SPECIAL SECTION ON DEEP LEARNING FOR COMPUTER-AIDED MEDICAL DIAGNOSIS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 25, 2019, accepted March 28, 2019, date of publication April 1, 2019, date of current version April 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2908724

A Deep Learning Approach for Breast Invasive
Ductal Carcinoma Detection and Lymphoma
Multi-Classification in Histological Images

NADIA BRANCATI“?, GIUSEPPE DE PIETRO', (Member, IEEE),
MARIA FRUCCI1, AND DANIEL RICCIO"“12, (Member, IEEE)

Unstitute for High Performance Computing and Networking Natiosnal Research Council of Italy (ICAR-CNR), 80131 Naples, Italy
2Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80138 Naples, Italy

Corresponding author: Nadia Brancati (nadia.brancati @cnr.it)

ABSTRACT Accurately identifying and categorizing cancer structures/sub-types in histological images is
an important clinical task involving a considerable workload and a specific subspecialty of pathologists.
Digitizing pathology is a current trend that provides large amounts of visual data allowing a faster and more
precise diagnosis through the development of automatic image analysis techniques. Recent studies have
shown promising results for the automatic analysis of cancer tissue by using deep learning strategies that
automatically extract and organize the discriminative information from the data. This paper explores deep
learning methods for the automatic analysis of Hematoxylin and Eosin stained histological images of breast
cancer and lymphoma. In particular, a deep learning approach is proposed for two different use cases: the
detection of invasive ductal carcinoma in breast histological images and the classification of lymphoma sub-
types. Both use cases have been addressed by adopting a residual convolutional neural network that is part of
a convolutional autoencoder network (i.e., FusionNet). The performances have been evaluated on the public
datasets of digital histological images and have been compared with those obtained by using different deep
neural networks (UNet and ResNet). Additionally, comparisons with the state of the art have been considered,
in accordance with different deep learning approaches. The experimental results show an improvement of
5.06% in F-measure score for the detection task and an improvement of 1.09% in the accuracy measure for

the classification task.

INDEX TERMS Histological images, deep learning, multi-classification, detection.

I. INTRODUCTION

The digitalization of histological specimens by using modern
whole-slide digital scanners brings not only the advantage
of an easy storage, visualization, and analysis of the images,
but also affords the possibility of applying automatic image
analysis techniques to digital histological slides to provide
accurate quantifications (e.g., tumor extent and nuclei counts)
and classifications of tumor sub-types with the aim both of
reducing inter- and intra-reader variability among patholo-
gists and of accelerating the diagnosis process. Any automatic
analysis of digital histological images is a very challenging
task, since both the spatial arrangement of the structures,
e.g. nuclei and stroma, and the color distribution can be very
different, also for images belonging to the same tumor class.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yudong Zhang.

Deep learning (DL) approaches are particularly suitable to
address these problems and to perform tasks, such as the
detection of specific areas of the disease or the discrimina-
tion between the tumor classes of interest. Indeed, especially
when a large number of samples are available for training,
a DL system learns representative features automatically and
directly from the digital images of tumor tissue, with the goal
of obtaining a maximum separability between the classes of
structures or tumor sub-types.

In such a context, this paper presents a DL approach
addressing two different use cases: i) the detection of invasive
ductal carcinoma (IDC) of breast cancer, and ii) the lym-
phoma multi-classification in chronic lymphocytic leukemia
(CLL), follicular lymphoma (FL), and matle cell lymphoma
(MCL).

IDC is the most common form of invasive breast cancer and
its precise detection on whole-slide images (WSI) is crucial
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to the diagnosis and sub-sequent estimation of grading the
tumor aggressiveness of breast cancer. Manual IDC detection
is tedious and time-consuming for pathologists and could
be influenced by significant inter- and intra-pathologist vari-
ability in the diagnosis and interpretation of specimens. The
diagnosis of lymphoma is a problematic and difficult process
for pathologists. Lymphoma is a type of cancer affecting the
lymphatic system and it is classified in different sub-types.
In particular, three of these sub-types, CLL, FL. and MCL
account for 70% of lymphoma cases. The most important
diagnostic criterium for lymphoma are the morphological
features of the tumor which can interpreted by an experi-
enced hematopathologist, in such a way as to make a further
differentiation between malignancy types to guide treatment
decisions.

