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Abstract— Mobile Edge Computing (MEC) opens to the 

possibility of moving high-volumes of data from the cloud to 

locations where the information is actually accessed. In turn, the 

combination of MEC with the Mobile CrowdSensing approach 

further increases the performance of sensing platforms designed 

to collect data produced by the crowd through wearable devices. 

In this work, we envision a MEC architecture composed by mobile 

and fixed edges. Their goal is to optimize the share of contents 

among users by exploiting their mobility and sociality. We first 

present an algorithms to identify a suitable set of mobile edges and 

we show how such selection increases the performance of a 

content-sharing scenario. Our experiments are based on the 

ParticipAct dataset, which captures the mobility of about 170 

users for 10 months. The experiments show that the number of 

requests that can be served mobile edges is similar to that of 

requests served by fixed edges, and then that mobile edges can be 

considered a viable (and low-cost) alternative to fixed edges. 

Keywords—Mobile Crowdsensing, Human-driven Edge 

Computing, Social Mobility 

I. INTRODUCTION  

Interconnectivity is the keyword of the new millennium. 
Cities are slowly but progressively changing their geopolitics 
on the basis of new connection opportunities. But these aside, 
we live in an era where every object of some usefulness, 
indistinguishably, may be connected to the Internet. In this 
reference scenario, smartphones and wearable devices in 
general play an important role. These tools, emancipated from 
the primeval functionalities of means of communication 
between individuals, are equipped with short range 
communication interfaces allowing the exchange of 
information with each other, even in absence of any physical 
network infrastructure. As technology advances, new 
generations of sensors are embedded in these devices. 
Magnetometers, gyroscopes, accelerometers and many other 
sensors embedded in all personal devices and capable of 
collecting information at the location in which they are placed 
give rise to a limitless amount of data gathering. The enormous 
number of devices pervading the environments in which we 
move makes possible to exploit the people roaming in a 
seamless way by amplifying the collection and exchange of 
information through Mobile Crowd Sensing (MCS) platforms. 
In parallel Mobile Edge Computing (MEC), a recent 
technology evolving the two-layer cloud device integrational 

model, has lightened the computational load entrusted to 
devices. The idea behind this study aims at developing an 
additional information exchange model characterized by the 
synergistic use of MCS technology and MEC architecture to 
ease data dissemination through and among devices, whether 
fixed or mobile. In our previous work we proposed a Human-
driven Edge Computing (HEC) model [1] to ease the 
deployment of MEC platforms and improve their scalability, 
and enabling more powerful MCS applications to dynamize an 
otherwise static information exchange platform. To enhance the 
information interchange between the cloud and personal 
devices, HEC flanks to the fixed network edges (FMEC) of 
basic MEC models, temporary mobile edges (M2EC) selected 
within nodes of the network in a non-arbitrary way. It is 
possible to identify a M2EC entity as a middleware proxy 
dynamically activated in places where people tend to stay for a 
while. By doing so, the standard three-layer hierarchical MEC 
architecture is enhanced in its middleware part with the 
introduction of a new kind of edges acting as good as the fixed 
ones overcoming issues related to social and spatial coverage. 
In this context, the selection of M2ECs among network nodes is 
critical, and should privilege nodes that have better chances of 
data exchange with other nodes. 

In this paper we propose a new algorithm for the selection 
of M2ECs. The algorithm exploits the knowledge of the MEC 
users ties and communities to select the users that are better 
connected to a large fraction of other users as possible (i.e. users 
that are central to the community of users of the MCS). This 
because the devices of the selected users will also have a higher 
chance of being connected and thus to exchange data with a 
larger fraction of devices in the MCS, thus facilitating the flow 
of data to the M2EC and, in turn, to the cloud. We assess this 
“social-aware” selection strategy of M2EC by testing it over a 
dataset obtained from the ParticipAct MCS platform, and we 
show that the M2EC mobile edges can reach the same 
performance in terms of collected data of the FMEC. 
Considering that M2EC mobile edges are chosen among the 
devices of participants, they do not require maintenance and 
they can also change frequently to avoid overburdening the 
single device, the use of M2EC mobile edges is thus a viable 
and low-cost alternative to fixed edges in the design of MCS 
platforms. 



