
RE 2015

Ambiguity and tacit knowledge in requirements elicitation
interviews

Alessio Ferrari1 • Paola Spoletini2 • Stefania Gnesi1

Received: 11 November 2015 / Accepted: 14 March 2016

� Springer-Verlag London 2016

Abstract Interviews are the most common and effective

means to perform requirements elicitation and support

knowledge transfer between a customer and a requirements

analyst. Ambiguity in communication is often perceived as

a major obstacle for knowledge transfer, which could lead

to unclear and incomplete requirements documents. In this

paper, we analyze the role of ambiguity in requirements

elicitation interviews, when requirements are still tacit

ideas to be surfaced. To study the phenomenon, we per-

formed a set of 34 customer–analyst interviews. This

experience was used as a baseline to define a framework to

categorize ambiguity. The framework presents the notion

of ambiguity as a class of four main sub-phenomena,

namely unclarity, multiple understanding, incorrect dis-

ambiguation and correct disambiguation. We present

examples of ambiguities from our interviews to illustrate

the different categories, and we highlight the pragmatic

components that determine the occurrence of ambiguity.

Along the study, we discovered a peculiar relation between

ambiguity and tacit knowledge in interviews. Tacit

knowledge is the knowledge that a customer has but does

not pass to the analyst for any reason. From our experience,

we have discovered that, rather than an obstacle, the

occurrence of an ambiguity is often a resource for

discovering tacit knowledge. Again, examples are pre-

sented from our interviews to support this vision.

Keywords Requirements engineering � Requirements

elicitation � Interviews � Ambiguity � Natural language

1 Introduction

Requirements elicitation is the process of discovering

requirements for a system by accessing available knowl-

edge sources and by communicating with the stakeholders

who have a direct or indirect influence on the requirements

[18, 74]. Among the available requirements elicitation

techniques (e.g., workshops, focus groups, scenarios, pro-

totypes [64, 81]), interviews with stakeholders are the most

commonly used [1, 11, 24, 36] and are considered among

the most effective for knowledge transfer [16, 17, 39, 75].

Normally, requirements elicitation interviews involve two

roles: a customer and a requirements analyst. Several fac-

tors were observed to negatively affect the interview pro-

cess, from the trustworthiness and motivation of the

customer, to the absorptive capacity of the requirements

analyst [18]. Among these factors, ambiguity in commu-

nication is regarded as a major obstacle [18] for knowledge

transfer, since incorrectly understood needs or domain

aspects might lead to the definition of poor requirements,

which can cause problems in later stages of development

[2].

Past works on ambiguity in requirements engineering are

mainly focused on natural language (NL) ambiguities in

requirements documents (i.e., textual documents) [3, 9, 10,

12, 13, 21, 22, 30, 33, 44, 45, 49, 50, 52, 54, 77–79]. Part of

these works is focused on the identification of typical

ambiguous terms and constructions [9, 10, 30, 33, 77]. Other

& Alessio Ferrari

alessiofer@gmail.com; alessio.ferrari@isti.cnr.it

Paola Spoletini

pspoleti@kennesaw.edu

Stefania Gnesi

stefania.gnesi@isti.cnr.it

1 CNR-ISTI, Pisa, Italy

2 Kennesaw State University, Kennesaw, GA, USA

123

Requirements Eng

DOI 10.1007/s00766-016-0249-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0249-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0249-3&domain=pdf

works address the ambiguities by translating the require-

ments into formal languages or models [3, 13, 45]. Finally,

some works focus on the usage of NL understanding

methodologies [44, 52] and on artificial intelligence tech-

niques [21, 22, 78, 79]. However, all these works study

ambiguity at the level of written NL requirements, and the

role of ambiguity in elicitation interviews that use NL in its

oral form has not been thoroughly investigated yet.

The work presented in this paper aims at filling this gap,

with the rationale that understanding ambiguity in inter-

views, which precede the definition of requirements doc-

uments, can cast new light on the concept of ambiguity in

textual requirements. To this end, we decided to directly

observe the occurrence of ambiguity by simulating a set of

realistic interviews between a requirements analyst and a

set of customers who wish to develop novel software-in-

tensive products. From this study, we saw that the concept

of ambiguity in NL requirements documents, and its clas-

sical lexical, syntactic, semantic clues [10], were

accounting for a very limited set of ambiguity phenomena

that occur at the level of requirements elicitation, in which

the pragmatic, contextual aspect appeared to be dominant.

Therefore, we defined a framework to categorize ambigu-

ities in requirements elicitation interviews, on the basis of

the work performed by Gervasi et al. [28] on tacit knowl-

edge. Tacit knowledge in requirements engineering [18, 28,

75] is defined as the knowledge that a customer has but

does not pass to the requirements analyst for any reason.

Tacit knowledge is regarded as a major problem in

requirements elicitation, and though process solutions exist

[75], means are required to improve the detection of tacit

knowledge. In our study, we found that the phenomenon of

ambiguity, correctly perceived as a dangerous issue in

requirements documents, is actually a powerful tool to

discover tacit knowledge during requirements elicitation.

Indeed, when the analyst explicitly reveals the presence of

an ambiguity during an interview, the ambiguity often

works as a conversational picklock to lead to the disclosure

of tacit knowledge. This finding can be employed by

requirements engineers to define practices that leverage

ambiguities in requirements elicitation, and use this com-

munication defect to achieve an improved shared under-

standing of the problem domain [32].

This work is an extension of a previous conference

paper [23]. With respect to the original paper, the current

work adds the following relevant contributions: (a) an

extension of the ambiguity framework, based on the anal-

ysis of additional interviews performed with domain

experts. These interviews were performed to further

investigate the role of domain knowledge in the perception

of ambiguity; (b) an explicit integration of the notion of

innocuous ambiguity [12] within the framework; (c) a

larger set of examples; (d) a quantitative view on the

different types of ambiguity that we identified, and on the

different types of tacit knowledge that we disclosed; (e) a

throughout literature review.

