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A B S T R A C T

Spatial predictions of forest variables are required for supporting modern national and sub-national forest
planning strategies, especially in the framework of a climate change scenario. Nowadays methods for con-
structing wall-to-wall maps and calculating small-area estimates of forest parameters are becoming essential
components of most advanced National Forest Inventory (NFI) programs. Such methods are based on the as-
sumption of a relationship between the forest variables and predictor variables that are available for the entire
forest area. Many commonly used predictors are based on data obtained from active or passive remote sensing
technologies. Italy has almost 40% of its land area covered by forests. Because of the great diversity of Italian
forests with respect to composition, structure and management and underlying climatic, morphological and soil
conditions, a relevant question is whether methods successfully used in less complex temperate and boreal
forests may be applied successfully at country level in Italy.

For a study area of more than 48,657 km2 in central Italy of which 43% is covered by forest, the study
presents the results of a test regarding wall-to-wall, spatially explicit estimation of forest growing stock volume
(GSV) based on field measurement of 1350 plots during the last Italian NFI. For the same area, we used potential
predictor variables that are available across the whole of Italy: cloud-free mosaics of multispectral optical sa-
tellite imagery (Landsat 5 TM), microwave sensor data (JAXA PALSAR), a canopy height model (CHM) from
satellite LiDAR, and auxiliary variables from climate, temperature and precipitation maps, soil maps, and a
digital terrain model.

Two non-parametric (random forests and k-NN) and two parametric (multiple linear regression and geo-
graphically weighted regression) prediction methods were tested to produce wall-to-wall map of growing stock
volume at 23-m resolution. Pixel level predictions were used to produce small-area, province-level model-as-
sisted estimates. The performances of all the methods were compared in terms of percent root mean-square error
using a leave-one-out procedure and an independent dataset was used for validation. Results were comparable to
those available for other ecological regions using similar predictors, but random forests produced the most
accurate results with a pixel level R2 = 0.69 and RMSE%=37.2% against the independent validation dataset.
Model-assisted estimates were more precise than the original design-based estimates provided by the NFI.

1. Introduction

Forest data are essential for multiple purposes including interna-
tional and national forest monitoring programs, reporting and assessing
forest resource distribution (e.g. Kyoto protocol) (Corona et al., 2011;
FAO, 2010), monitoring biodiversity (Chirici et al., 2012; FOREST
EUROPE, 2015), improving restoration programs (FAO and UNCCD,
2015; Smith et al., 2016) and managing at local scales to improve de-
cision-making processes, silvicultural measures, harvesting and con-
servation activities.

Usually, in the context of international and national programs, this
type of data is collected using sample-based National Forest Inventories
(NFIs) that are designed to provide aggregated estimates of forest
parameters such as forest area, growing stock volume, biomass, incre-
ments at national and regional levels (Brosofske et al., 2014; Kangas
et al., 2018). These aggregated statistics are essential to support deci-
sion-making processes and to develop strategies over large areas only,
because they just provide limited explicit geographic spatial detail, such
as large sub-national regions. In these traditional NFIs, remote sensing
is used for purposes such as initial stratification of sampling units

https://doi.org/10.1016/j.jag.2019.101959
Received 17 May 2019; Received in revised form 8 August 2019; Accepted 2 September 2019

Int J Appl  Earth Obs Geoinformation 84 (2020) 101959

Available online 03 October 2019

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).
1569-8432/ © 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 

T

https://www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2019.101959
https://doi.org/10.1016/j.jag.2019.101959
https://doi.org/10.1016/j.jag.2019.101959
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2019.101959&domain=pdf


according to their main land uses, most commonly through the use of
fine resolution remotely sensed imagery (McRoberts et al., 2009,
McRoberts et al., 2010a,b; Corona, 2010).

In countries characterized by longer NFI traditions and/or stronger
interests in the operational implementation of sustainable forest man-
agement practices such as in Sweden, Finland, Denmark (Næsset et al.,
2004; Nord-Larsen and Schumacher, 2012; Tomppo et al., 2008), Ca-
nada (Boudreau et al., 2008; Matasci et al., 2018), Austria (Hollaus
et al., 2009) and Switzerland (Waser et al., 2017, 2015), traditional
inventories are now integrated with a more advanced use of remote
sensing technology for mapping forest variables (McRoberts and
Tomppo, 2007).

Most frequently these methods are applied to construct wall-to-wall
spatial estimates of forest variables such as growing stock volume
(Nilsson et al., 2017; Nord-Larsen and Schumacher, 2012), biomass
(Nord-Larsen and Schumacher, 2012), forest cover (Waser et al., 2015),
or forest changes (Næsset et al., 2013).

Wall-to-wall forest mapping in these modern forest inventories,
sometimes characterized as Enhanced Forest Inventories (EFI) (Stinson
and White, 2018), is considered an essential component of the forest
inventory project aimed at producing forest parameter estimates at
multiple spatial scales: traditional aggregated statistics useful for na-
tional planning, and at the same time, consistent small-area estimates
for sub-national planning or even pixel-level raw data to support local
forest management (Matasci et al., 2018; McRoberts et al., 2010a,b;
Næsset et al., 2004; Nilsson et al., 2017; Tomppo et al., 2008; Waser
et al., 2015).

The EFI approach produces a variety of benefits: it is able to provide
detailed information to support decision-making and reduce the costs
for numerous forest activities including silvicultural treatments (fre-
quently in the framework of precision forestry), quantification of forest
ecosystem services, wood harvesting, and conservation strategies
(Kangas et al., 2018). The costs of the shift from a traditional NFI to an
EFI are limited, because the major required investment, the field ac-
tivity, remains the same or it may be even reduced if remote sensing is
used for the optimization of the sampling strategy. Major costs may be
related to the acquisition and elaboration of remotely sensed data.