II. RELATED WORK 
 

Without claiming completeness, in the following we briefly 
report some related work to build the needed background and 
have a prospect of the current state of the art of MCS, MEC and 
its evolution toward more dynamic HEC models able to 
leverage human mobility and sociality features.  

Starting from MCS, in recent years, the widespread 
diffusion of mobile and wearable device paved the way to MCS 
as a new paradigm for collecting and sharing data. Leveraging 
human mobility and the pervasiveness of devices equipped with 
both sensors and short-range communication interfaces, MCS 
has opened new horizons to participatory and opportunistic 
sensing [2]. Some good and exhaustive surveys about more 
consolidated aspects in MCS area are available and address 
more consolidated aspects such as mobile crowd sensing and 
computing, user recruitment, as well as the idea of anticipatory 
mobile computing and networking to study repetitive user 
patterns and behaviors [3, 4, 5]. Recent efforts are aiming at 
tackling some still open issues in the area. Focusing on energy 
consumption, users who take part into-the-wild MCS 
campaigns often complain about energy consumption of their 
devices’ battery [6], and a feasible context-aware solution to the 
problem is provided in [7]. Another hot topic is data quality. In 
fact, due to the low level of confidentiality in data exchange and 
data collection, the massive involvement of MCS volunteers is 
another very debated problem and recently some different 
solutions are emerging [8,9]. Environmental coverage is 
another timely and important aspect characterizing any MCS 
campaign and possible solutions to overcome this issue are 
suggested in [10].  

Moving to MEC related efforts, MEC introduces a 
middleware layer as intermediary between the cloud and mobile 
devices. MEC aims at lightening the computational load 
entrusted to devices and a high responsiveness at the edge of 
the network deploying virtualized cloud resources at base-
stations, thus approaching the computational capability from 
the cloud towards devices [11]. The main benefit of the MEC 
intermediate level is the reduction of computational costs and, 
from a communications perspective, the decrease of network 
load. One of the main shortcomings of MEC is that installation 
and maintenance operations of network edges have not 
negligible costs [12]. To overcome that issue, we recently 
explored the possibility of leveraging new research trends at the 
crossroads of MCS and mobile social networking to facilitate 
the identification and impromptu formation of M2EC (as a low-
cost alternative to traditional FMEC) [1].  

Making a step further along the same direction, we conclude 
this section reporting some seminal activities about the proposal 
of the new HEC architectural model. In this new emerging area, 
the MEC/fog literature has already produced some relevant 
modeling work and some seminal design/implementation 
results. Narrowing to efforts close to ours, as reported in [13], 
some first exploratory research activities have considered 
cooperation issues between edges and the core, but only a very 
few works concentrated on the opportunities of having 
cooperation between devices and the edges. Considering MCS 
as an application scenario, [14] and [15] propose to enhance the 
MCS process by leveraging intermediate MEC nodes, namely, 

FMECs, to boost data upload from mobile nodes to the 
infrastructure [14] and to provide more computing/storage 
capabilities closer to end mobile devices [15]. A very recent and 
interesting work, the closest to our HEC concept for what 
relates to enabling more collaboration between entities co-
located at edges is [16]: it proposes not only to have the 
traditional “vertical” collaboration between devices, MEC, and 
cloud level, but also an “horizontal” collaboration between 
entities at the same level via ad-hoc communications; however, 
it neglects humans and social/mobility effects, namely, there is 
no idea to dynamically identify and impromptu form M2ECs as 
in our novel HEC proposal. 

III. M2EC SELECTION ALGORITHM 

In our architecture, M2EC are personal devices that, for a 
limited period, act as edges of the MEC architecture, to extend 
the coverage already offered by FMECs by providing the same 
services of the FMECs (or a subset of such services) to the other 
users’ devices. Being a personal device of a user, a M2EC is 
mobile and, for this reason, it covers a region of the spatio-
temporal domain, according to its mobility. Consequently, it 
can provide its services to the devices that it encounters, i.e. that 
come within its low-range communication interface.  