The paper is organized as follows. Section 2 informally

defines ambiguity in requirements elicitation interviews

and presents the contextual aspects that are useful to

understand our vision of ambiguity. In Sect. 3, we more

formally define ambiguity by instantiating the framework

for tacit knowledge defined by Gervasi et al. [28] in the

context of customer–analyst interviews. Section 4

describes the different categories of ambiguities in inter-

views. Section 5 explains the role of ambiguity in dis-

closing tacit knowledge. Section 6 presents the research

challenges that this work opens. Section 7 discusses related

works, and Sect. 8 concludes the paper.

2 Context

This paper aims to give an insight on ambiguity in

requirements elicitation interviews. In this section, we give

an informal definition of ambiguity in interviews, briefly

describe the performed interviews and present the funda-

mental concepts useful to understand the phenomenologi-

cal framework that we defined for ambiguity.

2.1 Ambiguity in interviews

Requirements elicitation interviews normally involve a

customer and a requirements analyst, and the elicitation

process consists of a dialog in which the customer

expresses his/her needs, while the analyst asks questions to

identify the requirements for the system as well as domain-

related aspects. Interviews are normally classified into

three types, namely structured, unstructured and semi-

structured [81]. In this work, we focus on unstructured

interviews, in which the customer is free to talk and is not

guided by a predefined set of questions.

In general, a NL expression is ambiguous when it can be

interpreted in different ways. In interviews, ambiguities are

associated with misunderstanding situations, when an

expression of a customer is either not understood or

incorrectly interpreted by the requirements analyst. This

latter phenomenon is normally referred as subconscious

disambiguation [27]. Let us give an informal definition of

ambiguity in requirements elicitation interviews (a more

formal definition is given in Sect. 3.4).

Ambiguity An ambiguity occurs in a requirements elic-

itation interview when a customer articulates a unit of

information, and the meaning assigned by the requirements

analyst to the articulation differs from the meaning inten-

ded by the customer.

Requirements Eng

123

With the term unit of information, we refer to two types

of information that the customer might wish to articulate

along the interview: system needs and domain-related

aspects. Moreover, by articulation of a unit of information,

we mean the speech fragment that expresses a system need

or a domain aspect. In this sense, an articulation is a

reification of a unit of information. Moreover, a speech

fragment is intended here as any spoken consecutive set of

words. Our definition of ambiguity includes also those

cases in which the analyst cannot assign any meaning to

the speech fragment expressed by the customer.

Notice that our definition of ambiguity takes into

account only the ambiguity cases associated with expres-

sions of the customer that are misunderstood by the analyst,

and does not consider the situations in which the customer

does not understand questions or comments of the

requirements analyst. This choice is driven by the idea that

relevant information about the system-to-be (i.e., require-

ments and domain knowledge) comes from the customer.

Though this is not always true, since the requirements

analyst can contribute to the requirements elicitation pro-

cess through direct negotiation and thanks to his/her pre-

vious domain knowledge [36], this simplification avoids us

to consider aspects related to dialog and argumentation—

addressed by Corvera et al. [15]—which would be beyond

our scope.

2.2 Interviews

The definition of ambiguity given above was used as a

reference to perform our inquiry concerning ambiguity in

requirements elicitation interviews. To study the problem,

we simulated 34 unstructured interviews, in which the

customers were asked to come to the meeting with one or

more ideas of software-intensive systems to develop. The

interviews were performed by the same requirements

analyst (i.e., the first author), whose previous research

focused on the detection of ambiguity in textual require-

ments [21, 22], to have a uniform perception of the

ambiguity cases. The role of the customer was played by

11 domain experts—in History of Arts, Public Adminis-

tration, Healthcare,1 Training Courses, Mechanical Engi-

neering, Statistics, Agronomy, Real-estate Appraisal and

Literature—and 7 software engineers. The domain experts

were asked to provide ideas for novel software-intensive

systems in their domains, while the software engineers

could bring novel ideas in domains in which they felt

familiar. We decided to have also software engineers in the

interviews to enact peer-based situations, in which both the

customer and the analyst have a computer science

background. These situations are rather common in some

companies, in which there is an IT specialist who acts as

mediator between the company and the supplier of a soft-

ware product. Given our focus on the linguistic aspect of

ambiguity, no graphical language was allowed during the

interviews, while body language was in general unavoid-

able. At the beginning of each interview, the requirements

analyst asked the customer to speak about his/her ideas

and, when domain-related aspects emerged that appeared

new to the analyst, the analyst asked for further insights.

During each interview, the analyst took textual notes

concerning the requirements and annotated situations that

he perceived as ambiguous. Moreover, interviews were

tape-recorded.

From the interviews, we isolated the speech fragments

that were perceived as ambiguous by the analyst (232 in

total) by extracting them from the interview notes and the

tape recordings. Accurate inspection of these fragments,

self-reflection and joint discussions allowed us to come to

the definition of our categorization of ambiguities in

interviews.

The interviews were not meant to be a rigorous empir-

ical study, but were used as a baseline to first identify and

then categorize ambiguities. Therefore, the current paper

shall be regarded as a vision paper, in which the authors

express their understanding of the ambiguity phenomenon,

as it emerged from a set of observations made in a set of

arranged customer–analyst interviews. In this sense, the

quantitative data reported in Sects. 4.5 and 5.3 shall be

read as merely informative for the reader, and not as an

empirical validation of our vision. On the other hand, we

strongly believe that it would have hardly been possible to

develop the point of view that we are sharing in this paper

without putting ourselves in the scene. Overall, this is a

first step toward a broader research, as envisioned in the

challenges described in Sect. 6. However, we argue that the

description given of the settings of our interviews can

allow other researchers to wear the lenses of our vision or

to refute it, taking into account the story that generated it.

