
that implicitly account for “soft” edges at low- and high-

Table 9 CPSNRs for noisy McMaster images, σ = 16

Image [76] [55] [20] [20] variant Proposed

1 24.01 24.59 22.62 24.12 29.36

2 27.86 28.99 28.74 28.07 34.85

3 26.94 27.34 27.51 27.63 33.53

4 28.49 29.23 28.76 29.74 37.44

5 27.18 27.96 26.79 27.46 34.55

6 28.16 29.25 27.77 28.38 39.12

7 29.12 29.03 29.61 29.66 36.04

8 30.01 30.27 30.65 30.88 38.47

9 28.24 29.54 29.00 28.43 37.65

10 28.37 30.38 29.90 28.55 39.09

11 29.01 30.97 30.59 29.15 39.79

12 28.41 30.91 31.39 29.10 38.98

13 29.96 32.44 33.31 30.82 40.94

14 28.86 31.56 32.04 29.18 38.52

15 29.51 31.62 31.86 29.94 39.08

16 25.24 26.77 25.71 25.17 34.24

17 25.94 26.86 24.26 25.42 34.69

18 27.43 28.52 28.46 27.71 35.00

mean 27.93 29.24 28.83 28.30 36.74

Bold indicates the best result

frequency levels. Soft edges are essential for preventing the
aliasing effect and preserving the fine details in the image,
especially when noise is present. In our method, this is
achieved by using stabilizers possessing two main features:
on the one hand, we include derivatives up to the third degree;
on the other hand, these derivatives are weighted through
non-quadratic functions. A duality theorem ensures that the
implicitly addressed edge fields are equivalent to geomet-
rically consistent image discontinuities at each cycle of the
iterative algorithm employed to find the regularized solution.

The experimentation over the Kodak 24-image dataset,
the McMaster (IMAX) 18-image dataset, the Microsoft
Demosaicing Canon 57-image dataset, and the Microsoft
Demosaicing Panasonic 500-image dataset under the Bayer
CFA, with a high level of noise, demonstrates the good per-
formance of our method against some of the best-performing
demosaicing algorithms proposed so far.

Future developments involve experimentingwith the algo-
rithm on data from other CFAs and including the filter blurs
that are known in this kind of application. For this latter issue,
the extension of the algorithm is straightforward, since the
data term is still convex, so the same approximations for the
energy function can also be exploited.
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Table 10 CPSNRs for
Microsoft images—noisy

Dataset [59] σ = 3 [59] σ = 10 prop. σ = 3 prop. σ = 10

Canon 37.14 29.81 40.23 36.89

Panasonic 35.90 29.01 38.12 34.64

Bold indicates the best result

Appendix A: Geometry of the Cliques and
Expression of the Associated Finite Differ-
ences

The stabilizers used in this paper are functions of the finite
differences Dk

c of order k applied to sets c consisting of adja-
cent pixels. We call clique of order k the set of pixels on
which the finite difference of order k is well defined. We
take k = 1, 2, 3 in order to reconstruct the finest details in
images. Figures4, 5 and 6 show the geometry of the sets c
for the three orders of finite differences, respectively. As we
can see, the cliques can be classified as vertical (Figs. 4 (a),
5 (a), 6 (a) ), horizontal (Figs. 4 (b), 5 (c), 6 (d) ), and mixed
(Figs. 5 (b), 6 (b) and (c) ).
The vertical cliques consist of the following pixels:

c = {(i, j), (i + 1, j), . . . , (i + k, j)},
i = 1, . . . , n − k, j = 1, . . . ,m, k = 1, 2, 3, (A1)

while the horizontal cliques have the form

c = {(i, j), (i, j + 1), . . . , (i, j + k)},
i = 1, . . . , n, j = 1, . . . ,m − k, k = 1, 2, 3. (A2)

Let us now describe how finite differences are computed
at a generic clique c for a generic color channel x(e), e ∈
{r , g, b}. When k = 1, as it is seen in Fig. 4, we have two

Fig. 4 Geometry of the sets c for k = 1

Fig. 5 Geometry of the sets c for k = 2

Fig. 6 Geometry of the sets c for k = 3

different kinds of finite difference operators, associated with
a horizontal and a vertical finite difference, given by

D1
cx

(e) =
{
x (e)
(i, j) − x (e)

(i+1, j) in Fig. 4(a);
x (e)
(i, j) − x (e)

(i, j+1) in Fig. 4(b),
(A3)

respectively. When k = 2, we have three different kinds of
finite difference operators, expressed by

D2
cx

(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x (e)
(i, j) − 2x (e)

(i+1, j) + x (e)
(i+2, j) in Fig. 5(a);

x (e)
(i, j) − 2x (e)

(i, j+1) + x (e)
(i, j+2) in Fig. 5(b);

x (e)
(i, j) − x (e)

(i+1, j) − x (e)
(i, j+1) + x (e)

(i+1, j+1)
in Fig. 5(c).