Research activities carried out in the last 20 years demonstrated that
3D pulses from airborne laser scanning (ALS) are the most valuable data
source for enhancing of growing stock volume and other forest struc-
tural variables estimates (Kangas et al., 2018; McRoberts et al.,
2010a,b; Næsset, 2007; Nilsson et al., 2017; Montaghi et al., 2013;
Nord-Larsen and Schumacher, 2012). The optimal option for the im-
plementation of an EFI is thus the use of ALS data acquired in the same
period as the field survey.

ALS acquisition is still expensive, but ALS data are useful for a vast
array of applications in land planning, thus its cost can be shared
among multiple stakeholders and agencies. However, wall-to-wall ALS
data at country level are not yet available in several regions of Europe
such as Italy (Giannetti et al., 2018b), Spain (Fernández-Landa et al.,
2018), and most developing countries.

Together with ALS, or in case ALS is not available, satellite multi-
spectral data can also be useful, with only small costs because they are
nowadays available online for free. Barrett et al. (2016) reported in
their review that when NFI data are linked with remotely sensed data,
the most frequently used satellite systems are medium-resolution sa-
tellites with Landsat the most used. Medium-resolution satellite images
(pixel size between 20 and 30m) permit the prediction of forest vari-
ables with spatial detail relevant for forest inventories and sustainable
forest management, and also as reported by Nilsson et al. (2017), for
forest plans although forest agencies, forest companies, and forest
owner associations would prefer as fine resolution as possible (in the
range 10–30m).

Several methods produce wall-to-wall maps of forest variables from
field observations (Corona et al., 2014). Such methods are based on the
assumption that a model of the relationship between the forest

variables to be predicted and predictor variables that are available for
the entire forest area can be constructed. These methods include both
parametric (i.e. multiple linear regression, geographically weighted
regression) and non-parametric (i.e. k-NN, random forests, Artificial
Network Analysis) techniques (Barrett et al., 2016; Brosofske et al.,
2014; Chirici et al., 2016; Moser et al., 2017) and have already been
tested across different forest types and regions (Chirici et al., 2016).

All these methods have been widely applied with remote sensing-
based predictors such as 3D data (from ALS data, microwave, or pho-
togrammetry) (e.g. McRoberts et al., 2010a,b; Næsset, 2007; Nilsson
et al., 2017; Nord-Larsen and Schumacher, 2012; Persson et al., 2017;
Waser et al., 2017, 2015; Hobi and Ginzler, 2012; Ginzler and Hobi,
2015; Breidenbach and Astrup, 2012; Rahlf et al., 2014) or multi-
spectral images from aerial, manned or unmanned, or satellite plat-
forms, (e.g. Brosofske et al., 2014; Fernández-Landa et al., 2018;
Matasci et al., 2018; Reese et al., 2002).

All these approaches have already become operational for boreal
forests (Kangas et al., 2018), while in Mediterranean areas experiences
are yet limited, most probably because wood production is economic-
ally less relevant and forest composition and structure is more complex,
and thus more difficult to model.

Maselli et al. (2014) tested moderate resolution imagery from global
1 km resolution forest canopy height data from the Geoscience Laser
Altimeter System (GLAS) onboard the ICES at satellite (Ice, Cloud, and
land Elevation Satellite) for enhancing of growing stock volume esti-
mates at country-level in Italy. Fernández-Landa et al. (2018) enhanced
the estimates of the main forest inventory variables (i.e. stand density,
basal area and growing stock volume) acquired in the Spanish NFI with
Landsat images and ALS in a small study area in La Rioja (Spain).
Condés and McRoberts (2017) developed an accurate method for up-
dating NFI estimates of mean growing stock volume (m3ha−1) using
models to predict annual plot-level volume change, and for estimating
the associated uncertainties using four monospecific forest types and
Landsat images for two study areas in Spain.

Mura et al. (2015) and Bottalico et al. (2017) used ALS for enhan-
cing the estimates of structural diversity in different test areas in Italy
(i.e. Molise, Tuscany and Sardinia) using remote sensing-base estima-
tion, while Mura et al. (2018) used Sentinel-2 imagery to enhancing the
estimates of growing stock volume for two test areas in Italy.

To our knowledge country-level experiences in Mediterranean areas
have not yet been reported in the literature.

However, in Mediterranean areas there is an increasing need for
wall-to-wall forest maps because these forests are considered more
vulnerable to climate change scenarios and to natural and anthro-
pogenic disturbances such as forest fires and urban sprawl (FAO, 2013;
Scarascia-Mugnozza et al., 2000).

The current study aims at constructing wall-to-wall estimates of
forest growing stock (GSV) for a large test area (i.e. 48,657 km2) in
central Italy by combining NFI plot data, remotely sensed and auxiliary
variables. In particular, the research evaluated the most accurate im-
putation approach for mapping GSV at fine spatial resolution
(23×23m) and calculating small area estimates using a model-as-
sisted approach. The results of this experimental test are aimed at
identifying the optimal procedure for the operational GSV and biomass
estimation at country-level in Italy.

2. Materials

2.1. Study area

To test possible wall-to-wall spatial estimation alternatives at
country-level in Italy we selected a large region in central Italy in-
cluding the whole of Tuscany and most of the Emilia-Romagna and part
of the Liguria Regions for a total extent of 48,657 km2 (Fig. 1). The area
is characterized by large geographical and topographical variability
from flat coastal areas, to gentle hills, to steep mountains with elevation
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up to 2000m a.s.l. Total precipitation per year ranges between
3000mm in Alpi Apuane to 600mm in the Maremma area (south of
Tuscany), while mean temperature ranges from 6 °C in Abetone
Mountain and Camaldoli to 17 °C along the coast.