2.3 The pragmatic facet

In our on-field observation during the interviews, a first

intuitive finding was that ambiguities in requirements

elicitation appeared as different from the ambiguities dis-

cussed in the literature of NL requirements. As in textual

requirements, some ambiguities were triggered by vague

terms (e.g., ‘‘as possible’’ [10, 33]), some were due to the

usage of universal quantifiers (e.g., ‘‘all’’ and plurals [9]),

and few were anaphoric ambiguities [79]. However, most

of the ambiguities experienced were related to the context

of the interview, and in particular to the mental context of

the requirements analyst.

1 Three professionals in different subfields, namely Bio-medical

Devices, Heath-care Management and General Medicine.

Requirements Eng

123

Interpretation, acceptance and access To understand

these situations, it is useful to refer to Fig. 1, in which we

give a model of the understanding of a speech fragment by

a requirements analyst. In a perfect communication

sequence, when a customer articulates a unit of informa-

tion, the analyst listens to the speech fragment of the

customer and accesses the expressed unit of information.

Accessing the information means that the expression of the

customer is well understood, and no ambiguity—defined as

in Sect. 2.1—is perceived by the analyst. The access to the

information (Access line in Fig. 1) implies that the analyst

first gives an interpretation (Interpretation block) and then

considers if this interpretation is acceptable in light of his/

her current mental framework (Acceptance block). Indeed,

as highlighted by Pitts and Brown [59], and as we expe-

rienced in our interviews, during the elicitation the analyst

builds a mental framework of the problem domain, which

is incrementally updated while new information comes

from the customer. This mental framework includes the

other requirements currently expressed by the customer

(Requirements), the motivations of the requirements

(Goals, in goal-oriented requirements engineering terms

[47]), the domain knowledge currently available (Domain)

and some form of mental specification of the system

(Specification), which the analyst defines to assess the

feasibility of the system in advance.

Domain knowledge component The domain knowledge

component can be further partitioned into sub-components.

Indeed, when speaking with the customer, the requirements

analyst tries to get information about the domain and tends

to create a mental knowledge base according to three main

facets. The first facet is composed by the goals inherent to

the domain (D-Goals). These goals do not necessarily

overlap with the goals that the system to be developed is

required to satisfy. Indeed, the domain might have multiple

problems to address, which could be discussed along the

interview, and the system can solve only part of them.2 The

second facet is composed by the rules that regulate the

domain, as understood by the analyst (D-Rules). Here,

rules are intended as domain rules, both in terms of regu-

lations (i.e., norms to follow within the domain) and in

terms of business rules, i.e., any statement of the customer

that characterize or constrain the domain, both in terms of

structure and in terms of behavior [38]. The third facet is

the application view that the analyst mentally builds to

visualize and make sense of the information about the

domain received by the customer (D-Application). This

application view involves both real-world objects and

practical operations. In a sense, this three-dimensional

knowledge base helps the analyst in describing the domain

as the system-as-is, a world made of goals, rules, real

objects and practical operations, in which the system-to-be

needs to be integrated.

These components jointly operate in the mental framework

of the analyst to accept or reject the given interpretation.

Indeed, to accept the unit of information expressed by the

customer, the analyst compares his/her interpretation of the

speech fragment with these components, to check whether the

new information is consistent with his/her current under-

standing of the problem domain. For example, if the inter-

preted unit of information contradicts the requirements

previously expressed, the analyst will perceive an ambiguity

and will ask further clarification to the customer. In other

cases, the analyst can give an interpretation to the speech

fragment, but this interpretation might be different from the

intended meaning of the customer. If this interpretation is

acceptable in the mental framework of the analyst, he/she will

not detect the ambiguity and will access to a unit of infor-

mation that was not actually formulated by the customer.

INTERPRETATION

ACCEPTANCE

SPEECH
FRAGMENT

ACCESS

Requirements

Goals

Domain

D-Goals

D-Rules

D-Application

Fig. 1 A model of the process of access to a unit of information by a

requirements analyst

2 For example, one of the goals of the General Medicine domain is to

provide treatments for the patients. A system whose goal is to support

a physician in the diagnosis of a disease (as, e.g., in Example 3.3)

only contributes to the domain goal of treating the patients. Satisfying

this domain goal requires other sub-goals to be addressed (e.g.,

selecting medications), which are outside the scope of the system.

Requirements Eng

123

To account for the different types of situations that we saw

in practice, which depend on the interaction of the different

blocks depicted in Fig. 1, the concept of ambiguity needs to

be defined in a precise way, and further refined. To this end,

we instantiate the framework for tacit knowledge defined by

Gervasi et al. [28], in the context of customer–analyst

interviews, and we extend it to account for the different cases

of ambiguities that we encountered in practice. In the fol-

lowing, we will give a definition of ambiguity, and we will

provide a categorization of the phenomenon.

3 Definition of ambiguity

The framework defined by Gervasi et al. [28] aims at

providing a phenomenology of tacit knowledge. To this

end, the framework defines a model of the communication

between stakeholders involved in a software project. The

model is based on a set of predicates that can be associated

with a unit of information k. This unit of information is

regarded as any desire, intention, judgement, belief, fact,

reasoning rule or algorithm, which is held by a person or

conveyed by a document [28]. In requirements interviews

that involve a customer and a requirements analyst as

stakeholders, k represents any information concerning the

system needs or the domain knowledge associated with the

system to develop. At this stage, we are not interested in

the notion of tacit knowledge, which is discussed in

Sect. 5. Instead, we are interested in the predicates

employed to represent the communication process between

customer and analyst. These predicates are useful to for-

mally reason on the dialog between customer and analyst.