However, due their nature of being mobile devices carried 
by users, their opportunities of communication with other 
devices depend very much on the mobility of the users and on 
their relationships with other users of the MCS. For this reason, 
the selection of M2EC should privilege devices of users that are 

Algorithm 1 - M²EC detection 

Let S be a strong community set {S1, …, Sn} of a given CS 

For all Si ∈ S do 

   Let Ei be the ego network of Si  

   For all uj∈ Si do 

 Bj =  betweenness_centrality (ui, Ei) 

   Mi = {argmax(Bj)}      // M is the M2EC candidate for Si  

Sort {Ei}   // without loss of generality we assume that 

                 //  | Ei |≥ | Ej | iff i<j 

Select as M2EC the first k nodes M1,…,Mk such that: 

- | E1 ∪ … ∪ Ek | ≥ α 

- | E1 ∪ … ∪ Ek+1 | – | E1 ∪ … ∪ Ek | ≤ β 

 

 

Fig. 1 Strong communities detected with TILES. 



more “social”, i.e. that have frequent encounters with a larger 
number of other users. In other words, we aim at selecting 
M2EC to increase the social coverage of the MEC 
infrastructure, thus overcoming the limits of current MEC 
architectures due to their lack of human-based, mobile 
structures. To this purpose, we define al algorithm for M2EC 
selection that leverages social relationship among individuals. 
It is a fact that people move from one place to one another based 
on their habits and duties, and it is an equally consolidated fact 
that people forge social relationships on the basis of 
aggregational factors as gender, ethnicity, and so on [17]. 
Communities of our interest are those closely linked from these 
ties (Fig. 1 shows a graphical representation of the communities 
we detected with the dataset used - see Section IV-B). It is 
assumed that each community has within it a very limited 
number of nodes more cohesive than others, which form a 
strong community. These strong communities are the starting 
point for selecting M2ECs. Once a strong community of nodes 
have been identified, for each node we find the egocentric 
network, namely the set of nodes having ties with it (the union 
of the ego-networks of the nodes in a strong community forms 
an extended community).  Then, we chose the representative 
node of the extended community between the nodes in the 
strong community based on the higher number of contacts with 
the extended community. Specifically, we use the betweenness 
centrality [18] to find such representative node of the extended 
community: that node is the candidate to become M2EC of that 
community. These steps for the selection of M2ECs are 
summarized in Algorithm 1. 

In principle, the candidate for each strong community may 
be selected to become a M2EC, however, for efficiency reason, 
we select among these only those that contribute to the 
maximization of the social coverage of the system. To this 
purpose, we sort the ego networks according to their size, and 
we assign the role of M2EC to the candidates of the first k ego 
networks such that the union of the selected ego networks is 
above a given threshold α, and the contribution of the k+1 ego 
network to the union of the selected ego network is below a 
threshold β. The parameters α and β express a fraction of the 
entire population of the system and they are configured to avoid 
the inclusion as M2EC of nodes that do not allow a significant 
increment of the coverage of the M2EC.  

The algorithm M2EC detection assumes that the 
communities and the strong communities are known. To this 

purpose, it keeps a social relation graph based on proximity 
factors among users. Specifically, the proximity among nodes 
is computed by taking measurements of distance through either 
GPS or devices’ short-range communication interfaces as Wi-
Fi in Direct mode or Bluetooth. To find the communities and 
the strong communities, it is possible to use any community 
detection algorithm. In our case, we used TILES [19], which is 
an algorithm for community discovery in dynamic social 
networks. In brief, TILES extracts overlapping communities 
tracking their evolution in time by a procedure based on pattern 
recognition. It uses a domino effect strategy re-computing nodes 
community membership whenever a new interaction occurs, 
and it does not impose fixed temporal thresholds for the 
partition of the network and the extraction of communities. An 
important feature is that TILES does not exclude from the 
computation overlapped communities, which means that each 
strong community node can belong to different strong 
communities. The latter represents the different spheres of the 
social world an individual belongs to.  

IV. EXPERIMENTAL SETTINGS  

In the following, we describe the ParticipAct dataset used 
for our experiments, we present our experimental settings and 
we describe the results obtained in different scenarios.  