(A4)

When k = 3, we get four different kinds of finite differ-
ence operators, given by

D3
cx

(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x (e)
(i, j) − 3x (e)

(i+1, j) + 3x (e)
(i+2, j) − x (e)

(i+3, j)
in Fig. 6(a);

x (e)
(i, j) − 3x (e)

(i, j+1) + 3x (e)
(i, j+2) − x (e)

(i, j+3)
in Fig. 6(b);

x (e)
(i, j) − 2x (e)

(i+1, j) + x (e)
(i+2, j) − x (e)

(i, j+1)

+2x (e)
(i+1, j+1) − x (e)

(i+2, j+1) in Fig. 6(c);
x (e)
(i, j) − 2x (e)

(i, j+1) + x (e)
(i, j+2) − x (e)

(i+1, j)

+2x (e)
(i+1, j+1) − x (e)

(i+1, j+2) in Fig. 6(d).

(A5)

Let us introduce the concept of adjacent clique of order k,
which defines the non-parallelism constraint. Given a vertical
clique

c = {(i, j), (i+1, j), . . . , (i+k, j)}, i = k+1, . . . , n−
k, j = 1, . . . ,m, k = 1, 2, 3,

we define its preceding clique pk(c) as follows:

pk(c) = {(i − k, j), (i − k + 1, j), . . . , (i, j)}.

When i = k + 2, . . . , n − k, j = 1, . . . ,m, k = 1, 2, 3, a
good approximation of pk(c) used to construct our approxi-
mating functions is given by

πk(c) = {(i − k − 1, j), (i − k, j), . . . , (i − 1, j)}.
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We define πk(c) in such a way that c ∩ πk(c) = ∅. This will
be useful to find the family of approximations of the energy
function in Subsection 3.2.

If c is a horizontal clique, c = {(i, j), (i, j +1), . . . , (i, j
+ k)}, i = 1, . . . , n, j = k + 1, . . . ,m − k, k = 1, 2, 3,
then its preceding clique pk(c) is defined by

pk(c) = {(i, j − k), (i, j − k + 1), . . . , (i, j)}.

When i = 1, . . . , n, j = k + 2, . . . ,m − k, k = 1, 2, 3, a
good approximation of pk(c) is

πk(c) = {(i, j − k − 1), (i, j − k), . . . , (i, j − 1)}.

For mixed cliques and cliques on the board of the image,
pk(c) and πk(c) are considered not to be defined.

Appendix B: Duality Conditions on the Stabi-
lizer

In order for a stabilizer ϕ to be edge-preserving and that
the non-parallelism constraint on the implicit line process
is satisfied, we require that the hypotheses of the following
theorem are satisfied (see [14]):

Theorem 1 For every p ∈ [1, 2], let

ϕ(p)(t1, t2) = (2 − p) ϕ(t1, t2) + (p − 1) ϕ(t1, t2),

t1 ∈ R, t2 ∈ [−t, t], (B6)

where t = 2k ·√2 · 255, k = 1, 2, 3, for light intensity of the
images in the range [0, 255], is the maximum value which
the variable t2 can assume, ϕ and ϕ are as in (14) and (7),
respectively. Then, ϕ(p) satisfies the following conditions:

H1) for every t2 ∈ [−t, t], the function ϕt2 : R →
R ∪ {−∞} defined by ϕt2(t1) = ϕ(t1, t2) is upper
semicontinuous and even on R, and ϕt2(0) ∈ R;

H2) for each t2 ∈ [−t, t], the function ψt2 : R → R ∪
{−∞} defined by

ψt2(t1) =
{

ϕ(
√
t1, t2), if t1 ≥ 0,

−∞, if t1 < 0,

is concave on R
+
0 ;

H3) ϕt2 is non-decreasing on R
+
0 for every t2 ∈ [−t, t];

H4) lim
t1→+∞

ψt2(t1)

t1
= 0 for each t2 ∈ [−t, t],

H5) there exists at least a real number t1 such that the
function ϕt1(t2) = ϕ(t1, t2) is not constant on [−t, t],
and ϕt1 is even on [−t, t] and non-decreasing on [0, t]
for every t1 ∈ R

+
0 .

Proof We begin by proving that the function ϕ defined in
(14) satisfies Hj), j = 1, . . . , 4.

It is readily seen that ϕ fulfills H1).
Now we prove H2).
For i = 1, 2 and t1 ∈ R

+
0 , set

fi (t1) = gi (
√
t1) =

{
λ2 t1, if 0 ≤ t1 ≤ q2i ,
λ2 (2 qi

√
t1 − q2i ), if t1 ≥ q2i .

(B7)

We have

ϕt2(
√
t1) = ψ t2(t1) = t2 − t22

t2
f1(t1) + t22

t2
f2(t1),

and hence

fi
′
(t1) =

{
λ2, if 0 ≤ t1 ≤ q2i ,
λ2 qi t1−1/2, if t1 ≥ q2i ;

fi
′′
(t1) =

{
0, if 0 ≤ t1 < q2i ,

−1

2
λ2 qi t1

−3/2, if t1 > q2i .