Broadleaf species such as downy oak (Quercus pubescens Willd.),
pedunculated oak (Q. robur L.), Turkey oak (Q. cerris L.) and sessile oak
(Q. petraea Liebl.) (Pecchi et al., 2019) comprise 88% of the total forest
area. The coppice management system is applied in 63% of the forests
in the study area. Dominant coniferous species, mainly in artificial

plantations, are maritime pine (Pinus pinaster Ait.) and black pine (P.
nigra Arnold). Six out of the 14 European Forest Types (Barbati et al.,
2014; Giannetti et al., 2018) are represented in the study area.

2.2. Italian national forest inventory data

The field reference data for the study area were acquired for 1350
plots measured in the framework of the 2nd Italian NFI (INFC, 2004)
(Fig. 1) which is based on a three-phase, non-aligned, systematic

Fig. 1. Study area location (red boundary) and spatial distribution of NFI plots (INFC, 2004). Values of GSV in m3 ha−1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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sampling design (Fattorini et al., 2006). Sampling units are located
randomly within 1-km x 1-km grid cells, and in the first phase are
classified on the basis of land use using aerial photos. For a subsample
of the first-phase forest sampling units, qualitative information such as
forest type, management, and property is collected during a terrestrial
survey. For a subsample of the second-phase units, a quantitative
survey is carried out in the field using circular 13m radius plots (i.e.,
530m2). The first two phases are aimed at estimating the forest area
and classifying it into forest categories, while the third phase is aimed
at collecting observations and measurements for biophysical variables.
The plot data used for this study were acquired in the third phase
(INFC, 2004). The plot geolocation available for this study has been the
target coordinate of the sampling unit, i.e. the theoretical center of the
plot that the field crew should reach. Several studies reported in the
literature have evaluated the impact of inexact plot location for the
estimation of forest growing stock volume or biomass. All of them relate
to the use of Airborne Laser Scanning (ALS) pulses, which resulted to be
very sensitive to plot location accuracy (McRoberts et al., 2018). On the
other hand, in this study we predict the GSV for pixels of 23m re-
solution and we expect that the error of Global Navigation Satellite
System (GNSS) receivers should be much smaller than the pixel size and
for this reason in this study we ignored potential positional inaccuracy
of NFI plots.

For each field plot, the predicted GSV per hectare for all callipered
trees is freely available online via a spatial database at https://www.
inventarioforestale.org/ (Borghetti and Chirici, 2016; Pecchi et al.,
2019). The GSV of each tree was predicted using species-specific allo-
metric models developed in the framework of the NFI using tree DBH
and tree height as independent variables (Tabacchi et al., 2011). The
GSV per hectare of each plot was predicted as the aggregation of vo-
lume predictions for all the trees callipered in the plot. The uncertainty
of allometric model predictions was considered negligible and ignored
following previous results (McRoberts et al., 2016a,b). In Fig. 1 we
report the spatial distribution of sample plots, while in Fig. 2 we report
the GSV distribution for the 1350 field plots used in this study.

2.3. Validation data

To validate the results of our estimation we used independent field
data from 332 circular plots for a different dataset, of which 297 plots

of 1256.4m2 were measured between 2004 and 2009 to support forest
management in forest areas in Tuscany and 35 are ICP level I circular
plots measured in 2005 in the framework of the BioSoil Forest
Biodiversity project (Galluzzi et al., 2019). The plots are representative
of all forest types in the study area. The plots measured to support forest
management activities are located in: Vallombrosa, Cerventosa, Lu-
cignano, Chianti, Muraglione, Rincine and Cecina (Fig. 3).

The centers of these plots were georeferenced using a Trimble Juno
3B GNSS system and post-processed with sub-meter accuracy with the
closest GNSS national base station and for each plot we applied the
same field protocol developed for the Italian INFC. The GSV of each tree
and the GSV per hectare of the validation plots were predicted using the
same approach described in the previous paragraph for INFC plots. The
GSVs of ICP BioSoil Forest Biodiversity plots were estimates using in-
ternational allometric models as reported in Galluzzi et al. (2019).

The mean GSV in the validation dataset is 350.57m3 ha−1, with a
minimum of 6.8, a maximum of 1288.2m3 ha-1 and a standard devia-
tion of 254.79m3 ha−1. The average GSV in the validation data is
therefore consistently greater than the GSV registered in the INFC da-
taset. This was expected since the validation dataset is related to forests
located in productive sites where the main forest management objective
is nature and landscape conservation. This means that wood removals
are generally less than the increments and the GSV tends to accumulate.

2.4. Predictor variables

The rationale for choosing the predictors is based on two elements:
i) the availability for the whole Italy, since this test is aimed at evalu-
ating different approaches for a country level wall-to-wall GSV spatial
estimation, and ii) that the predictor can be at least potentially related
to GSV from the results of previous investigations or from literature.

2.4.1. Remotely sensed variables
2.4.1.1. Landsat. After having evaluated other possible imagery
(Chirici, 2019), to cover the study area we used imagery for three
Landsat 5 Thematic Mapper (TM) scenes, 192,030 and 192,029
acquired the 23rd of June 2005, and an image for scene 193,029
acquired the 30th of June 2005. The three images are cloud-free for the
forest part of the study area. Level-1 data products in Digital Numbers
(DN) where transformed to top of atmosphere (TOA) radiance using

Fig. 2. GSV distribution measured in 1350 INFC plots. The red line is the density distribution, the green line is the median value and the blue line is the mean value.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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Fig. 3. Validation data used in the study on the basis of the Landsat 5 TM NDVI imagery.
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radiometric rescaling coefficients provided with the Level-1 products
(Fig. 3).

2.4.1.2. Global PALSAR/PALSAR-2. The SAR data used are the global
25m resolution PALSAR-2/PALSAR mosaic available for the year 2007
as free open spatial dataset at Japanese Aerospace Exploration Agency
(JAXA). Images are available as backscattering coefficient for each
polarization HH and HV using the L-band Synthetic Aperture Radars
(PALSAR and PALSAR-2) on Advanced Land Observing Satellite (ALOS)
and Advanced Land Observing Satellite-2 (ALOS-2). The global 25m
resolution PALSAR/PALSAR-2 mosaic is processed for the geometric
correction and radiometric correction to reduce topographic effects on
image intensity (i.e. slope correction). The observation mode is FBD
(HH, HV) and the off-nadir angle is 34.3 degrees.