Let k be a unit of information, c be the customer, a de-

note the requirements analyst and i be the articulation of

k expressed by the customer.3 Consider that k can belong to

the requirements for the system or to the domain of the

system. Moreover, consider i as a speech fragment.

From the predicates associated with k, we select two

predicates that are useful for our definition of ambiguity:

• articulatedc,i(k): a unit of information k was expressed

in a speech fragment i by the customer c;

• accessiblea,i(k): the unit of information k expressed

through i was correctly accessed by the analyst a.

As in the work of Gervasi et al. [28], accessiblea;iðkÞ
implies that k is accessible in reasoning, or acting, or in

some form of decision making. In the following subsec-

tions, we refine this latter predicate to give a first insight on

the ambiguity phenomenon.

3.1 Accessible

To refine the accessiblea;iðkÞ predicate, here, it is useful to

specify that k is accessible to a if the expression of k is both

interpretable (i.e., a can assign a meaning to i) and ac-

ceptable in the current mental framework of the analyst.

More formally:

accessiblea;iðkÞ ¼ interpretablea;iðkÞ ^ acceptablea;iðkÞ

The interpretablea;iðkÞ and acceptablea;iðkÞ predicates are

novel predicates introduced by the current work. Note that

acceptablea;iðkÞ)interpretablea;iðkÞ, since the information

can be accepted only after it has been interpreted.

3.2 Interpretable

The expression of k is interpretable by the analyst (i.e.,

interpretablea;iðkÞ) if the analyst can give at least one

interpretation (correct or incorrect) to the terms, to the

syntax and to the semantics of the speech fragment. From

our experience, there are several cases that might cause

:interpretablea;iðkÞ. Here, we give three examples.

Example 3.1 (:interpretablea;iðkÞ) The customer might

use domain-specific terms that the analyst does not

know. Consider the case of one of our customers, who is

an expert in History of Arts, and wishes to realize a

system for associating the paintings to the authors, to

support the process of attribution. He says that, to per-

form attribution of a painting to an artist, he applies the

connoisseurship method (a method based on using pre-

vious paintings to analyze the style and the themes of an

artist). This domain-specific term was unknown to the

analyst, and he had to ask further insight on this topic to

understand the process associated with the connoisseur-

ship method.

Example 3.2 (:interpretablea;iðkÞ) The analyst might not

understand the expression of the customer, because the

latter is using vague terms, without a precise semantics.

Consider the case of one of our customers who wishes to

develop a mobile application that uses augmented reality to

paint the walls of a room. During the interview, the cus-

tomer says: [The app changes the color of the wall] taking

light into account. The analyst could not understand the

vague expression taking light into account and asked for

further clarifications. Then, he understood that the cus-

tomer wanted to preserve the shades of the walls due to

different lightning situations.

Example 3.3 (:interpretablea;iðkÞ) The analyst might not

understand the expression of the customer, because the

latter is expressing too much information at once in a

chaotic way, possibly using domain-specific terms. The

3 Gervasi et al. [28] have i refer to the whole interview. Here, i is

associated with the specific piece of the interview (i.e., the speech

fragment) in which k is articulated.

Requirements Eng

123

analyst has too much information to process and he/she is

not able to assign a meaning to the expression of the cus-

tomer. For example, one of our customers is a physician

who wants to develop a system to predict the dermal dis-

ease of a patient based on the observation of symptoms. He

said that he wanted Software that identifies the various

diseases, and hence also the cutaneous symptoms, also for

diseases that are systemic. No meaning could be assigned

to this fragment by the analyst. First, it was clarified the

domain-specific meaning of systemic disease (i.e., a disease

that affects the body as a whole). Then, it was clarified that

the customer wanted a system that takes as input a series of

symptoms and produces the most likely disease as output.

Symptoms could be specific cutaneous manifestations, and

other types of symptoms, e.g., fever and high heartbeat.

The predicted disease could be dermal or systemic.

3.3 Acceptable

The fact that the analyst can give an interpretation to the

speech fragment of the customer does not imply that the

fragment is acceptable in the analyst’s mental framework

(i.e., acceptablea;iðkÞ). As previously specified, the mental

framework of the analyst is composed of multiple com-

ponents that are involved in the acceptance of the speech

fragment of the customer. To account for these compo-

nents, we define:

acceptablea;iðkÞ ¼ acceptableGa;iðkÞ ^ acceptableRa;iðkÞ
^ acceptableDa;iðkÞ ^ acceptableSa;iðkÞ

Here, G are the motivations currently associated with the

system (i.e., its goals), R are the requirements currently

expressed in the interview, D is the domain knowledge

available to the analyst and S is the mental specification of

the system. Let us exemplify some cases in which we have

:acceptablea;iðkÞ.

Example 3.4 (:acceptableGa;iðkÞ) These are the cases in

which the analyst cannot understand the goal or rationale of

the requirement currently expressed by the customer. For

example, one of our customers wanted a system to know

the time until a bus arrival. He specified that he wanted a

kind of mapping between the time left and where the bus is.

The analyst could not understand the goal of knowing the

exact position of the bus, since, in his current mental

framework, the only goal was to know how much time was

left for the next bus. The customer explained that he

wanted to know whether the waiting time was due to the

distance of the bus from the bus stop or to traffic conges-

tion. The hidden goal of the system was to let the user

choose another means of transport, possibly passing from

another street, in case of traffic congestion.

Example 3.5 (:acceptableRa;iðkÞ) The typical cases that

make a requirement not acceptable with respect to the

previously expressed requirements are the situations of

contradiction and inconsistency. For example, one of our

customers wanted to have an intelligent windshield wiper

that worked according to tapping commands of the driver.