A. The ParticipAct Dataset 

The ParticipAct [20, 21] project provides a mobility dataset 
from the Emilia Romagna Region (Italy). The dataset covers 
approximately 15 months, from December 2013 to February 
2015. To the purpose of this work, we restrict our observation 
up to October 2014 (10 months of observation period). The 
ParticipAct users use Android-based smartphones provisioned 
with the ParticipAct mobile app. The app is able to periodically 
compute the user position by exploiting the Google location 
APIs. The location is obtained by fusing together information 
coming from GPS, WiFi Hot Spot coordinates or cell phone 
base station. Each user’s devices report its positions with a 
sampling period of 2.5 minutes. Users are mostly students of 
the University of Bologna, Italy. Therefore, their mobility 
strictly follows the mobility patterns of university students. 
Some of them commute daily from rural to urban areas, while 
other users roam most of the time inside the city center.  

We extract from the ParticipAct dataset the co-location 
trace of the users, which does not track the global or the relative 
position of a device but, rather, tracks the start and end time of 
a contact between a device pair with a given time resolution. 
Therefore, the co-location trace can be considered as a time-
evolving graph in which nodes are the user’s devices and the 
edges report, at a given time, the connection between a pair. We 
consider that a device pair is in contact if the lie within 10 
meters for at least a time slot of 2.5 minutes.  

B. Simulation experiments 

To test the efficiency of the selection algorithm presented in 
Section III, we exploit the co-location traces of the ParticipAct 
dataset, involving about 170 students. We restrict the location 
of the experiment to the city of Bologna for a period of 30 days. 
Specifically, our analysis covers from May 31 to June 30, 2014. 
We select such period in order to measure the performance of 
our architecture during a period in which students have 

TABLE I.   

Property Value 

α-value 70 

Β-value 5 

Dataset ParticipAct 

Algorithm M2EC detection 

Observation time 30 days 

Location 
Bologna (Italy) 

Lat   45° 27’ 55.6’’ 
Lon    9° 11’ 11.4’’ 

Number of participants 170 

Observation period 30 days 

Requests generated  5x103 

 



meaningful social interactions with other students. The goal of 
our experiments is twofold. On one hand we want to select 
FMECs and M2ECs with the algorithm presented in Section III, 
evaluating, in turn, the average latency of the requests satisfied 
by each kind of edge. On the other hand, we want to assess the 
performance of the M2ECs in satisfying the requests raised by 
nodes belonging to the respective ego networks. Tab. 1 reports 
the configuration of our experiment. 

We compare the results obtained in three different 
scenarios. Specifically, we consider a scenario in which only 
FMECs operate, a scenario in which only M2ECs operate, and 
a scenario in which we combine together FMECs and M2ECs. 
For each scenario, we consider two key metrics: latency and 
number of satisfied requests. Concerning the latency, it 
provides a measure of efficiency of our architecture in 
distributing contents of interest to nodes roaming in our 
scenario.  We measure the following latencies:  

• FMEC Latency: the average latency of requests satisfied 
by fixed edges only. 

• M2EC Latency:  the average latency of requests satisfied 
by mobile edges only. 

• FMEC & M2EC Latency: the average latency of 
requests satisfied by both fixed and mobile edges. 

For what concerns the number of requests satisfied, we 
provide an estimation of the effectiveness of our selection 
algorithm. We firstly compare the percentage of requests 
satisfied by FMECs only with the percentage of requests 
satisfied by M2ECs only. Secondly, we evaluate the 
contribution of M2ECs to our model. To this purpose, we 
measure the requests satisfied by a node belonging to the same 
community of a M2EC or by other M2ECs. Specifically, for 
each M2EC we measure the following percentages:  

• M2EC in ego, which is the ratio between the number 
of requests satisfied by a specific M2EC in its ego 
network and the total number of requests generated in 
such ego network. 

• M2EC out of ego, which is the ratio between the 
number of request satisfied by other M2ECs generated 
in its ego network and the total number of requests 
generated in such ego network. 

• Missed ego requests, which is the ratio between the 
number of unanswered requests generated in the 
M2EC ego network and the total number of requests 
generated in such ego network. 