Let γt2 = t2 − t22
t2

. Then, 1 − γt2 = t22
t2
.

It is not difficult to check that 0 ≤ γt2 ≤ 1, since |t2| ≤ t .
Thus, for every t1 ∈ R

+
0 and t1 
= q21 , t1 
= q22 , t2 ∈ [−t, t],

we have

ψ t2
′
(t1) = γt2 f1

′
(t1) + (1 − γt2) f2

′
(t1) ≥ 0. (B8)

ψ t2
′′
(t1) = γt2 f1

′′
(t1) + (1 − γt2) f2

′′
(t1) ≤ 0.

Observe that the inequality in (B8) will be useful to prove
H3). Since ψ t2 is of class C1 on its domain (indeed, it is a
composition of C1 functions), then it is concave on R

+
0 for

all t2 ∈ [−t, t]. So, ϕ satisfies condition H2).
Now we prove H3). From (B8), it follows that ψ t2 is non-

decreasing on R
+
0 , and hence so is ϕt2 .

Thus we get

ϕt2
′(t1) = γt2 g1

′(t1) + (1 − γt2) g2
′(t1) ≥ 0

for each t1 ∈ R
+
0 . Thus, H3) holds.

Now we show that ϕ fulfils H4). Indeed, we have

lim
t1→+∞

fi (t1)

t1
= lim

t1→+∞
λ2 (2 qi

√
t1 − q2i )

t1
= 0 (i = 1, 2),

and hence

lim
t1→+∞

ψ t2(t1)

t1
= 0 for every t2 ∈ [−t, t].
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Finally, we prove that ϕ satisfies H5).
Take t1 = q2. For each t2 ∈ [−t, t], it is

ϕ(q2, t2) = t2 − t22
t2

λ2 (2 q1 q2 − q21 ) + t22
t2

λ2 q22 ,

and hence ϕ(q2, 0) = λ2 (2 q1 q2 − q21 ), ϕ(q2, t) = λ2 q22 .
We claim that ϕ(q2, 0) 
= ϕ(q2, t). If not, then we would
have 2 q1 q2 − q21 = q22 , and hence 0 = q22 − 2 q1 q2 + q21 =
(q1 − q2)2, that is q1 = q2, which is absurd since we know
that 0 < q1 < q2. Therefore, the function t2 �→ ϕ(q2, t2) is
not constant, and hence, the first property of H5) is satisfied.

Moreover, it is easy to see that ϕt1 is even on R for each
t1 ∈ R.

From (13), it is not difficult to deduce that g2(t1)−g1(t1) ≥
0 for all t1 ≥ 0.

We get

dϕt1

dt2
(t2) = −2 t2

t2
g1(t1) + 2 t2

t2
g2(t1)

= 2 t2

t2
(g2(t1) − g1(t1)) ≥ 0 (B9)

for any t1 ∈ R
+
0 . Hence, the function ϕt1 is non-decreasing

on R
+
0 for every t1 ∈ R

+
0 . Thus, H5) is proved.

Now we prove that for i = 1, 2, the function ϕ defined in
(7) satisfies conditions Hj), j = 1, . . . , 4.

It is easy to see that, by construction, H1) holds.
We now prove H2). We begin with the case when |t2| ≤ s

or t2 ≥ ζ in (7). For i = 1, 2, set

fi (t1) = gi (
√
t1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2t1, if 0 ≤ t1 ≤ q2i ,

αi − τ

2
(
√
t1 − ri )2, if q2i ≤ t1 ≤ r2i ,

αi , if t1 ≥ r2i .

(B10)

We have

ϕ(
√
t1, t2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t1), if |t2| ≤ s,
(
1 − 2(|t2| − s)2

(ζ − s)2

)
f1(t1) + 2(|t2|−s)2

(ζ−s)2
f2(t1),

if s < |t2| ≤ ζ+s
2 ,

2(|t2|−ζ )2

(ζ−s)2
f1(t1) +

(
1 − 2(|t2|−ζ )2

(ζ−s)2

)
f2(t1),

if ζ+s
2 < |t2| < ζ,

f2(t1), if |t2| ≥ ζ.

(B11)

We claim that fi is non-decreasing and concave on R
+
0 .

We get

fi
′(t1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ2, if 0 ≤ t1 ≤ q2i ,

αi − τ

2

(
1 − ri√

t1

)
, if q2i ≤ t1 ≤ r2i ,

0, if t1 ≥ r2i .

(B12)

Note that fi is C1, since it is a composition of functions of
class C1. Moreover, we have

fi
′′(t1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ t1 < q2i ,

− τ ri

4
√
t31

, if q2i < t1 < r2i ,

0, if t1 > r2i .

(B13)

From this, we deduce that ϕ fulfils H2), at least when
|t2| ≤ s or |t2| ≥ ζ .