2.4.2. Auxiliary variables
2.4.2.1. Digital elevation model. We used the 10m resolution DEM
TINITALY which is the finest and most accurate DEM currently
available in Italy (Fornaciai et al., 2012; Tarquini et al., 2007;
Tarquini and Nannipieri, 2017). TINITALY is available at http://
tinitaly.pi.ingv.it/ in grid format.

2.4.2.2. Climate data. Climate data were derived from 1-km
downscaled climatological surfaces released for Italy by Maselli et al.
(2012). This dataset was obtained through application of
geographically weighted regression to the Pan-European E-OBS data-
base, which has a 0.25° spatial resolution (Haylock et al., 2008). The
Italian dataset is representative for the period 1981–2010 and includes
total annual rainfall and minimum and maximum temperatures, from
which mean temperature was currently estimated. The downscaled E-
OBS dataset over-estimates minimum temperature and under-estimates
maximum temperature and, most importantly, rainfall (Maselli et al.,
2012). For this reason we used a version of the rainfall dataset that was
corrected as described in Fibbi et al. (2016).

2.4.2.3. Soil data. The soil data used were derived from the European
Soil Database v2.0 (2004) (Panagos, 2006). This spatial dataset is the
only geographically harmonized soil database available for Europe. It
contains a soil geographic database (SGDBE) (i.e. polygons) to which a
number of essential soil attributes are attached. From this database we

used the quantitative information related to: (i) subsoil available water
soil capacity; (ii) topsoil available water soil capacity; (iii) volume of
stones; (iv) depth to rock; (v) subsoil cation exchange capacity; (vi)
topsoil cation exchange capacity; (vii) soil exchange capacity.

2.4.2.4. World canopy height model. We used the vegetation height
available in the wall-to-wall Canopy Height Map (Simard et al., 2011)
estimated at 1-km spatial resolution from the ICESat GLAS.

2.4.3. Forest mask
A forest mask was needed to limit the spatial estimation to pixels

with predicted forest land cover only. As far as possible the forest mask
should mimic the same standard FAO definition used in the Italian NFI
(INFC, 2004) and should be dated as close as possible to the reference
year 2005 used for the acquisition of the inventory field plot data. After
several tests we decided to use local fine resolution land use/land cover
maps constructed at a 1:10,000 scale. We used maps from regional
geoportals of Liguria, available for the year 2009 (https://geoportal.
regione.liguria.it); Tuscany, available for the year 2007 (http://dati.
toscana.it/dataset/ucs); and Emilia Romagna, available for the year
2008 (http://geoportale.regione.emilia-romagna.it). We rasterized the
original fine resolution maps obtaining a 23m resolution forest mask of
approximately 21,327 km2, 43% of the study area (Fig. 3).

3. Methods

Imputation methods facilitate prediction of a response variable Y
measured for a sample of size n selected from a finite population of size
N. X is used to denote a vector of auxiliary variables with observations
for all population units.

The terminology developed for remote sensing applications in forest
inventory may vary with respect to the estimation method. When re-
gression models are used, the auxiliary variables are designated as in-
dependent variables and the response variable is the dependent variable
(Mardia et al., 1979). For k-Nearest Neighbors (k-NN), the auxiliary
variables are designated feature variables and the space defined by the
feature variables is designated the feature space; the set of sample po-
pulation units for which observations of both response and feature
variables are available is designated the reference set; and the set of
population units for which predictions of response variables are desired

Table 1
Predictors based on remotely sensing and auxiliary data used to predict GSV.

Spatial Database Band/information Name of predictors variables Original spatial resolution

Landsat 5 TM Band 1 Landsat_B1 30m
Landsat 5 TM Band 2 Landsat_B2 30m
Landsat 5 TM Band 3 Landsat_B3 30m
Landsat 5 TM Band 4 Landsat_B4 30m
Landsat 5 TM Band 5 Landsat_B5 30m
Landsat 5 TM Band 6 Landsat_B6 60 m
Landsat 5 TM Band 7 Landsat_B7 30m
Global PALSAR/PALSAR-2 HH polarization SAR_HH 25m
Global PALSAR/PALSAR-2 HV polarization SAR_HV 25m
TIN Italy DTM DTM 10m
TIN Italy SLOPE based on DTM SLOPE 10m
Regional land use/land cover map Forest/non-Forest map Forest mask Vector 1:10.000
Climate data Total annual precipitation prec 1 km
Climate data Mean annual temperature temp_mean 1 km
Climate data Maximum annual temperature temp_max 1 km
Climate data Minimum annual temperature temp_min 1 km
European Soil Database v2.0 Subsoil available water capacity AWC_SUB_P 1 km
European Soil Database v2.0 Topsoil available water capacity AWC_TOP_P 1 km
European Soil Database v2.0 Volume of stones VS_P 1 km
European Soil Database v2.0 Depth to rock DR_P 1 km
European Soil Database v2.0 Subsoil cation exchange capacity CEC_SUB_P 1 km
European Soil Database v2.0 Topsoil cation exchange capacity CEC_TOP_P 1 km
European Soil Database v2.0 Soil exchange capacity DIMP_P 1 km
Wall-to‐wall Canopy Height Map Mean Vegetation Height CHM 1 km
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is designated the target set (Chirici et al., 2016). For random forests,
Breiman (2001) used the term predictors to denote the auxiliary vari-
ables.

The test area was tessellated into 23× 23m pixels whose size mi-
micked the area of the field plots measured in the field in the NFI
program. All the predictors were resampled using a cubic convolution
filter of 3× 3 pixels to the final pixel of resolution of 23m.