Both detection and classification tasks increase the demand
for a reduction of workloads and of inter- and intra-observer
variability, and also imply sub-specialty requirements in
pathology. As a result, there is a great interest in DL net-
works which have the potential to reduce these workloads
and augment the diagnostic capabilities of pathologists. The
choice of a DL network and the training strategy to apply for
a given task, depend on the type of pathological analysis to
be performed.

In this paper, both use cases are addressed by adopting the
residual convolutional autoencoder FusionNet, in relation to
two different scenarios:

o the convolutional autoencoder FusionNet is trained
under a sparsity constraint in an unsupervised manner;
and

o a residual convolutional neural network that is the
encoding part of FusionNet is trained in a supervised
manner.

In both scenarios, the features learned at the end of the
encoding stage are used for the classification, by means
of a softmax classifier. Indeed, also the IDC detection
is addressed as a classification task, by splitting the
WSI into patches and classifying each patch as IDC or
non-IDC.

The performances of each scenario have been evalu-
ated on public datasets [2], containing histological images
acquired by using Hematoxylin and Eosin (H&E) staining
technique and in relation to selected pathological use cases.
We also investigated the performances of different DL net-
works (ResNet and UNet) for both use cases. Moreover,
comparisons with different approaches in literature, working
on the same datasets, have been taken into account. The
performance evaluation of these methods has been given in
terms of F-measure score and Balanced Accuracy (BAC) for
the IDC detection and in terms of Accuracy for the lymphoma
multi-classification. On observing the classification perfor-
mance using overall validation and test accuracies, our second
scenario has produced favorable results for both use cases.
Moreover, our results outperform the state of the art. Our
approach achieved the best quantitative results both for IDC
detection (F-measure and BAC equal to 81.54% and 87.76%,
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respectively) and for lymphoma multi-classification (Accu-
racy equal to 97.67%).

The rest of the paper is organized as follows: previous
related works are presented in Section II; a description of the
approach is presented in Section III; the experimental setup,
comparative strategies and results for the two different use
cases are discussed in Section I'V; and finally, in Section V
certain conclusions are drawn.

Il. RELATED WORK

A large number of papers have been published concerning
the detection and classification of histological images. Some
papers propose methods that use various image processing
and machine learning techniques (e.g. SVM and decision
trees) exploiting low-level hand-crafted features, such as
color, texture, or morphology [6], [18], [22], [25], [29], [30].

Most methods in literature for the analysis of histological
images are based on DL networks (e.g., AlexNet, ResNet
and UNet [11], [15], [21]), that automatically learn features
that optimally represent the data for the problem at hand.
In some cases DL networks are integrated with well-known
classifiers (e.g., SVM, Random Forest and Adaboost), and the
methods adopt appropriate training strategies (e.g., defined
patches, pre-processing, parameter setting and selected loss
function). Additionally, for a specific task, the performance
of the different approaches depends on the adopted network
and the developed training strategy. It is no coincidence that
many teams in international competitions have adopted the
same network architecture on the same dataset with different
training strategies for a specific task, obtaining widely differ-
ent results [3], [17], [24].

Most of these methods are based on the use of Convolu-
tional Neural Networks (CNN) for the detection and classifi-
cation tasks. In the context of the detection task, the method
in [26] won the first place at the ISBI2016 Metastasis Detec-
tion Challenge [17], by adopting a CNN with 27 layers, while
the method in [8] outperformed in terms of accuracy the other
methods at the ICPR2014 MITOS-ATYPIA Challenge [1]
by using deep cascaded CNN. For the detection of IDC,
the method in [9] yielded the best quantitative results in
comparison with approaches using hand-crafted image fea-
tures on the dataset available for download at [2]. For the
classification task, a CNN based on AlexNet was adopted
in [23] in order to discriminate between benign and malig-
nant breast cancer tumors. This approach outperformed the
previously reported results obtained by other machine learn-
ing models trained with hand-crafted textural descriptors on
the BreaKHis dataset [22]. The authors in [4] proposed a
comparison between two approaches (hand-crafted and CNN
based) for the classification of breast cancer histological
images, showing that their CNN architecture outperforms
the state of the art on BreakHis dataset. Other interesting
experimental results were obtained for the same dataset by
the method proposed in [5] by classifying breast cancer his-
tological images independently of the image magnification
factor. Three different configurations of ResNet were used by
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FIGURE 1. FusionNet architecture.