Now, we examine the case

s < |t2| ≤ ζ + s

2
. (B14)

We have

ψ ′
t2(t1) =

(
1 − 2(|t2| − s)2

(ζ − s)2

)
f ′
1(t1) + 2(|t2| − s)2

(ζ − s)2
f ′
2(t1),

(B15)

ψ ′′
t2(t1) =

(
1 − 2(|t2| − s)2

(ζ − s)2

)
f ′′
1 (t1) + 2(|t2| − s)2

(ζ − s)2
f ′′
2 (t1).

(B16)

Observe that
2(|t2| − s)2

(ζ − s)2
≥ 0. Now, we claim that

2(|t2| − s)2

(ζ − s)2
≤ 1. Indeed, since s < |t2| ≤ ζ + s

2
, then 0 <

|t2|−s ≤ ζ − s

2
<

ζ − s√
2

, and hence (|t2|−s)2 ≤ (ζ − s)2

2
,

getting the claim. Therefore, 1− 2(|t2| − s)2

(ζ − s)2
≥ 0. From this,

since f ′
i (t1) ≥ 0 for every t1 ≥ 0 and f ′′

i (t1) ≤ 0 for each
t1R

+
0 , t1 
= q1, t1 
= q2, in the case (B14) we obtain

ψ ′
t2(t1) ≥ 0 for every t1 ∈ R

+
0 , (B17)

ψ ′′
t2(t1) ≤ 0 for any t1 ∈ R

+
0 , t1 
= q1, t1 
= q2. (B18)

Note that the inequality in (B17) will be useful to prove H3).
From (B18), taking into account the continuity of ψt2 , we

deduce that ϕ satisfies H2) also in the case (B14).
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Now, we consider the case

ζ + s

2
< |t2| < ζ. (B19)

We get

ψ ′
t2(t1) = 2(|t2| − ζ )2

(ζ − s)2
f ′
1(t1) +

(
1 − 2(|t2| − ζ )2

(ζ − s)2

)
f ′
2(t1),

(B20)

ψ ′′
t2(t1) = 2(|t2| − ζ )2

(ζ − s)2
f ′′
1 (t1) +

(
1 − 2(|t2| − ζ )2

(ζ − s)2

)
f ′′
2 (t1).

(B21)

Note that
2(|t2| − ζ )2

(ζ − s)2
≥ 0. Now we claim that

2(|t2| − ζ )2

(ζ − s)2

≤ 1. Indeed, as
ζ + s

2
< |t2| < ζ , then 0 < ζ − |t2| ≤

ζ − s

2
<

ζ − s√
2

, and so (|t2| − ζ )2 ≤ (ζ − s)2

2
, getting the

claim. Thus, 1 − 2(|t2| − ζ )2

(ζ − s)2
≥ 0. From this, in the case

(B19), analogously as in the case (B14), we obtain

ψ ′
t2(t1) ≥ 0 for every t1 ∈ R

+
0 , (B22)

ψ ′′
t2(t1) ≤ 0 for any t1 ∈ R

+
0 , t1 
= q1, t1 
= q2. (B23)

From (B23) and thanks to the continuity of ψt2 , it follows
that ϕ satisfies H2) also in the case (B19).

Now we prove that ϕ satisfies H3).
First, when |t2| ≤ s or |t2| ≥ ζ , observe that it is readily

seen that gi is non-decreasing on R
+
0 for i = 1, 2. Hence,

ψt2 is non-decreasing on R+
0 , and thus H3) holds.

Moreover, when t2 satisfies the case (B14) or the case
(B19), from (B17) and (B22) it follows that ψt2 is non-
decreasing on R

+
0 , and hence ϕt2 is too. Thus, ϕ fulfils H3).

Now we prove H4). That ϕ satisfies H4) is a consequence

of the fact that lim
t1→+∞

fi (t1)

t1
= 0.

Now we prove H5). Let

a(t1) = 2
g2(t1) − g1(t1)

(ζ − s)2
, t1 ∈ R.

First of all, observe that ϕ(r2, s) = g1(r2) = α, ϕ(r2, ζ ) =
g2(r2) = α+ε 
= ϕ(r2, s). Thus, the function t2 �→ ϕ(r2, t2)
is not constant. Moreover, it is easy to see that the function
ϕt1(t2) is even on [−t, t] for every t1 ∈ R

+
0 , since it depends

on |t2|. Furthermore, it is not difficult to check that

g2(t1) ≥ g1(t1) for every t1 ∈ R
+
0 . (B24)

Let t2 ∈ [0, t]. We get

ϕt1
′(t2) = −2(t2 − s)2

(ζ − s)2
g1(t1) + 2(t2 − s)2

(ζ − s)2
g2(t1) (B25)

in the case (B14), and

ϕt1
′(t2) = −2(t2 − ζ )2

(ζ − s)2
g1(t1) − 2(t2 − ζ )2

(ζ − s)2
g2(t1) (B26)

in the case (B19). From (B24), (B25) and (B26) it follows that
ϕ′
t1(t2) ≥ 0 for each t2 ∈ [0, t]. By arbitrariness of t1 ∈ R