Our experiment works as follows. We first select a number 
of points of interest in which we deploy the FMECs. We 
consider that the number of FMECs is generally limited (this is 
due to deployment requirements, installation issues and costs of 
maintenance). In our case, we consider 6 locations where to 
deploy our FMECs [1]. Concerning the deployment of the 
M2EC, we run the selection algorithm defined in Section III.  
As previously described, our algorithm relies on two key 
information: the strong communities and the centrality 
measures of nodes in ParticipAct.  

C. Simulation results 

We now present the evaluation of our solution. To this 
purpose, we consider those nodes in ParticipAct not acting as 
M2EC and let them generate requests periodically (each request 
represent the need to access an edge, either fixed or mobile, to 
upload the data produced by the devices within a MCS 
campaign). Each request represents a specific resource needed 
by a node, such as multimedia contents, textual data or sensing 
information to collect.  Moreover, each of the requests 
generated is represented as a pair: <node ID, timestamp>. We 

 

Fig. 2 Latency of FMEC combined with M2EC. 

 

 

Fig. 1 FMEC and M2EC latency. 



restrict the time of generation of the requests up to at three 
quarters of the total simulation time so that to give the time to 
all requests of being satisfied by the end of the simulation. This 
because the observation period is one month long, and the 
maximum limit for satisfying a request is one quarter of a 
month. As a result, each of the request generated has an equal 
possibility to be satisfied. For each of the requests, we measure 
its latency computed as: t’ – time, where t’ ≥ time is the time 
when the node generating the request encounters, for first time: 
a FMEC (FMEC Latency) or a M2EC (M2EC Latency) or any 
of the two previous (FM Latency). While the time variable is 
the current timestamp. The results concerning the latency 
metric are reported in fig. 1 and 2. From the two figures, it is 
clear that we obtain almost a similar trend, with long tails 
extending to the right and the majority of satisfied request 
concentrated in the first interval of time (0 – 0,5). A first general 
consideration is the following: although the number of FMEC 
acting in the simulation environment was double that of M2EC, 
the latter managed a roughly equal performance of the former 
in terms of satisfied requests.  

Fig. 2 shows the average latency obtained from the 
combination of FMEC and M2EC. It is seen that the latency has 
a negligible reduction. Such behavior is expected because the 
number of FMECs is higher than that of M2EC and their 
position is strategic in the territory. Therefore, FMECs 
generally serve the majority of nodes requests. All the 
histograms show a similar distribution, in both single and joint 
tests. Specifically, the majority of the requests raised by nodes 
in ParticipAct are satisfied in a relatively short time, by 
reporting an average latency of 1.5 days up to 7.5 days, time 
limit by which the raised request can be satisfied by fixed and 
mobile edges. Once this limit exceeds, a request is satisfied 
directly by the interaction of the nodes with the cloud without 
any communication with FMEC or M2ECs.  

Concerning the number of requests satisfied by FMECs and  
M2ECs, we observe that the FMECs answer to a higher number 
of requests with respect to the M2ECs. On average, the number 
of requests satisfied by fixed edges is 73.5%, whereas the the 
requests satisfied by mobile edge is 26.5%. We further 
investigate such percentages by running additional tests 
designed by varying the position of FMECs. We observe that , 
with specific settings, the percentage of the requests satisfied 
by M2ECs can increase up to 40.4%. 

We also study the performance of the M2EC selected. In 
particular, we measure the percentage of requests generated 
from three sources: (1) generated by nodes belonging to 
M2EC’s ego networks, (2)  generated by other M2EC and finally 
(3) generated by the ego networks nodes, but satisfied neither 
by their M2EC nor by others edges. We report in Fig. 3 the 
results for each of the 3 M2EC selected. The results show that a 
M2EC only (M2EC 82 in Fig. 3) presents a number of un-
answered requests barely higher than the number of satisfied 
ones. Whereas, all cases show a percentage of requests raised 
by an ego networks and satisfied by its own M2EC much higher 
of the percentage of requests satisfied by other M2EC. Out of a 
total of 5000 requests generated, over 3100, in several single 
and joined tests have been satisfied, with an average percentage 
of satisfied request of 62%. 