Thus, the population size of N=40,317,260 was equal to the
number of forest pixels in the study area. For each 23×23m pixel a
vector of 24 predictors was available from the remote sensing platforms
and other auxiliary sources (Table 1). The response variable was GSV
(m3 ha−1) measured in the field for n=1350 INFC plots and an in-
dependent validation set of n=332 plots measured for forest man-
agement purposes and for the BIOSOIL project.

We tested four imputation approaches for predicting GSV. Two are
non-parametric, random forests and k-NN, and two are parametric,
multiple linear regression model and geographically weighted regres-
sion model. We optimized the four methods using a leave-one-out
(LOO) procedure based on the 1350 NFI plots, with the most accurate
approach used to predict GSV for all 40,317,260 forest pixels, hereafter
characterized as estimation of the GSV map. Predictions were compared
to data for the 332 plots of the independent validation set and were
used for small-scale aggregated estimation with a model-assisted ap-
proach.

In the next sections, we present details for:

(i) the different imputation approaches for predicting GSV and how
we optimized these methods with a LOO cross validation tech-
nique;

(ii) estimation of the GSV map applying the most accurate approach
formerly identified and assessment of its accuracy using the in-
dependent validation set;

(iii) small-scale GSV estimation at study area, region (NUT-2) and
province (NUT-3) levels.

3.1. Modelling methods and prediction of growing stock volume

3.1.1. Random forests
Random forests (RF) is a decision tree algorithm and nowadays is

among the most popular ensemble methods for classifying and pre-
dicting forest variables. The algorithm was introduced by Breiman
(1996), and its application for the spatial prediction of forest variables
using remotely sensed data is well-documented (Baccini et al., 2012;
Evans and Cushman, 2009; Falkowski et al., 2009; Houghton, 2007;
Stumpf and Kerle, 2011; Yu et al., 2011). RF generates a set of re-
gression trees (ntree) that are aggregated to produce predictions without
overfitting the data (Breiman, 2001). To build and grow trees, RF uses a
randomly chosen subset of predictors at each splitting node (mtry), and
trees are grown without the need of pruning. To grow trees, RF uses a
procedure called out-of-bag samples (OOB) where each tree is built
independently to arrive at the maximum size based on bootstrap sam-
ples from the training dataset (i.e., two-thirds of the data), while the
remaining one-third of the sample are randomly left out. The OOB
allow calculation of an OOB error rate and variable importance mea-
sured by calculating the percent increase in the mean square error when
the OOB data for each variable are permuted (Breiman, 2001). The
predictors that produce the most accurate splits are chosen from a
random subset (mtry) of the entire predictor set (p).

Following the OOB sample procedure, the prediction error (OBB
error) for each of the individual trees can be estimated as:

=
=

OOB
n

y y1 ( ˆ )error i

n
i i1

2
(1)

where ŷi is the predicted output of an OOB sample and yi is the actual
output and n is the total number of OOB sample units.

Among the 24 predictors variables (Table 1), RF was optimized for

the number of predictors, ntree and mtry. We optimized the number of
predictor variables (p) to eliminate irrelevant variables. The cross va-
lidation error rate (CVe) was calculated to assess the performance of
each value of p adopted in the model with predictors being removed at
each step using various mtry functions (mtry=p, p/2, p/3, p/5, p/6…. p/
n) using the same procedure described by Li et al. (2017).

RF was optimized by searching for the combination of ntree and mtry

that minimized the OOB error. More details on RF imputation can be
found in the review of Belgiu and Drăgu (2016) and in the research
article of Li et al. (2017). All analyses in this study were performed
using the randomForest package within the statistical software package
R 3.2.0 (Liaw and Wiener, 2002) (https://www.r-project.org).

3.1.2. k-Nearest neighbors
With the k-Nearest Neighbors (k-NN) technique, predictions are

calculated as linear combinations of observations for sample units that
are nearest to population units for which predictions are desired with
respect to a selected distance metric in a space of feature (auxiliary)
variables. Chirici et al. (2016) provided a detailed description of the k-
NN method and documented more than 250 k-NN forestry applications
based on remote sensing for more than 25 countries on six continents.
Optimization included consideration of all possible combination of
feature variables and selection of the subset that minimized RMSE. For
the selected feature variables, we adopted an equal weighting ap-
proach. Simultaneously with the selection of feature variables, we
searched for i) the optimal number of nearest neighbors, k, used for
prediction between a minimum of k=1 and a maximum of k=40; and
ii) the optimal distance metric among unweighted Euclidean, weighted
Euclidean, and Canonical Correlation Analysis (CCA) (McRoberts et al.,
2016a,b).

3.1.3. Multiple linear regression
Multiple linear regression (MLR) techniques entail the use of models

of the form:

= + + + +y x xi i p pi i0 1 1 (2)

where i indexes sample units, yi denotes the single response variable,
p≥ 1 denotes the number of predictor variables,j = 1, …, p indexes the
predictor variables, j is the respective regression coefficient, and i
denotes a random residual term assumed to be distributed N (0, )i

2 . The
model was optimized by comparing all possible combinations of all
numbers of predictors with coefficients estimated using ordinary least
square. Negative GSV predictions were set to 0, and the cross-validation
accuracy assessment was performed after this transformation.

3.1.4. Geographically weighted regression
Geographically Weighted Regression (GWR) is a variant of locally

weighted regression, which was originally developed by Cleveland and
Devlin, 1998, proposed for geographical applications by Brunsdon et al.
(1996), and introduced into the remote sensing community by Maselli
(2002). Mathematically, GWR entails constructing a linear regression
model for each target unit by weighting the values of the reference units
according to the Euclidean (geographic) distance between the target
unit and the reference units used for prediction. GWR can, therefore, be
easily used for forest inventory applications where reference units
(plot) are regularly distributed in geographical space (Maselli, 2002).