+
0 ,

we deduce that ϕ satisfies H5).
Now, we observe that the functions ϕ(p), p ∈ [0, 2],

satisfy conditions Hj), j = 1, . . . , 4, since they are non-
negative linear combinations of functions satisfying Hj),
j = 1, . . . , 4. Since ϕt1 and ϕt1 are non-decreasing for each
t1 ∈ R

+
0 , ϕt2 and ϕt2 are non-decreasing for every t2 ∈

[−t, t], and the functions t2 �→ ϕ(q2, t2), t2 �→ ϕ(r2, t2) are
not constant, it follows that for every p ∈ [0, 2] there exists at
least a t1 ∈ R

+
0 such that the function t2 �→ ϕ(p)(t1, t2) is not

constant. The other properties of H5) hold because the ϕ(p)’s
are non-negative linear combinations of functions satisfying
H5). ��

Appendix C: Convergence of the NL-SOR
Algorithm

To minimize each approximation E (p), p ∈ [0, 2], we use
the NL-SOR algorithm, described in Subsection 4.1.

We will prove the existence of suitable limit points, which
are stationary points of E (0) (in general, they are not min-
imum points of E (0)). In [16, Theorem 2] the convergence
of the algorithm is proved when E (0) is strictly convex and
of class C2. Such assumptions are too strong for the com-
ponentwise convex approximation of the regularization term
in our setting because we deal with functions of class C1.
So, we give an extension of the theorem under these weaker
hypotheses.

First, we state the following technical lemma,whose proof
is given in [28, Lemma 2.7.1].

Lemma 2 Letφ : [x0, x] → R be convex, of classC1, having
both left and right second derivative on [x0, x]. Suppose that
φ is second differentiable on [x0, x] \ P, where P = {x j :
j = 1, . . . , N }, with x0 < x1 < . . . < xN < x.
Then, for every x ∈ [x0, x] there exist ξ ∈]x0, x[ and

μ ≥ 0, such that

μ ∈ Iξ = [min{φ′′−(ξ), φ′′+(ξ)},max{φ′′−(ξ), φ′′+(ξ)}]
(C27)

123



Journal of Mathematical Imaging and Vision

and

φ(x) = φ(x0) + (x − x0)φ
′(x0) + (x − x0)2

2
μ. (C28)

Observe that when p = 0, the NL-SOR can be formulated
as inAlgorithm3.At the iterate l ∈ N, fixed i ∈ 1, 2, . . . , 3m
and e ∈ {r , g, b}, the vector x(l,i,e) is defined by

(x (l,i,e))
(q)
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(xprec(l,i,e))(q)
j if i 
= j or q 
= e,

(xprec(l,i,e))(q)
j − ω

T

∂E (0)(xprec(l,i,e)
)

∂x (e)
i

if i = j and q = e,
(C29)

where

xprec(l,i,e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(l,i,e−1) if e 
= r;

x(l,i−1,b) if i 
= 1, e = r;

x(l−1,nm,b) if i = 1, e = r .

(C30)

Algorithm 3 NL-SOR algorithm

Input: An energy function E (0);
Output: An estimation of the minimizer x(l,i,e);
1: given the initial vector x(0,mn,b)

2: for l = 1, 2, . . . do
3: for i = 1, 2, . . . , nm do
4: for e = r , g, b do
5: set the vector x(l,i,e) ∈ R

3mn as in Eq. (C29);
6: end for
7: end for
8: end for

Algorithm 3 allows to denote the image vectors actually
defined at each iterate l, at every pixel i and at each color e.
We observe that the algorithm here proposed is a particular
case of that given in Subsection 4.1, and has been suitably
modified in order to give a rigorous definition of the image
vector x at every iterate l, at every pixel i and at each color
e.

Moreover, fixed the step (l, i, e), let x(l,i,e)\(x (l,i,e))
(e)
i ∈

R
3nm−1 be the vector whose elements are those of x(l,i,e)

except (x (l,i,e)))
(e)
i . The value of this pixel (x (l,i,e)))

(e)
i is an

unknown variable, which we call z. For each fixed value of
x(l,i,e)\(x (l,i,e)))

(e)
i , let us define the following energy func-

tion E
(l,i,e) : R → R by

E
(l,i,e)

(z) = E (0)(x(l,i,e) \ (x (l,i,e)))
(e)
i , z). (C31)

Theorem 3 Let E (0) : R3nm → R be a function of class C1

and coercive, that is

lim‖x‖→+∞ E (0)(x) = +∞; (C32)

fix x(0,nm,b) ∈ R
3nm, and let {x(l,i,e)}, l ∈ N, i =

1, 2, . . . , 3m, e ∈ {r , g, b}, be the sequence defined itera-
tively in (C29), where 0 < ω < 2 and

T > max
i=1,2,...,nm,e=r ,g,b

max
x

{
∂2+E (0)(x)

(∂x (e)
i )2

,
∂2−E (0)(x)

(∂x (e)
i )2

}

.