the authors in [7] for the multi-classification of breast cancer
obtaining a remarkable performance on the images provided
for the ICIAR2018 BACH Challenge [3]. Finally, in [13]
AlexNet, using the same training strategy, was adopted both
for IDC detection and lymphoma multi-classification on the
datasets available for download at [2], outperforming the
method proposed in [9], in relation to IDC detection.

Differently from the methods based on the CNN trained
end-to-end technique for classification, other approaches
have been based on unsupervised networks, mainly autoen-
coders (AE), that do not required labeled samples to detect
the inner structure to be used for the subsequent detection and
classification tasks. Indeed, AEs are commonly used for the
pre-training of different deep neural networks or classifiers.
An AE is optimized to learn the principal components of
the data distribution. However, when a non-linear activation
function is used, AE learns over complete unsupervised rep-
resentations by reconstructing the original input, operating
under several constraints (sparsity or hierarchicality) [19].
The authors in [10] employed sparse AEs to learn an unsu-
pervised representation that feeds a softmax classifier over
this representation identifying the image regions that are
most relevant for the basal cell carcinoma cancer detection.
In [12], a Convolutional Sparse AE for simultaneous nucleus
detection and feature extraction in histological tissue images
was proposed. The foreground image was reconstructed by
certain vectors in feature maps that represent salient objects.
Additionally, a Stacked Sparse AE framework was presented
in [28] for automated nucleus detection on breast cancer his-
tological images.

ill. METHODOLOGY

The proposed approach is designed for IDC detection of and
lymphoma multi-classification in H&E histological images.
Differently from the segmentation process, the detection task
does not involve the delineation of accurate boundaries for
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the regions of interest, but only the identification of the areas
including such regions. For this reason, the detection of IDC
can be addressed as a classification problem: the WSI is
divided into patches and the final detection is obtained by
marking patches with an IDC or a non-IDC label.

The classification for both tasks is based on the use of
a convolutional autoencoder (CAE), namely FusionNet [20].
Similarly to all CAE networks, the architecture of FusionNet
has a configuration which is completely symmetrical, but
it is also a residual network, due to the presence of skip
connections (see Fig. 1).

FusionNet introduces long skip connections between the
feature maps in the encoder and those located at the same
level in the decoder; moreover, short skip connections are
present in each residual block of the network. With such
a configuration, the information flows within and accross
different levels of the network.

We propose two different scenarios for the classification:

1) Classification by reconstruction - the CAE is trained
under a sparsity constraint in an unsupervised manner;

2) Supervised Classification - only the encoding part of
the CAE is trained and this in a supervised manner.

In both cases, a softmax classifier takes the extracted features
as the input. The output of the softmax classifier produces a
value between 0 and 1 that can be interpreted as the proba-
bility of the input belonging to a given class. The classifier
is trained minimizing the Cross Entropy Loss (CE), used to
measure the divergence between the effective class ¢ and the
predictive class ¢ of n samples:

CE(c,d)=—) ci-log(@) (1)
i=1

In the first scenario, the network is trained in an unsuper-
vised manner extracting features useful for the reconstruction
of the input image. The obtained representation of the encoder
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FIGURE 2. A graphical representation of SEF.

has a lower dimensionality than the input data. The set of
weights associated with the representation can be interpreted
as the set of feature maps learned by the CAE to be used for
the classification. The Mean Squared Error Loss (MSE) is
used to measure the error between the input image x and the
reconstructed image X:

n 22

i i — %) )

n

Backpropagation is implemented by using the Stochastic
Gradient Descent (SGD) algorithm [16], with a controlled
learning rate. In general, to improve the performance of an
AE and to prevent overfitting, the addition of a sparsity
constraint during the training is suitable [19], [28]. The spar-
sity constraint is imposed on the hidden units, enabling the
AE to discover interesting structures in the data. We have
imposed the sparsity constraint through the introduction of
Kullback-Leibler divergence (KL), that measures the degree
of difference between two distributions with means p and
;. In detail, p refers to the target activation function of the
hidden units and g, refers to the average activation function of
the hidden unit j. The activation function used for the hidden
units is the sigmoid function.