Using the same notation as for multiple linear regression, the GWR
model can be written in the form:

= + + + +y x xi i p pi i0
*

1
*

1
*

(3)

where * are the geographically weighted regression coefficients, which
are estimated for each target unit from relevant statistics (mean vectors
and variance-covariance matrices) computed by giving different
weights to the N reference units.

A fundamental step for the application of GWR is therefore the
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definition of a suitable function to compute these weights. An efficient
option is given by a negative exponential function of the spatial
Euclidean Distance (ED), i.e. exp(−ED/EDR), which is regulated by the
distance range (EDR). The model was optimized as in 3.1.3 using a LOO
cross validation strategy, which also served to identify the optimum
EDR (see Maselli, 2002, for details).

3.2. Model optimization

During the optimization phase the performance of the different
configurations of the four imputation methods was evaluated using the
LOO cross validation technique. Each reference set unit is deleted in
sequence and predicted using the remaining reference set units
(McRoberts et al., 2015).

For each method, we calculated the coefficient of determination
(R2) between the measured and predicted values, the root main square
error (RMSE), and the relative RMSE (RMSE%). The RMSE was calcu-
lated as:

= =RMSE
y y
n

( ˆ )i
n

i i1
2

(4)

where n is equal to 1350 (the number of field plots), yi is the value of
the GSV observed in the field, and ŷi is the predicted value of the GSV.
RMSE% was calculated as the percent of RMSE against the mean value
of the GSV observations in the 1350 NFI plots. The optimization was
finalized by selecting the most accurate method based on RMSE for the
estimation phase.

3.3. Mapping and small-scale estimation

The most accurate imputation approach was used to construct a

regular 23m resolution GSV map.
We assessed the accuracy of the GSV map by comparing map unit

estimates and field observations for the independent validation set of
332 plots. Again, following the same approach used in the optimization
phase described in § 3.2, we estimated the coefficient of determination
(R2), the root mean square error (RMSE) and the relative RMSE
(RMSE%). RMSE was calculated as reported in Eq. 4, where n this time
is equal to 332.

To construct an inference for the mean value of the GSV for the
whole study area, the model-assisted, generalized regression estimators
were used (Särndal et al., 1992; Särndal et al., 2003; Breidt and
Opsomer, 2009; McRoberts et al., 2016a,b). Before doing so we deleted
from the GSV map all the non-forest pixels on the basis of the forest
mask (§ 2.4.3).

The map-based estimate of the mean GSV in the forest area was:

=
=

µ
N

yˆ 1 ˆmap
j

N

i
1 (5)

where N was the number of 23m x 23m forested population units in the
study area and ŷi is the model prediction for the i-th population or map
unit. However, the map-based estimate must be adjusted for systematic
prediction errors using a bias estimate calculated as:

=
=

Bias µ
n

y yˆ ( ˆ ) 1 ( ˆ )map
i

n

i i
1 (6)

where n is the sample size of INFC (i.e. 1350 plots), ŷi is the model
prediction for the i-th sample INFC plot and yi is the observed value for
the i-th INFC plot. The model-assisted estimate is the map estimate with
the estimated bias subtracted:

=µ µ Bi as µˆ ˆ ˆ ( ˆ )model assisted map map (7)

Fig. 4. Scatterplots of GSV observations versus predictions for all the imputation approaches. R2, RMSE and RMSE% are based on LOO cross-validation during the
optimization phase.
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while the standard error (SE) of µ̂model assisted is:

= =
=

SE µ Var µ
n n

e e( ˆ ) ˆ ( ˆ ) 1
( 1)

( ¯)model assisted model assisted
i

n

i
1

2

(8)

where =e y y( ˆ )i i i and = =e e¯ n i
n

i
1

1
In addition, to assess the efficiency of the model-assisted estimator

we compared it with the original design-based estimates produced by
the INFC and its relative efficiency coefficient (RE) calculated as:

=
Var µ

Var µ
RE

ˆ ( ˆ )
ˆ ( ˆ )

NFI

model assisted (9)

Because RE coefficient is the ratio between the variances of
Var µˆ ( ˆ )NFI and Var µˆ ( ˆ )model assisted , values greater than 1 are evidence of
greater precision in the model-assisted estimates (Moser et al., 2017).
RE coefficient can be interpreted as the factor by which the original
sample size would have to be increased to achieve the same precision as
that achieved using the remotely sensed auxiliary data.

4. Results

4.1. Optimization

All the four imputation methods produced comparable results with
only limited differences. Independently of the parameter used for
evaluating the results, RF always achieved the greatest accuracy and
MLR the least accuracy. R2 ranged between 0.35 and 0.47; RMSE be-
tween 96.3m3 ha−1 and 108.42m3 ha−1; and RMSE% between 68.70%
and 77.3% (Fig. 4)

The three different k-NN configurations achieved very similar re-
sults with R2 ranging between 0.369 and 0.382, RMSE ranging between
105.86m3 ha−1 and 106.96m3 ha−1, and RMSE% ranging between
75.51% and 76.29% with k=21 for the Euclidean methods and k=54
for the CCA approach.

For the GWR approach we found an optimal EDR of 0.107° with
performances very similar to those achieved for k-NN with R2 of 0.396,
RMSE of 105.0m3 ha−1 and RMSE% of 74.89, and always more accu-
rate than MLR.

Of the 24 available predictors considered during the optimization
phase, only 15 variables were ever selected with nine predictors never
selected. In terms of usefulness of the predictors, the variables derived
from Landsat images were the most frequently selected; band 5 was the
only one selected by all six models, followed by band 3 selected by five
models. The HV polarization of radar backscattering was selected by
four models, the rest of the Landsat bands were selected by three
models with the exception of band 4 that was selected for two models;
similar results were found for HH polarization of radar, precipitation
and AWC of top soil. The other variables that were selected at least once
were the average annual temperature, the maximum annual tempera-
ture, vegetation height, and the volume of rocks in the soil. In terms of
number of predictors, k-NN with weighted Euclidean distance metric, k-
NN with the unweighted Euclidean distance metric, and GWR all se-
lected five; RF selected six; k-NN with the CCA distance metric selected
seven, and MLR selected 10 (Table 2). The full list of the optimization
results is reported in Table 2.