He first said: It would be nice to have a voice control or tap

control. The tap control was understood by the analyst as a

manual tapping (i.e., the driver taps with his/her hand, and

the windshield wiper moves). But then, the customer said: I

do not want to use the hands. This was perceived as a

contradiction with the previously expressed need. After

asking for clarifications, the analyst understood that, with

the expression tap control, the customer intended ‘‘tapping

with the voice’’: He wanted to control the system by pro-

ducing a sound with the voice similar to the sound that

would be produced by tapping with the fingers. Basically a

previous ambiguity (an incorrect disambiguation phe-

nomenon, see Sect. 4.3) was discovered thanks to another

ambiguity (i.e., an acceptance unclarity, see Sect. 4.1).

Example 3.6 (:acceptableDa;iðkÞ) These are situations in

which the speech fragment of the customer is inconsistent

with the domain knowledge of the analyst. In our inter-

views, one of the customers wanted a recycling-support

system that, given the envelope of a product, tells the user

in which trash bin should be thrown. The customer said: If

you do not recycle a certain thing because the municipality

did not signal that it was recyclable, you will not get a fine.

From the domain experience of the analyst in recycling,

incorrect recycling was not punished with any fine.

Therefore, the requirements was inconsistent with his

domain knowledge, and he asked clarifications. After some

discussion, he understood that, in the municipality of the

customer, trash bins are placed within the condominia, and

the residents get fines from the municipality if they do not

recycle properly.4

Example 3.7 (:acceptableSa;iðkÞ) These situations occur

when there is inconsistency between a statement of the

customer and the specification that the analyst mentally

builds during the interview. For example, one of our cus-

tomers wanted to have a swim-keeper device, to monitor

his swimming training. He said: It would be nice to show

also how many strokes you take in one lap. The analyst

thought that the length of a lap could vary and that, from

the specification point of view, an approach for indicating

4 The speech fragment in this example could be seen as inconsistent

with the commonsense knowledge of the analyst. However, deciding

whether something is commonsense knowledge or domain knowledge

is arguable. For this reason, we adopted the convention that any

ambiguity that is driven by different views of the domain shall be

apportioned to the domain knowledge dimension.

Requirements Eng

123

the length of a lap should be agreed. When the customer

understood the issue, he specified that if you swim in a

swimming pool it [the device] should be able to understand

when you switch direction.

Domain knowledge component The domain knowledge

component is further partitioned into three sub-compo-

nents, to account for the different ambiguity phenomena

that we experienced in practice. Hence, we found useful to

refine the acceptableDa;iðkÞ predicate as follows:

acceptableDa;iðkÞ ¼ acceptableDO

a;i ðkÞ ^ acceptableDC

a;i ðkÞ
^ acceptableDA

a;i ðkÞ

Here, DO are the goals concerning the domain (i.e., its

objectives), DC are the rules of the domain (i.e., its con-

straints, in terms of regulations and business rules) and DA

is the mental application view that the analyst builds to

figure out how the rules are applied in the real world. It is

worth noting that these three dimensions are not the actual

goals, rules or real-world views belonging to the domain,

but those that are understood or inferred by the analyst

during the interview, or according to his/her previous

domain knowledge. In other terms, they form the vision of

the domain from the perspective of the analyst. Of course,

this vision might be wrong or, more precisely, not aligned

with the vision of the domain of the customer, as we see by

exemplifying the cases in which we have

:acceptableDa;iðkÞ.

Example 3.8 (:acceptableDO

a;i ðkÞ) Similarly to the cases in

which we can have :acceptableGa;iðkÞ, these situations

occur when the analyst does not understand the rationale or

objective of a domain-related statement of the customer.

For example, one of our domain experts works for a real-

estate appraisal company, and she is in charge of estab-

lishing the market value of private properties. While

explaining the process of providing an evaluation for a

property, she said that she uses the data of neighboring

properties with similar use (e.g., commercial, residential)

and comparable size. She said that these data include both

the selling price of the neighboring properties and the

prices of the transactions of letting (i.e., rental contracts).

Specifically, she said: Besides the [sales and purchase]

transactions, we need to consider also the transactions of

letting. Since, at that point of the conversation, the analyst

had understood that the objective of the domain expert’s

work was estimating the selling value of properties, he

could not understand the goal of having the rental price of

neighboring properties. The expert explained that the

objective of her work was not only giving a selling price,

but also evaluating the potential revenue that the property

could generate through rents. Then, the analyst understood

that selling prices and rental prices contribute to the esti-

mation of the market value of a property. In this sense, this

situation led to understand a previous unknown business

rule of the domain of the customer.

It is worth mentioning that the goal of the system to be

developed was to provide financial information about the

neighboring properties of the property that our customer

was required to evaluate. Hence, the goal of estimating the

market value of the property—discussed in this example—

was a goal inherent to the domain, to which the system was

required to contribute, but that requires other sub-goals to

be addressed (e.g., performing the actual evaluation),

which are outside the scope of the system.

Example 3.9 (:acceptableDC

a;i ðkÞ) These situations occur

when a statement of the customer is contrasting with the set

of domain rules currently understood or inferred by the

analyst. One example is the case of Example 3.6, in which

the domain rules assumed by the analyst were contrasting

with the rules—in this case, the regulations—considered

by the customer. Let us give an additional example, in

which the rule involved is not a regulation, but a business

rule. One of our domain experts is a mechanical engineer

working for a public research institution. He wishes to

develop a system to support the purchase of components

for his mechanical devices. During the interview, he

expressed the following business rule: When I know which

component I need, I search who is selling that product [...],

to receive an offer for the product. This is a business rule,

in the sense that gives a description of a dynamic behavior

within the domain (we recall that business rules can also

constrain the structure of the domain, see Sect. 2.3). From

the previous statement, the analyst inferred that the cus-

tomer was asking an offer for one single component—this

can be regarded as an inferred business rule. Afterward, the

customer described the offers that he receives from the

sellers: Based on the number of components, the seller

specifies the cost. This was contrasting with the idea that

the customer was asking offers for one component only.