After the training, a maxpooling layer is applied to the
extracted features and the output is passed to a fully connected
layer that performs the classification by means of a softmax
activation function. In this case, backpropagation is imple-
mented by using the Adaptive Moment Estimation (Adam)
algorithm [14], an extension of the SGD. The algorithm com-
putes adaptive learning rates for each network parameter from
estimates of first and second moments of the gradient.

In the second scenario, only the encoding part of the CAE
is trained in a supervised manner, i.e. the input to the network
is represented by the image and the corresponding class.
The network is trained end-to-end to learn filters and to
combine features with the aim of feeding a fully connected

MSE(x, %) =
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layer. Also in this scenario, the Adam algorithm is used for
backpropagation and a softmax activation function is used for
the classification.

IV. USE CASES

The proposed approach is based on FusionNet. In particular,
in the “Supervised Classification™ scenario only the encod-
ing part of FusionNet is trained, and therefore we refer to this
approach as Supervised Encoder FusionNet (SEF). In Fig. 2,
a graphical representation of SEF is shown. Moreover, both
UNet and ResNet have been considered for comparison in
the experiments. In the “Supervised Classification” scenario,
we will refer to use of UNet as Supervised Encoder UNet
(SEU), while no distinction will be needed for ResNet as it
is not considered in the “Classification by reconstruction”
scenario.

The performances have been evaluated on two datasets
available for download at[2]. In the following section,
we will refer to the datasets for IDC detection and for lym-
phoma multi-classification as D-IDC and D-Lymph, respec-
tively. Regarding the implementation details, the framework
has been implemented in Pytorch on a workstation equipped
with 2 Xeon 10-Core E5-2630v4 2,2Ghz 25MB and 4
NVIDIA GEFORCE GTX 1080Ti 11GB PCI-EX.

In the following section, for each use case, details about the
adopted dataset, the training strategy, and the experimental
results compared with other approaches will be given.

A. INVASIVE DUCTAL CARCINOMA DETECTION

The experiments have been performed on the D-IDC dataset,
which includes 162 WSI acquireFFTd at 40x, each parti-
tioned into a set of patches with a size equal to 50 x 50 pixels.
The number of patches representing IDC and non-IDC is
46,633 and 124, 011, respectively. An example of invasive
ductal carcinoma is shown in Fig. 3.
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(a)

(b)

FIGURE 3. Invasive ductal carcinoma: (a) whole slide image; (b) a magnification of the

highlighted box in (a).

TABLE 1. The training parameters for the IDC detection.

| Scenario [[ N° Epochs | Mini-batch [ Back. alg. [ Init. Learrate | Lear.rate update |
Classification by reconstruction 20 64 SGD 0.001 0.0001 after 15" epoch
Supervised Classification 15 64 ADAM 0.0001 update by ADAM

TABLE 2. Results of the different approaches for the IDC detection. The best performance is highlighted in bold.

| Scenario Network || Acc. | F-meas. | Prec. | Sens. | Spec. | BAC |
Classification by reconstruction  FusionNet || 84.71 71.70 73.07 | 70.38 | 90.15 | 80.26
UNet 84.65 68.30 | 79.14 | 60.07 | 93.99 | 77.03
Supervised Classification SEF 89.57 81.54 7945 | 83.75 | 91.77 | 87.76
SEU 85.87 7190 | 79.44 | 65.67 | 93.54 | 79.60
ResNet-34 || 87.24 | 77.14 76.08 | 77.22 | 90.66 | 84.44

As shown in Fig. 1, the FusionNet encoder is composed
of a set of blocks including downsampling layers. Whenever
downsampling is performed, the input size is halved. This
implies that the input image should have a size allowing for a
scaling of factor 2 for each downsampling and guaranteeing
that the input size of the bridge layer is not too small. In order
to allow a scaling of factor 2, the input of the network is
represented by the central square region of a size of 48 x
48 pixels, extracted from each patch. Since the encoder is
constituted by 4 downsampling layers, the input size of the
bridge layer is equal to 3 x 3.