From our previous experiments, we took the following 
observations. Firstly, our M²EC detection algorithm cannot 
operate without a prior assessment of the user’s mobility. More 
specifically, the features of the human mobility can only be 
disclosed on a long-lasting data collection campaign. Datasets 
spanning for few weeks are not representative of dynamics of 
the human mobility, therefore they are useless for the selection 
of both FMEC and M²EC. Secondly, our mobile edge 
architecture relies on two key features of the human mobility: 
the spatial and the social coverage. Concerning the spatial 
coverage, we first analyze where to deploy FMECs by detecting 
those locations of ParticipAct crowded during the 24h. To this 
purpose, in [1] we describe a methodology for revealing points 
of interests by exploiting a spatial clustering algorithm. On the 
other hand, we also consider the social coverage, namely the 
capability of detecting robust communities of users in 
ParticipAct. To this purpose, we adopt the TILES algorithm as 
reported in Section III. The combination of spatial and social 
coverage allows to identify different kinds of edge nodes 
(FMEC and M²EC) acting as a bridge between the users, willing 
to access information anytime anywhere, and the cloud. A final 
consideration is related to the possibility of periodically 
electing nodes serving as M²ECs. Our results show the 
performance with a pre-defined number of M²ECs. However, 
we consider useful to study such performance with M²EC 
elected periodically, for example as soon as we detect 
significant deviations in the routine of human mobility. This is 
the case of crowded events such as sport matches, political 
meetings or anomalies in the regular traffic conditions. In these 

                           

 

Fig. 3 Performance of M2ECs  



situations, the M²EC detection algorithm presented in Section 3 
could be re-executed so that to reveal new nodes that potentially 
can be elected as M²ECs. We consider such last scenario as our 
next objective.  

V. DISCUSSIONS AND CONCLUSIONS 

In this work we have investigated the potentials of using a 
Mobile Edge Computing (MEC) architecture to support mobile 
crowdsensing platforms. The advantage of using such an 
architecture lies in the fact that it eases the data dissemination 
through and among devices, whether fixed or mobile, since all 
communications of data acquired by the MCS platform may be 
collected by the edge nodes from the personal devices of the 
users by means of short-range communication links, thus 
increasing the scalability of the architecture and with no costs 
and a lower use of the users devices’ resources as compared to 
broadband communication links. However, the introduction of 
MEC architectures pose new challenges related to the 
identification of the physical places where to install fixed edges, 
to the adaptability of the architecture to the changing user’s 
mobility, and to maintenance of the fixed edges.  

For these reasons we suggest to integrate the conventional 
architecture of MEC with mobile edges (M2EC), which are 
some selected personal devices that, for a limited period, are 
requested to act as edges with respect to the other personal 
devices involved in the MCS platform. The advantage of 
introducing such mobile edges is two-fold: on the one hand, due 
to the mobility of their users they can opportunistically meet 
other devices of the MCS platform even in places where there 
are no fixed edges (and thus provide the services of the MEC in 
a more dynamic and adaptive way). On the other hand, they do 
not add extra cost to the architecture since they do not require 
installation and maintenance, but rather they can contribute to 
reduce the need for fixed edges, thus reducing the costs of the 
platform. However, due to their nature of being users’ devices, 
they need to be selected based on the social characteristics of 
their users. In particular, their selection should privilege devices 
of users that are central to their communities and that thus have 
more chances of communication with other, non-M2EC 
devices. To this purpose, we proposed an algorithm for the 
M2EC selection that is based on the identification of 
communities of users. The results obtained by simulation over 
a mobility dataset of a real MCS platform show clearly that 
M2EC can well integrate a conventional MEC platform and, 
possibly, even replace fixed edges, thus reducing the costs of 
the overall MCS platform. 

Based on these results, we believe that M2EC-based MAC 
architectures open new and interesting perspective for the 
future MCS platforms, but they also opens new research 
challenges concerning all aspects of the architecture, from the 
balance between fixed and mobile edges, to the way in which 
M2EC interact with the rest of the platform and with fixed 
edges, to dynamic strategies for the selection of the M2EC so 
that the burden of acting as an edge is better shared among the 
users and possibly many others. Currently, we are focusing our 
research efforts on the tuning of our selection algorithm to find 
the best mix of fixed and mobile edges. 
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