Afterward, the customer clarified that, when he asks an

offer, he also specifies the number of components of the

same type that he wishes to order.

Example 3.10 (:acceptableDA

a;i ðkÞ) These situations occur

when the customer expresses a statement that is in contrast

to the mental application scenario of the analyst. In our

experience, this happens when the customer expresses a

domain rule for which the practical applicability is unclear.

For example, one of our customers is an expert in statistics

working for a hospital and described the following sce-

nario. Patients go to their general practice doctor, and the

doctor might prescribe them a checkup. The hospital has an

office that a patient can call to reserve the checkup. The

Requirements Eng

123

domain expert said that the patient gets the number of the

office from the website of the hospital. The analyst imag-

ined a practical scenario. Since there are several hospitals,

he could not understand how could the patient know which

specific hospital’s website to consult, and asked clarifica-

tions. The expert explained that The [general practice]

doctor suggests a medical specialist [for the checkup] and

indicates which hospital should you call.

3.4 Ambiguity

Given the previous definitions of the predicates

articulatedc;iðkÞ, interpretablea;iðkÞ and acceptablea;iðkÞ,
we can give a more formal definition of ambiguity that

accounts for all the cases perceived in our interviews.

Let k0, with k 6¼ k0, denote any piece of information that

can potentially be accessed by the analyst. An ambiguity

occurs in the articulation of a unit of information k when:

ambiguousiðkÞ ¼ articulatedc;iðkÞ ^ :articulatedc;iðk0Þ
^ ð:accessiblea;iðkÞ _ interpretablea;iðk0ÞÞ

The definition implies that the customer articulated a unit

of information through a speech fragment and did not mean

to articulate any other unit of information. However, the

analyst either was not able to access this unit of informa-

tion, or he/she interpreted the speech fragment of the

customer in a way that was different from the intended

meaning of the customer. This definition mimics the

informal definition of ambiguity given in Sect. 2.1.

From this definition, we can derive six different feasible

main classes. Indeed, by unfolding on the OR part of the

condition (i.e., :accessiblea;iðkÞ _ interpretablea;iðkÞ), we

have that an ambiguity occurs whenever:

:interpretablea;iðkÞ _ :acceptablea;iðkÞ
_ interpretablea;iðk0Þ

That is, whenever the speech fragment is not interpretable,

is not acceptable, or can be interpreted in a way different

from the intended meaning of the customer. These classes

are summarized in Table 1. The table considers only the

feasible classes, since we discard the combination in which

we have acceptablea;iðkÞ ^ :interpretablea;iðkÞ.

4 Categories of ambiguities

This section discusses the categories of ambiguities derived

from the formal definition introduced in the previous sec-

tion. We classified them into four main classes, namely

unclarity, multiple understanding, incorrect disambigua-

tion and correct disambiguation, and in the remainder of

this section, we present them accordingly. Furthermore, at

the end of the section, we present a quantitative view on the

different types of ambiguity that we identified.

4.1 Unclarity

The unclarity class includes situations in which the

requirements analyst cannot give any interpretation or

acceptable meaning to the unit of information expressed.

This can happen because the information was not articu-

lated in clear language, or for the usage of domain jargon,

or because the interpretation is not acceptable in the mental

framework of the analyst. This type of ambiguity can be

formally represented as:

articulatedc;iðkÞ ^ :articulatedc;iðk0Þ
^ :accessiblea;iðkÞ ^ :interpretablea;iðk0Þ

If the speech fragment cannot be interpreted, we have

:interpretablea;iðkÞ, which causes the unclarity. In these

situations, exemplified in Examples 3.1, 3.2 and 3.3, we

speak about interpretation unclarity.

Moreover, depending on the component of the current

mental framework that causes :accessiblea;iðkÞ, we can

have different cases of unclarity situations. Examples of

these cases were presented from Examples 3.4 to 3.10. In

all the cases in which we have :acceptablea;iðkÞ, we speak

about acceptance unclarity.

Table 1 Summary of ambiguity

phenomena
k k0 Type

:interpretableðkÞ :acceptableðkÞ :interpretableðk0Þ – int. unc.

interpretable(k) :acceptableðkÞ :interpretableðk0Þ – acc. unc.

interpretable(k) acceptable(k) interpretableðk0Þ acceptableðk0Þ mul. und.

:acceptableðk0Þ cor. dis.

– :acceptableðkÞ interpretableðk0Þ acceptableðk0Þ u-inc. dis.

:acceptableðk0Þ d-inc. dis.

int. unc.: interpretation unclarity; acc. unc.: acceptance unclarity; mul. und.: multiple understanding; cor.

dis.: correct disambiguation; u-inc. dis.: undetected incorrect disambiguation; d-inc. dis.: detected incor-

rect disambiguation

Requirements Eng

123

4.2 Multiple understanding

The multiple understanding class includes situations in

which the requirements analyst is able to give multiple

acceptable interpretations to the expression of the cus-

tomer, one correct and the other(s) incorrect, and is

therefore left with the question of whether the intended

meaning is the former or the latter(s). The formal repre-

sentation of multiple understanding is:

articulatedc;iðkÞ ^ :articulatedc;iðk0Þ
^ accessiblea;iðkÞ ^ accessiblea;iðk0Þ

Several examples of multiple understanding situations

were experienced in our interviews, for example:

Example 4.1 (multiple understanding) One of our cus-

tomers wanted to define a Web-based platform in which the

citizens can send suggestions for laws to the parliament.