Considering these results RF based on six predictors and 300 re-
gression trees was selected for the following estimation phase.

4.2. Estimation

The RF model was used to predict GSV for each of the 4,031,726
23m x 23 m resolution forest target units in the study area (Fig. 6). GSV
predictions ranged between 0 and 1021.54m3 ha−1 with a standard
deviation of 70.32m3 ha−1. For each of the 332 plots in the in-
dependent validation set, we predicted GSV using RF and compared it
with field observations. We found R2= 0.68 and RMSE%=38.2% Ta
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Fig. 5. Growing stock map of the study area generated with Random Forest Imputation. GSV in m3 ha−1.
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(Fig. 5) demonstrating a performance that was greater than achieved
using LOO cross-validation.

On the basis of RF estimation for the entire study area,
µ̂model assisted =126.17 m3 ha−1 with SE µ( ˆ )model assisted =2.78 m3 ha−1,
while at regional level µ̂model assisted =131.58 m3 ha−1 with
SE µ( ˆ )model assisted =4.19 m3 ha−1 for Tuscany, and µ̂model assisted
135.42m3 ha−1 with SE µ( ˆ )GREG =5.55 m3 ha−1 for Emilia Romagna.
These regional model-assisted estimates are in line with the official
design-based estimates from INFC plots (Gasparini and Tabacchi, 2011;
INFC, 2008) which are 128.8m3 ha-1 with SE=4.6 m3 ha−1 for Tus-
cany and 128.4 with SE=7.12 m3 ha−1 for Emilia-Romagna. These
results revealed a RE of 1.09 for Tuscany Region and a RE of 1.28 for
Emilia-Romagna Region.

Moreover, the model-assisted estimate of GSV was calculated at
province administrative level (Annex 1). Such estimates are not pro-
vided by official NFI aggregated statistics.

5. Discussion

The study focused on three objectives: (i) to demonstrate that even
in large complex Mediterranean landscapes, without the availability of
ALS, it is possible to produce spatial wall-to-wall estimates of GSV
measured in the field in the National Forest Inventory (INFC, 2004) on
the basis of predictors from remotely sensed images and other auxiliary
variables, (ii) to understand the relative importance of possible pre-
dictors available wall-to-wall in Italy and the performance of the dif-
ferent estimation approaches, and (iii) to suggest a methodology that
can be applied at country level in Italy to produce wall-to-wall pre-
dictions of forest variables to support forest planning and management.

To achieve these results for a large study area of 45,438 km2 in
central Italy, we acquired 24 potential predictors which are available
wall-to-wall in Italy and that may directly or indirectly be related to
forest biomass and GSV. We compared six different prediction techni-
ques, all of which comparable accuracies but with RF producing the
greatest accuracy.

Among the other imputation approaches, GWR yielded the greatest
accuracy, in particular outperforming conventional multiple regression.
This can be explained considering that the relationships between GSV
and virtually all predictors currently considered are affected by several
factors which can vary spatially (Lu, 2006). GWR can account for this
spatial variability by allowing the per-pixel computation of different
regression models. This is particularly relevant in heterogeneous Med-
iterranean environments, where GWR has already been proficiently
applied to Landsat TM/ETM+ imagery for forest GSV prediction
(Maselli and Chiesi, 2006; Maselli et al., 2014a, b).

Landsat bands of which B5 acquired in short-wave infrared between
1.55 and 1.75 μm was most important, and climate variables of which
precipitation was most important, emerged as the most influential
predictors. The resulting 23m resolution GSV map, when compared
against an independent set of field measures, demonstrated a good re-
lationship between observed and predicted values (R2= 0.69 and
RMSE%=37.2%). However our results are less accurate than those
obtained in boreal forests using ALS in Sweden by Nilsson et al. (2017)
and in the review of Næsset et al. (2004) for which RMSE usually
ranged between 15% and 25% of the average real value measured in
the field.

The relatively larger RMSE% we obtained can be due to several
reasons.

Firstly, we did not used metrics from ALS data which are usually the
best candidate predictors for GSV estimation. This is confirmed if we
compare our results with results reported for studies where ALS was not
used. For example Reese et al. (2002), using Landsat data in Sweden,
reported pixel-level RMSE% in the range of 59% and 80%, and Immitzer
et al. (2016) in Germany using WorldView-2 imagery report a RMSE%
between 46% and 37%.

Secondly, GSV is relatively small for our forests, we observed a field

GSV average of 139m3 ha−1, less than half of the 287m3 ha−1 reported
by Nilsson et al. (2017) in Sweden.

Thirdly, Italy has a heterogeneous landscape, and Mediterranean
forests are characterized by considerable complexity in tree species
composition and structure relative to temperate and boreal forests.

Moreover, we found that the accuracy of the pixel-level estimation
evaluated with the independent dataset was greater than those we
found with the LOO procedure in the optimization phase. The result
was not expected but it is probably due to the fact that the GSV mea-
sured in the independent validation dataset has a more normal dis-
tribution around the mean values (Fig. 5) than those from the INFC
(Fig. 2) and that the average GSV in the independent validation dataset
is also greater (351m3 ha−1) than those measured in INFC plots
(140m3 ha−1).