(C33)

Let E
(l,i,e) : R → R be the function defined in (C31).

Assume that E
(l,i,e)

is convex, admits both left and right
derivative on R and is not secondly differentiable (at most)
at a finite number of points.

Then, lim
(l,i,e)

∇E (0)(x (l,i,e)) = 0.

Proof We begin by proving that, during the updating of

(x (l,i,e)))
(e)
i , the function E (0) is non-increasing.

If

E
(l,i,e)′

((xprec(l,i,e)))
(e)
i ) = 0, (C34)

then, since in (C29) it is (xprec(l,i,e)))
(e)
i = ∂E (0)(xprec(l,i,e)

)

∂x (e)
i

,

we get

(x(l,i,e))
(e)
i = (xprec(l,i,e))(e)i (C35)

and hence x(l,i,e) = xprec(l,i,e), Moreover, the value of the
energy function does not change.

Now, we treat the case when

(xprec(l,i,e)))
(e)
i 
= 0. (C36)

Note that, by (C32), we get

lim
z→+∞ E

(l,i,e)
(z) = lim

z→−∞ E
(l,i,e)

(z) = +∞, (C37)

that is the function E
(l,i,e)

is coercive on R. Since E
(l,i,e)

is
also continuous, then, by [5, Theorem 2.32], E

(l,i,e)
assumes

the minimum value, say (t∗)(l,i,e).
We get that, for any t > (t∗)(l,i,e), the level set Lt = {z ∈

R : E (l,i,e)
(z) = t} has exactly two points, and E

(l,i,e)
(z) <

t whenever z is in the interior of the interval whose endpoints
are the elements of Lt .

Now we claim that, for every t > (t∗)(l,i,e), the level set
Lt = {z ∈ R : E (l,i,e)

(z) = t (l,i,e)} has exactly two points.
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Since E
(l,i,e)

is convex and differentiable, we get that

E
(l,i,e)

(z) = (t∗)(l,i,e) if and only if E
(l,i,e)′

(z) = 0. From

the continuity of E
(l,i,e)

and (C32) it follows that E
(l,i,e)

assumes all values t ∈ [(t∗)(l,i,e),+∞[. Since E
(l,i,e)′

is

non-decreasing, then E
(l,i,e)′

is positive (resp. negative), and

hence E
(l,i,e)

is strictly increasing (resp. decreasing) at all
greater (resp. smaller) points than the minimum points of

E
(l,i,e)

. Thus, E
(l,i,e)

assumes each value t > (t∗)(l,i,e)
exactly two times, getting the claim.

Set t (l,i,e) = E
(l,i,e)

((xprec(l,i,e)))
(e)
i ), and Lt (l,i,e) =

{(xprec(l,i,e)))(e)i , z(l,i,e)}, where E
(l,i,e)

(z(l,i,e)) = t (l,i,e).
Without loss of generality, let us consider the case

z(l,i,e) < (xprec(l,i,e)))
(e)
i . Note that, in this case, E

(l,i,e)′

(z(l,i,e)) < 0, while E
(l,i,e)′

((xprec(l,i,e)))
(e)
i ) > 0.

By hypothesis, taking into account that E
(l,i,e)

is of
class C1, from Lemma 2 applied to the interval [z(l,i,e),
(xprec(l,i,e)))

(e)
i ]we find ξ ∈]z(l,i,e), (xprec(l,i,e)))(e)i [ andμ ≥

0, such that

min{E (l,i,e)′′
−(ξ), E

(l,i,e)′′
+(ξ)}

≤ μ ≤ max{E (l,i,e)′′
−(ξ), E

(l,i,e)′′
+(ξ)} (C38)

and

E
(l,i,e)

(z(l,i,e)) = E
(l,i,e)

((xprec(l,i,e)))
(e)
i ) +

+E
(l,i,e)′

((xprec(l,i,e)))
(e)
i )

×(z(l,i,e) − (xprec(l,i,e)))
(e)
i )

+1

2
μ (z(l,i,e) − (xprec(l,i,e)))

(e)
i )2.

Since E
(l,i,e)

((xprec(l,i,e)))
(e)
i ) = E

(l,i,e)
(z(l,i,e)), then we

have

E
(l,i,e)′

((xprec(l,i,e)))
(e)
i ) (z(l,i,e) − (xprec(l,i,e)))

(e)
i ) +

+1

2
μ (z(l,i,e) − (xprec(l,i,e)))

(e)
i )2 = 0. (C39)

Note that from (C38) and (C33) we get

μ ≤ T . (C40)

Nowwe claim thatμ > 0. Indeed, ifμ = 0, then from (C39)
we get

E
(l,i,e)′

((xprec(l,i,e)))
(e)
i ) (z(l,i,e) − (xprec(l,i,e)))

(e)
i ) = 0,

and hence z(l,i,e) = (xprec(l,i,e)))
(e)
i , because E

(l,i,e)′

((xprec(l,i,e)))
(e)
i ) > 0. This is absurd because z(l,i,e) <

(xprec(l,i,e))
(e)
i . Therefore, we get the claim. From (C39), we

obtain

(xprec(l,i,e)))
(e)
i − z(l,i,e) = 2

μ
E

(l,i,e)′
((xprec(l,i,e)))

(e)
i ).