The customer said that the platform was required to have A

dashboard to show [to the representatives of the parlia-

ment] what’s going on in specific areas. For the analyst, the

term areas could mean geographical or thematic areas.

Therefore, he asked the customer to which type of area was

he referring, and the customer answered: Geographical

areas.

We have noticed that in some cases the customer

articulates an idea that has multiple meanings for the

analyst, and each one is valid. Though not evident from the

formalization, this situation is accounted in our definition

of multiple understanding. An example might help clari-

fying these situations.

Example 4.2 (multiple understanding) Consider again the

Web-based platform case. The customer stated that The

application should be connected to a social network. Two

meanings could be assigned by the analyst to this expres-

sion: (1) The application should have an embedded social

network (we will refer to this need as k1) and (2) the

application should be connected with existing social net-

works (we will refer to this need as k2). When asked which

of the meaning was correct, or if both were correct, the

customer said: both. Therefore, the k expressed by the

customer was including both ideas (k ¼ k1 ^ k2). On the

other hand, the k0 understood by the analyst was consid-

ering also the case in which the two ideas could be

exclusive (k0 ¼ k1 _ k2, in which _ is the logical XOR

operator). Therefore, also this situation falls in the category

of multiple understanding.

4.3 Incorrect disambiguation

The incorrect disambiguation class includes situations in

which the requirements analyst assigns a single

interpretation to the expression of the customer, but this

interpretation is different from the meaning intended by the

customer. The formal representation of incorrect disam-

biguation is:

articulatedc;iðkÞ ^ :articulatedc;iðk0Þ
^ :accessiblea;iðkÞ ^ interpretablea;iðk0Þ

While performing requirements elicitation, this class of

ambiguity normally includes subconscious disambiguation

phenomena [10], which are hard to identify, unless the

requirements analyst suspects that his/her interpretation of

the expression of the customer is not correct. This phe-

nomenon occurs when (1) the analyst can give an inter-

pretation to the speech fragment of the customer, (2) this

interpretation does not match with k (i.e.,

interpretablea;iðk0Þ) and (3) this interpretation is not

acceptable in the mental framework of the analyst. We will

specifically refer to these phenomena as detected incorrect

disambiguation. The following example is representative

of this category.

Example 4.3 (detected incorrect disambiguation) One of

our customers wanted to build a Fitness Tamagochi, a

game in which an avatar grows depending on how much

workout the user does. The customer said: It would be

better if you could choose what type of character you want

to create. The analyst interpreted the verb create as select

when you start the game. However, he could not under-

stand the goal of having different characters to be selected

(i.e., :acceptableGa;iðk0Þ). Therefore he asked: So, you can

choose the character? The customer replied: Actually you

cannot [...] you can possibly become [a specific character].

After discussing with the customer, it became clear that he

wanted the avatar to have different transformations

depending on the type of training performed and that with

the term create, she basically intended ‘‘become.’’

In the other cases, in which k0 is both interpretable and

acceptable, nocuous subconscious disambiguation phe-

nomena [10] are likely to occur. Consider as example the

case in which the customer is articulating a requirement

and is using a domain-specific term that has a meaning for

the analyst, and is also acceptable in his/her current mental

framework. In this case, the analyst will include the new

requirement in the set of requirements currently elicited,

but with an incorrect interpretation, which might or might

not emerge after the requirement is committed to a

requirement document. We refer to these cases as unde-

tected incorrect disambiguation. In our interviews, we

were able to see these phenomena thanks to further dis-

cussion with the customer along the interview, which

revealed that, during the conversation, an undetected

incorrect disambiguation occurred. A first example is

Requirements Eng

123

Example 3.5, in which an incorrect disambiguation phe-

nomenon was later discovered thanks to an acceptance

unclarity (:acceptableRa;iðkÞ). Another similar example is

reported below.

Example 4.4 (undetected incorrect disambiguation) In

one of our interviews, the customer wanted to have an

automated baby swinger. She said: I want something that

can change. A component that relax her [the daughter] is

that she feels the novelty in the movement. The analyst

interpreted this sentence as a change in frequency of the

movement and did not ask for further clarification. How-

ever, during the conversation, and detailing the behavior of

the system from the user interface point of view, the cus-

tomer said: You can choose different sequences of move-

ment, three in this direction, two in this direction. This

sentence, together with the discussion that followed, clar-

ified that the customer wanted something that changes in

terms of direction, and not in terms of frequency. The

undetected incorrect disambiguation was discovered thanks

to an acceptance unclarity, since the speech fragment of

the customer showed an inconsistency with respect to the

requirements understood by the analyst (i.e.,

:acceptableRa;iðkÞ).

4.4 Correct disambiguation: also-known-as

innocuous ambiguity

The correct disambiguation class includes situations in

which the requirements analyst can assign more than one

interpretation to the speech fragment of the customer, but

the only interpretation that appears acceptable to the ana-

lyst is the one that matches the meaning intended by the

customer. Formally:

articulatedc;iðkÞ ^ :articulatedc;iðk0Þ ^ accessiblea;iðkÞ
^ interpretablea;iðk0Þ ^ :acceptablea;iðk0Þ

This is a theoretical phenomenon that we were not able to

able capture in our interviews. Indeed, when a disam-

biguation of this type occurs, the interview continues

without any interruption and without a conscious aware-

ness that the disambiguation actually took place. We

hypothesize that this is a subconscious disambiguation

phenomenon, which happens any time a listener has to

assign the most likely meaning to an expression, given a

certain context. For example, if someone tells us: I went to

the bank to open an account, we will never think that the

term bank could refer to the part of land adjoining a river,

since the occurrence of the term account in the context of

the sentence helps us disambiguate the term bank. In other

terms, the latter interpretation is not

acceptable (:acceptableDA

a;i ðk0Þ).