In line with previous results from the literature, we observed an
underestimation for large GSV observations, independently of the pre-
diction approach. This effect has anyhow a limited impact when the
comparison was done with LOO against the INFC plots because just a
few of them have very large GSV observations (Fig. 4). This saturation
effect with under-predictions for plots with GSV greater than
600m3 ha−1 was well-known because spectral reflectance values are
not sensitive, for example, to multilayer canopy forest or dense forests
(Zhao et al., 2016). Moreover, some authors have reported that areas
characterized by very complex topographic features (i.e. from flat ter-
rain to mountains up to 2000m a.s.l.) affect the spectral signature and
the data saturation values of forest aboveground biomass and growing
stock volume (Lu et al., 2012, 2016; Foody et al., 2003; Nichol and
Sarker, 2011). However, the saturation effect was reported in the lit-
erature even when ALS data were used (Nilsson et al., 2017; Giannetti
et al., 2018a,2018b; Lefsky et al., 2005).

Even if RF was found to be the most accurate method, only small
differences in prediction accuracies were found across the different
non-parametric and parametric methods. Nilsson et al. (2017) reported
similar conclusions for Sweden using ALS data.

Regarding the model-assisted estimates calculated on the basis of
the GSV map, with the use of our approach it was possible to increase
the precision of INFC predictions at regional level (RE=1.09 in
Tuscany and RE=1.28 in Emilia Romagna) and to provide for the first
time growing stock estimates at Province level.

It is important to remember that the use of pixel level estimates of
map products similar to those we presented in Fig. 6 is discouraged
since GSV predictions in single pixels may be affected by a consistent
bias (McRoberts and Tomppo, 2007). We therefore suggest aggregation
of predictions from several pixels (Areas Of Interests – AOI), since in
case the pixel prediction errors are independent and distributed with
zero mean, then when the AOI increases, then averaged value of the
pixels tend to equal the real value (McRoberts and Tomppo, 2007).
Users could aggregate GSV pixel level estimates to create estimates for
different AOIs, for example related to ecological regions, municipality
boundaries, or forest management units.

6. Conclusions

Forest tree monitoring and assessment are rapidly evolving as new
information needs arise and new techniques and tools become avail-
able. However, the exploitation of the latter, as well as their im-
plementation within operative management processes, should be evi-
dence-based (Corona, 2018).

Under this perspective, several conclusions can be drawn from the
study. Firstly, Landsat data are confirmed as a reliable and efficient
source of information for modeling GSV, even in large and complex
Mediterranean forest areas. Secondly, we found that in the
Mediterranean area, predictors derived from climate data are a valid
spatial data source for modeling GSV most probably because they can
describe different growing season conditions. Thirdly, all the tested
modelling approaches have the capability to predict GSV with
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comparable results. Fourthly, the GSV map is confirmed as a valid tool
for model-assisted inference at regional and province levels.

We can affirm that the 23m resolution GSV map we produced can
be useful and practical to support the requirements of national and
regional forest bodies, forest companies and forest owners. This map
could be the basis for decision support systems as proposed by Puletti
et al. (2017) for a test area in south Italy, as a tool to assess wood
production and harvesting activities in forest proprieties, thereby con-
tributing to improving the Mediterranean forest economy and, if used at
forest management scale, reducing the cost for data acquisition needed
for the implementation of management plans.

Moreover, the GSV map can be used to produce model-assisted es-
timates at province level (NUT-3), augmenting the spatial resolution of
traditional NFI design-based estimates which are currently available
only for administrative Regions (NUT-2) and thus adding value to the

INFC. Under this point of view the proposed methodology is now ready
for a wall-to-wall application in Italy to move the traditional NFI pro-
gram to a more modern EFI, in line with achievements in other coun-
tries.

Under this point of view it is also strongly recommended that in the
future the Italian NFI could evolve in a permanent monitoring system,
where a sample of the total number of field plots is visited in the field
every year in order to complete the revisit of all the plots in 5–10 years.

In the future we hope that ALS will be finally available wall-to-wall
in Italy to facilitate prediction of forest variables estimates with even
greater accuracy. In such a context satellite LiDAR data from the Global
Ecosystem Dynamics Investigations (GEDI space laser data) and from
the ICESAT-2 (Geoscience Laser Altimeter System - GLAS) are poten-
tially extremely important in Italy if ALS will not be available sooner.

Appendix A

Small-scale estimates of mean GSV (m3 ha−1) obtained with RF model at Province (NUT-3) level. For each Province we also report the forest area
estimation from the second Italian National Forest Inventory (INFC, 2007, 2008; Gasparini and Tabacchi, 2011).

Region Province Province Area (km2) Total Forest Area (km2) (INFC) SE Total Forest Area (%) (INFC) ni GSV µ̂GREG(m
3 ha−1) GSV SE µ( ˆ )GREG (%)

Tuscany Arezzo 323300 1792,19 4.2 127 111.13 8.5
Firenze 351369 1785,00 4.2 117 151.89 12.3
Grosseto 450312 1979,61 4.0 116 98.35 8.6
Livorno 121371 473,64 8.6 23 108.88 16.7
Lucca 177322 1210,44 5.2 64 198.86 13.1
Massa Carrara 115468 867,13 6.2 30 148.69 14.69
Pisa 244472 950,53 6.0 54 98.82 11.28
Pistoia 96412 506,40 8.3 32 214.30 43.91
Prato 36572 233,34 12.3 13 186.87 24.1
Siena 38298 1717,10 4.3 115 85.81 6.09

Emilia-Romagna Bologna 370232 1007,61 5.6 56 112.60 11.12
Forlì-Cesena 237840 1066,21 5.5 70 86.08 15.24
Modena 268802 686,95 7.0 49 123.97 14.97
Parma 344748 1525,42 4.4 85 170.81 9.94
Piacenza 258586 848,37 6.2 51 111.66 13.07
Ravenna 185944 213,32 13.0 19 80.55 12.39
Reggio Emilia 229126 635,18 7.3 58 126.75 11.26

Liguria La Spezia 88135 542,29 7.6 46 144.55 16.34

Fig. 6. Scatterplot of GSV observations versus predictions obtained by RF for the 332 units of the independent dataset.
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