(C41)

We recall that, by (C29), it is

(x (l,i,e)))
(e)
i = (xprec(l,i,e)))

(e)
i − ω

T
E

(l,i,e)′
((xprec(l,i,e)))

(e)
i ).

(C42)

Since 0 < ω < 2, from (C40), (C41) and (C42) we have

0 < (x (l,i,e)))
(e)
i − xprec(l,i,e))

(e)
i = (x (l,i,e)))

(e)
i =

= ω

T
E

(l,i,e)′
((xprec(l,i,e)))

(e)
i ) <

2

T
E

(l,i,e)′
(xprec(l,i,e))

(e)
i ) ≤

≤ 2

μ
E

(l,i,e)′
(xprec(l,i,e)))

(e)
i = (xprec(l,i,e)))

(e)
i − z(l,i,e).

(C43)

From (C43) it follows that

z(l,i,e) < (x (l,i,e)))
(e)
i < (xprec(l,i,e)))

(e)
i when z(l,i,e)

< (xprec(l,i,e)))
(e)
i . (C44)

Analogously, it is possible to prove that

z(l,i,e) > (x (l,i,e)))
(e)
i > (xprec(l,i,e)))

(e)
i when z(l,i,e)

> (xprec(l,i,e)))
(e)
i . (C45)

Thus, in the case (C36), we get

E
(l,i,e)

((x (l,i,e)))
(e)
i ) < E

(l,i,e)
((xprec(l,i,e)))

(e)
i ). There-

fore, in both cases (C34) and (C36), the sequence {E (l,i,e)

((x (l,i,e)))
(e)
i )}, l ∈ N, i = 1, 2, . . . , nm, e ∈ {r , g, b}, is

non-increasing. Since E (0) is bounded from below, then the

sequence {E (l,i,e)
((x (l,i,e)))

(e)
i )}, l ∈ N, i = 1, 2, . . . , nm,

e ∈ {r , g, b}, is non-increasing, and hence it is convergent.

Now, we claim that the sequence {(x (l,i,e)))
(e)
i −

(xprec(l,i,e)))
(e)
i }, l ∈ N, i = 1, 2, . . . , nm, e ∈ {r , g, b},

converges to 0.
Fix l ∈ N, i = 1, 2, . . . , nm, e ∈ {r , g, b}. If

E
(l,i,e)′

((xprec(l,i,e)))
(e)
i ) = 0, then, as seen in (C35), we get

(x (l,i,e)))
(e)
i = (xprec(l,i,e)))

(e)
i .

Now, we consider the case when E
(l,i,e)′

((xprec(l,i,e)))
(e)
i )


= 0. By an argument similar to that used in the proof of [16,
Theorem 2], from Lemma 2 applied to the interval whose

123



Journal of Mathematical Imaging and Vision

endpoints are (x (l,i,e)))
(e)
i and (xprec(l,i,e)))

(e)
i , we find a non-

negative real number μ with

E
(l,i,e)

((xprec(l,i,e)))
(e)
i ) − E

(l,i,e)
((x (l,i,e)))

(e)
i )

= E
(l,i,e)′

((xprec(l,i,e)))
(e)
i )((xprec(l,i,e)))

(e)
i − (x (l,i,e)))

(e)
i )

− μ

2
((x (l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2. (C46)

From (C42) we get

(x (l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i =

= ((x (l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i )2

× T

ω E
(l,i,e)′

((xprec(l,i,e)))(e)i )

. (C47)

From (C46) and (C47) we obtain

0 < E
(l,i,e)

((xprec(l,i,e)))
(e)
i ) − E

(l,i,e)
((x (l,i,e)))

(e)
i ) =

= T

ω
((x (l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2

−μ

2
((x (l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2 =

=
(
T

ω
− μ

2

)
((x (l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2. (C48)

As 0 < ω < 2 and 0 ≤ μ < T , we get

T

ω
− μ

2
≥ T

(
1

ω
− 1

2

)
> 0. (C49)

From (C48) and (C49) we obtain

0 ≤ ((x (l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i )2 ≤

≤ 2ω

T (2 − ω)
(E

(l,i,e)
((xprec(l,i,e)))

(e)
i )

−E
(l,i,e)

((x (l,i,e)))
(e)
i ) ). (C50)

Note that (C50) holds also when E
(l,i,e)′

((xprec(l,i,e)))
(e)
i ) =

0. Thus, in both cases (C34) and (C36), from (C50) and the

convergence of the sequence {E (l,i,e)
((x (l,i,e)))

(e)
i )}, l ∈ N,

i = 1, 2, . . . , nm, e ∈ {r , g, b}, it follows that the sequence
{(E (l,i,e)

((xprec(l,i,e)))
(e)
i ) − E

(l,i,e)
((x (l,i,e)))

(e)
i ) )}, l ∈ N,

i = 1, 2, . . . , nm, e ∈ {r , g, b}, converges to 0. From this, it
follows that

lim
(l,i,e)

( (x (l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i ) = 0, (C51)

getting the claim.