Since a large number of images are available, no aug-
mentation operation has been performed. In order to allow
for a comparison with the state of the art, the same training
and testing sets as [9], [13] have been used. In particular,
the training set consists of about 70% of the whole dataset.
The final detection on each WSI will be given in terms of
IDC or non-IDC patches.

The values of the parameters adopted for the training are
given in Table 1. Both scenarios produce 512 feature maps,
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subsequently used for the classification step. In the “Classifi-
cation by reconstruction” scenario, a max pooling layer with
a kernel size equal to 2 x 2 and a stride equal to 2 is applied at
the end of the encoding stage, while in the second scenario the
max pooling layer is substituted by a fully connected layer.

1) EXPERIMENTAL RESULTS AND DISCUSSION

We have compared the performance of the different
approaches in terms of standard metrics, namely Accuracy,
F-Measure, Precision, Sensitivity and Specificity. We eval-
uated the performance also in terms of the Balanced Accu-
racy (BAC) measure, calculated as the average between the
Specificity and Sensitivity. The numerical results of these
experiments are reported in Table 2. Depending on the sce-
nario, the performance has been evaluated by using the
same values as the training parameters for all the consid-
ered approaches with the exception of the number of epochs
for the fine-tuned ResNet that was been reduced to 10 to
prevent the network from overfitting. We have performed
many experiments with different configurations of ResNet
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TABLE 3. Results of the different ResNet configurations for the IDC detection. The best performance is highlighted in bold.

| Network || Acc. | F-meas. | Prec. | Sens. | Spec. | BAC |
ResNet-18 fine-tuned 86.79 75.38 77.39 | 73.48 | 91.85 | 82.67
ResNet-18 from scratch 85.28 72.94 73.83 | 72.07 | 90.30 | 81.18
ResNet-34 fine-tuned 87.24 77.14 76.08 | 77.22 | 90.66 | 84.44
ResNet-34 from scratch 85.11 72.32 73.65 | 70.69 | 90.42 | 80.55
ResNet-50 fine-tuned 87.52 77.02 78.03 | 76.08 | 91.87 | 83.97
ResNet-50 from scratch 85.00 7291 73.37 | 72.47 | 90.01 | 81.24

TABLE 4. TP, TN, FP and FN calculated by the different approaches for the IDC detection. The best performance is highlighted in bold.

| Scenario Network || TP | TN | FP | FN |
Classification by reconstruction  FusionNet 9964 | 33610 | 3672 | 4193
UNet 8504 | 35041 | 2241 | 5653
Supervised Classification SEF 11857 | 34215 | 3067 | 2300
SEU 9297 | 34876 | 2406 | 4860
ResNet-34 || 11074 | 33800 | 3482 | 3083

(i.e. ResNet-18, ResNet-34 and ResNet-50, fine-tuned and
from scratch). The results are shown in Table 3. Indepen-
dently of the configuration, ResNet always outperformed
FusionNet, UNet and SEU, following SEF in the ranking. For
the sake of simplicity, we report in Tables 2 only the results
for the best configuration of ResNet in terms of the F-measure
and BAC (i.e. the fine-tuned ResNet-34).

The SEF method significantly outperformed the other DL
approaches in terms of the accuracy. Indeed, it achieved an
overall increment of 4.86%, 5.52%, 3.7% and 2.33% in accu-
racy as compared to FusionNet, UNet, SEU and ResNet-34,
respectively. Also for the remaining measures, SEF proved
to be the best configuration, followed in the ranking by
ResNet-34, with the exception of the performance in terms of
Specificity, where UNet turns out to be the winning approach.

The numbers of true positive patches (TP), true negative
patches (TN), false positive patches (FP) and false negative
patches (FN) are reported in Table 4.

Figs. 4 and 5 illustrate examples of the IDC detection
result of SEF versus the FusionNet, UNet, SEU and ResNet
methods compared to the ground truth. The true positive
patches are highlighted in green, while the false positive
patches are highlighted in red. All methods showed a rea-
sonable detection performance, but SEF (Figs. 4(d) and 5(d))
revealed much more information compared to the other
images, the result being closer to the ground truth. False
positive patches produced by FusionNet and ResNet-34 tend
to accumulate in specific regions, while those generated by
SEF are sparsely distributed. This suggests that SEF allows
to adopt such a kind of region based decision rules (e.g. the
majority voting), such that a patch is definitely classified as
IDC only when this classification label extends over multiple
adjacent patches.
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TABLE 5. The comparisons with the state of the art for the IDC detection
and lymphoma multi-classification. The best performance is highlighted
in bold.

IDC Lymphoma
F-meas. | BAC Acc.
SEF 81.54 | 87.76 97.67
Method in [13] 76.48 84.68 96.58
Method in [9] 71.80 84.23 -

Finally, in the first column of the Table 5 comparisons
between SEF and the other two methods ( [13] and [9]) in the
literature are reported. Methods [13] and [9] were evaluated
using the same dataset D-IDC and are based on AlexNet and a
3-layered CNN, respectively. They were ranked according to
according to the performance of the F-measure and BAC. The
SEF approach outperformed method [13] with an increment
of 5.06% and 3.08% in terms of the F-measure and BAC,
respectively. With respect to method [9], the performance of
SEF showed an increment of 9.74% and 3.53% in terms of
the F-measure and BAC measure, respectively. Comparing
the results of Tables 2 and 5, it is clear that ResNet-34 also
outperformed both methods [13] and [9] in terms of the F-
measure, while the BAC measure was approximately equiva-
lent in all these methods. Finally, residual CNNs end-to-end
trained for classification (i.e., SEF and ResNet) provided the
best performances for the IDC detection task. In particular,
SEF provided the best performance.

B. LYMPHOMA MULTI-CLASSIFICATION
The D-Lymph dataset has been employed as a benchmark to

evaluate the image analysis techniques for the CLL, FL and
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FIGURE 4. Results for the IDC detection (true positive and false positive patches are highlighted in green
and in red, respectively): (a) ground truth (b) FusionNet (c) UNet (d) SEF (e) SEU (f) ResNet-34.

MCL sub-types. In total 374 images were generated, con- computational costs and limitations in the number of model
taining 113, 139, and 122 images of CLL, FL and MCL, layers and channels. In accordance with a general trend,
respectively. The size of each image was equal to 1388 x the authors in [13] address this problem by training their DL
1040 pixels. In Fig. 6 a sample for each class is shown. network on image patches and classifying an image based

With high resolution images, DL models suffer from high on patch-level predictions. We decide on a different strategy,

VOLUME 7, 2019
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FIGURE 5. Results for the IDC detection (true positive and false positive patches are highlighted in green
and in red, respectively): (a) ground truth (b) FusionNet (c) UNet (d) SEF (e) SEU (f) ResNet-34.

that of reducing the input image by a factor about 88%.
Doing so, the spatial organization of cellular structures can
be globally analyzed by the network, while also keeping the
computational cost down. The reduced image had a size equal
to 170 x 128 pixels. We considered the central square section

44716

with a size equal to 128 x 128 pixels as the input to the
network. In this case, the input size of the bridge layer was
equal to 8 x 8.

An augmentation of the dataset was performed by con-
sidering a set of 9 transformations for each training image

VOLUME 7, 2019
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(@)

FIGURE 6. Lymphoma sub-types: (a) MCL (b) CLL (c) FL.

TABLE 6. The training parameters for the lymphoma multi-classification.