From (C29) we deduce

(x (l,i,e))
(q)
j − (xprec(l,i,e))(q)

j = −ω

T

∂E (0)(xprec(l,i,e)
)

∂x (e)
i

.

(C52)

By arbitrariness of i ∈ {1, 2, . . . , nm} and e ∈ {r , g, b},
from (C51) and (C52) we deduce that lim

(l,i,e)
∇E (0)(x (l,i,e))

= 0, that is the assertion. ��

Appendix D: Componentwise Convexity of
the First Approximation

Now,we prove that the first approximation is componentwise
convex.

Theorem 4 When p = 0, the function E (p) in (15) is com-
ponentwise convex.

Proof We recall that ϕ is componentwise convex onR2 with
respect to t1 and t2. Fix k ∈ {1, 2, 3} and c ∈ Ck , and choose
	k

c ∈ {Nk
c , V k

c }.
Now we claim that the function x �→ ϕ(	k

cx, 	πk (c)x)
is componentwise convex concerning the components of
x ∈ R

3nm . Indeed, fix x (e)
i, j with i ∈ {1, 2, . . . , n}, j ∈

{1, 2, . . . ,m} and e ∈ {r , g, b}.
Now we prove the convexity of ϕ with respect to the vari-

able x (e)
i, j , in the following three cases:

I) (i, j) /∈ c ∪ πk(c);
II) (i, j) ∈ c;
III) (i, j) ∈ πk(c).

We observe that it is impossible that (i, j) ∈ c∩πk(c), thanks
to our definition of πk(c).

Fix arbitrarily u, w ∈ R and t ∈ [0, 1].
In case I), note that	k

cx and	k
πk (c)

x are independent of the

value of the variable x (e)
i, j . So, we get the function ϕ evaluated

in 	k
c , where all pixels are fixed except x (e)

i, j .

Fixed an imagex, letx\x (e)
i, j ∈ R

3nm−1 be the vectorwhose

elements are those of x with the exception of x (e)
i, j . Observe

that the value of this pixel x (e)
i, j is an unknown variable. We

have:

ϕ(	k
c(x \ x (e)

i, j , x
(e)
i, j

= tu + (1 − t)w),	k
πk (c)

(x \ x (e)
i, j , x

(e)
i, j = tu + (1 − t)w)) =

= t ϕ(	k
c(x \ x (e)

i, j , x
(e)
i, j = u), 	k

πk (c)
(x \ x (e)

i, j , x
(e)
i, j = u))

+(1 − t)ϕ(	k
c(x \ x (e)

i, j , x
(e)
i, j = w),

×	k
πk (c)

(x \ x (e)
i, j , x

(e)
i, j = w)),
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since

	k
c(x \ x (e)

i, j , x
(e)
i, j = a) = 	k

c(x \ x (e)
i, j , x

(e)
i, j = b) and

(D53)

	k
πk (c)

(x \ x (e)
i, j , x

(e)
i, j = a) = 	k

πk(c)
(x \ x (e)

i, j , x
(e)
i, j = b)

(D54)

for each a, b ∈ R.
Now we deal with the case II).

It is not difficult to see that since the finite difference oper-
ators Dk

c are linear and the norm ‖ · ‖2 is a convex function,
the operators 	k

c and 	πk(c) are convex on their domain. We
get

ϕ(	k
c(x \ x (e)

i, j , x
(e)
i, j

= tu + (1 − t)w),	k
πk (c)

(x \ x (e)
i, j , x

(e)
i, j = tu + (1 − t)w)) ≤

≤ ϕ(t 	k
c(x \ x (e)

i, j , x
(e)
i, j = u) + (1 − t)	k

c(x \ x (e)
i, j , x

(e)
i, j = w),

× 	k
πk (c)

(x \ x (e)
i, j , x

(e)
i, j =

= tu + (1 − t)w)) ≤
≤ t ϕ(	k

c(x \ x (e)
i, j , x

(e)
i, j = u),	k

πk (c)
(x \ x (e)

i, j , x
(e)
i, j = u))

+ (1 − t)ϕ(	k
c(x \ x (e)

i, j , x
(e)
i, j = w),

× 	k
πk (c)

(x \ x (e)
i, j , x

(e)
i, j = w)). (D55)

The first inequality in (D55) holds, since 	k
c is (globally)

convex. Note that ϕ is increasing in the first component.
Furthermore, the third inequality in (D55) follows from

(D54), since the function (t1, t2) �→ ϕ(t1, t2) is component-
wise convex with respect to the variables t1 and t2, and since
(i, j) /∈ πk(c).

Case III) is analogous to the case II). Thus, the assertion
follows.
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