(©)

| Scenario [[ N° Epochs | Mini-batch [ Back. alg. | Init. Learrate | Lear.rate update |
Classification by reconstruction 200 32 SGD 0.001 0.0001 after 150" epoch
Supervised Classification 150 32 ADAM 0.0001 update by ADAM

TABLE 7. Results of the different approaches for the lymphoma multi-classification. The best performance is highlighted in bold.

| Scenario Network || Acc. | St. Dev. |
Classification by reconstruction  FusionNet || 77.60 54
UNet 65.10 8.4
Supervised Classification SEF 97.67 1.3
SEU 92.80 32
ResNet-34 || 95.47 2.0

(i.e. horizontal flip, vertical flip, three clock-wise rotations of
90°, and two horizontal and two vertical translations of £100
pixels). In order to allow a comparison with [13], the same
experimental protocol was followed. In particular, in [13] a
k-fold cross validation with k = 5 was adopted, where each
folder contained 299 training images (consisting of about
80% of the whole dataset) and 75 test images. Differently
from [13], each folder contained resized central regions of
the image together with their corresponding augmentations,
instead of patches resulting from a splitting operation. The
values of the parameters adopted for the training are given
in Table 6. Both scenarios produced 512 feature maps, at the
end of the encoding stage. In the ““Classification by Recon-
struction” scenario, a max pooling layer with a kernel size
equal to 4 x 4 and a stride equal to 2 was applied at the end
of the encoding part, producing 2048 feature maps. In the
“Supervised Classification’ scenario, the max pooling layer
was subsituted by a fully connected layer, which did not
produce any increase in the number of feature maps.

1) EXPERIMENTAL RESULTS AND DISCUSSION
The performances of the different approaches have been
quantitatively assessed by considering the Accuracy mea-

sure. The numerical results of these experiments are reported
in Table 7.
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Also in this case, we have performed many experiments
with different configurations of ResNet (i.e. ResNet-18,
ResNet-34 and ResNet-50, fine-tuned and from scratch and
by using two different input sizes i.e. 128 x 128 and 224 x 224
pixels). Moreover, by performing Wilcoxon test [27] to val-
idate the statistical significance, we found that the obtained
p-values always exceed 0.7. For this reason, we preferred
to report in Table 8 the results produced by the fine-tuned
ResNet-34, as it provides the lowest standard deviation.

The SEF method achieved an accuracy of 97.67% which
is 20.07%, 32.57%, 4.87%, and 2.2% higher when com-
pared with those of FusionNet, U-Net, SEU and ResNet-
34, respectively. In this use case also, the SEF and ResNet
networks outperformed the other networks. The same values
for the training parameters were used for all the consid-
ered approaches, with the exception of fine-tuned ResNet-34,
which adopted a lower number of epochs (50 epochs) and a
different resolution of the input images (224 x 224 pixels).
In order to further strengthen these results, we have also
performed Wilcoxon test between SEF and the other meth-
ods. The resulting p-values are reported in table 9. With the
exception of the comparison between SEF and Resnet-34 (p-
value = 0.1288), the obtained p-values are always lower than
0.01. Other observations can be made by looking in Table 7
at the values of the standard deviation of accuracy, computed
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TABLE 8. Results of the different ResNet configurations for the lymphoma
multi-classification. The best performance is highlighted in bold.

Network Acc.
ResNet-18 fine-tuned (128 x 128) 93.60
ResNet-18 from scratch (128 x 128) 81.87
ResNet-18 fine-tuned (224 x 224) 95.73
ResNet-18 from scratch (224 x 224) 83.20
ResNet-34 fine-tuned (128 x 128) 93.86
ResNet-34 from scratch (128 x 128) 80.00
ResNet-34 fine-tuned (224 x 224) 95.47
ResNet-34 from scratch (224 x 224) 81.86
ResNet-50 fine-tuned (128 x 128) 93.07
ResNet-50 from scratch (128 x 128) 86.93
ResNet-50 fine-tuned (224 x 224) 94.93
ResNet-50 from scratch (224 x 224) 87.47

TABLE 9. The p-values provided by the Wilcoxon test between SEF and
each other methods.

Method p-value
FusionNet | 0.0088
UNet 0.0088
SEU 0.0142
ResNet-34 | 0.1288

TABLE 10. The confusion matrix of FusionNet.

MCL | CLL | FL
MCL | 16.8 | 44 3.2
CLL | 52 156 | 1.8
FL 0.8 1.4 25.6

TABLE 11. The confusion matrix of UNet.

MCL | CLL | FL
MCL | 134 | 2.8 8.4
CLL | 8 10.8 | 3.8
FL 2.6 0.6 24.6

TABLE 12. The confusion matrix of SEF.

MCL | CLL | FL
MCL | 23.6 | 0.8 0.2
CLL | 04 22 0.2
FL 0.2 0 27.6

by adopting a 5-fold cross validation. The SEF method had a
much lower standard deviation of accuracy when compared
with those of FusionNet, UNet, SEU and ResNet-34. Thus,
the performance of SEF had a lower dependence on the
selection of the training set than each of the other approaches.
Additionally, the Tables 10, 11, 12, 13 and 14 show the confu-
sion matrices of Fusionet, UNet, SEF, SEU and ResNet-34,
respectively. Considering that the average number of MCL,
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TABLE 13. The confusion matrix of SEU.

MCL | CLL | FL
MCL | 204 | 3.2 1
CLL | 1.8 20.2 | 0.6
FL 0.8 0.4 26.6

TABLE 14. The confusion matrix of ResNet-34.

MCL | CLL | FL
MCL | 224 | 1 1.2
CLL | 0.6 21.8 | 0.2
FL 0.4 0 27.4

CLL and FL images, in the test set, is equal to 24.6, 22.2 and
27.8, respectively, by means of an analysis of the confusion
matrices it is clear that the number of miss-classified images
with SEF was considerably lower than those provided by the
other approaches. The performance of SEF is compared with
method [13], which adopts AlexNet also for this use case and
it is evaluated only in terms of accuracy (see the last column
of the Table 5). The SEF method achieved an accuracy of
97.67% which was 1.09%, higher when compared with the
accuracy of method [13].

For the sake of completeness, we tested also the same
training strategy as [13] for SEF and ResNet-34. Instead of
image resizing preprocessing, the images were split into 48 x
48 patches with a stride of 48 avoiding the augmentation of
the dataset. During the testing stage, patches were extracted
using the same methodology, and a voting scheme per sub-
type was used where the votes were aggregated to predict the
class. In particular, the class with the highest number of votes
became the detected class for the entire image. According
to this training strategy, ResNet-34 achieved an accuracy
equal to 96.84% outperforming method [13]. SEF obtained
an accuracy equal to 97.06% and it proved once again to have
the best performance.

V. CONCLUSIONS

In this work, we have suggested a method, namely SEF,
based on a deep network for learning histological images to
avoid hand-crafted pathological features. Using deep learning
approaches with specific settings for cancer detection and
classification is an effective and reliable strategy compared to
conventional approaches. We have shown that the encoder of
FusionNet, which has been designed for image segmentation
and reconstruction, can be adapted for cancer detection and
the classification of histological images.

In detail, our SEF method is based on a Residual CNN (i.e.
the encoder of FusionNet) and a softmax classifier to address
two use cases: the detection of IDC of the breast cancer and
lymphoma multi-classification.

In our experiments, we compared the performances of SEF
against different existing deep neural network (FusionNet,
UNet and ResNet) and the encoding part of UNet under the
same conditions and on the same datasets.
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We have also proposed several strategies for training of
the proposed network, based on the extraction of patches
or on resized images, allowing us to deal with the high-
resolution of histological images. The detailed experimental
analysis and performance comparisons show a significant
improvement of the SEF method in relation to all the consid-
ered DL approaches and other existing methods for both use
cases. The results show that for the considered uses cases,
Autoencoders (FusionNet and UNet) extract features that
are unsuitable for the classification, as they are learned for
the image reconstruction. This is the underlying reason why
CNNss trained end-to-end for classification have provided
a higher performance. In particular, the residual one (SEF
and RESNet) are better at consider for small cellular struc-
tures depicted in the histological images, as they attenuate
the drawback of vanishing gradients. However, this problem
remains, so increasing the deep of the network (from 34 to
50 layers in RESNet) does not translate into an increasing
of the classification performance. In our future work we
aim to explore the application of SEF to other use cases for
histological image analysis and also with different training
strategies.
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