Correct disambiguation is the basis of the so-called in-

nocuous ambiguities observed by Chantree et al. [12] and

Yang et al. [78]. In these works, which focus on specific

syntactic ambiguities in NL requirements, namely coordi-

nation [12] and anaphoric [78], particular emphasis is given

to the distinction between innocuous and nocuous ambi-

guities. The former include those cases in which a

requirement having multiple syntax trees has a single

reading in practice. The latter include those situations in

which multiple readings are possible. Innocuous ambigui-

ties can be regarded as correct disambiguation phenomena.

Indeed, a theoretical ambiguity exists in a fragment such as

The size of vector-based inputs and outputs shall be defined

(adapted from the paper of Chantree et al. [12]), since

multiple syntax trees are possible— i.e., vector-based can

be referred to input only, or also to output. Nevertheless,

given the semantic relation between input and output, a

reader tends to associate vector-based to both input and

output and does not perceive the potential ambiguity.

Similarly, a theoretical lexical ambiguity [10] exists for the

term bank in the previous example, since bank has multiple

entries in a dictionary. However, this ambiguity is auto-

matically resolved by the human brain as a correct dis-

ambiguation, and it becomes an innocuous ambiguity.

From the commonsense point of view, it is not an

ambiguity.

Hence, we have seen that our definition of ambiguity

actually withholds the definition of the process of correct

understanding. Does this disrupt our whole theory? No.

The boundary between correct understanding and correct

disambiguation is blurry, and we prefer our definition of

ambiguity to enclose this fuzziness. Moreover, this defi-

nition embodies the notion that ambiguity occurs whenever

we speak, even though we are not always aware of that.

Notice that this is in line with the general terminology used

in natural language processing, where disambiguation is

used as a synonymous of understanding [41].

On the other hand, it is possible to amend our definition

of ambiguity and define a concept of strict-ambiguity, by

excluding the class of correct disambiguation. With such an

amendment, the definition of ambiguity given in Sect. 3.4

becomes:

ambiguous� strictiðkÞ ¼ articulatedc;iðkÞ ^ :articulatedc;iðk0Þ
^ ð:accessiblea;iðkÞ _ interpretablea;iðk0ÞÞ
^ :ðaccessiblea;iðkÞ ^ interpretablea;iðk0Þ
^ :acceptablea;iðk0ÞÞ

In the remainder of the paper, when we will speak about

ambiguity, we will refer to this most recent notion, which

includes only interpretation unclarity, acceptance unclarity,

multiple understanding and incorrect disambiguation (both

detected and undetected).

Requirements Eng

123

4.5 Quantitative view of ambiguity types

Though this research is not a rigorous empirical study, it is

useful to present some quantitative aspects that emerged

from our work. Indeed, even though we cannot draw

general conclusions, the reader might benefit from some

numerical values to have a clearer view of the baseline

from which we developed our vision. In particular, it is

interesting to look at the differences between interviews

involving customers with a computer science background

and interviews involving domain experts. We will refer to

the former group of interviews as the CS set and to the

latter as the DE set. Let us now look at the different cat-

egories of ambiguities identified for the two sets. Figure 2

summarizes the percentage values for each set. We see that

interpretation unclarity and unclarity (D)5—i.e., acceptance

unclarity due to the domain component—are the most

frequent cases for the DE set, with 30 and 21 % of cases,

respectively. A large part of the ambiguity cases with

domain experts were actually due either to the usage of a

domain terminology that was unknown to the analyst—

leading to interpretation unclarity—or to conflicts with the

domain view of the analyst—leading to unclarity (D).

Interpretation unclarity is also frequent for the CS set

(24 %), for which also multiple understanding cases appear

to be dominant (24 %). In the CS set, also detected

incorrect disambiguation phenomena (15 %) and unclarity

(S) (16 %)—i.e., acceptance unclarity due to the specifi-

cation component—are also common.

In a sense, we can say that interviews with computer

scientists were characterized by a higher degree of pure

ambiguities, i.e., incorrect disambiguation (mainly detected)

and multiple understanding, while interviews with domain

experts were characterized by a higher degree of unclarity.

One might also notice that the number of undetected

incorrect disambiguation cases is higher for the DE set with

respect to the CS set (7 vs. 1 %). We hypothesize that this

phenomenon can be traced to two main causes. First,

interviews with domain experts were, in average, longer,

and this could have left more time to discover previously

undetected incorrect disambiguation cases. Secondly, most

of the interviews in the DE set were performed after

interviews in the CS set, and, more importantly, after

defining the first version of our framework [23]. Hence, we

hypothesize that a higher awareness of the analyst of the

potential of incorrect disambiguation might have led him to

detect a higher number of them.

It is worth highlighting that, since the evaluation was

performed by the authors, and since the framework

emerged together with the analysis of the fragments, these

data have to be considered as part of the vision presented,

and not as an empirical confirmation of this vision. In other

terms, the reader is advised not to draw general conclusions

from these data. Instead, the interested requirements ana-

lyst or researcher is encouraged to refer to our framework

to assess its validity, and possibly extend it according to

his/her experience.

Fig. 2 Statistics concerning the

different categories of

ambiguity identified in our

interviews

5 We do not show the different sub-categories, to give evidence of the

dominance of the domain component with respect to the other types

of unclarity.

Requirements Eng

123

5 Disclosing tacit knowledge

Ambiguities in requirements elicitation interviews are

strictly interwoven with the concept of tacit knowledge [25,

28, 48, 60, 75]. In the remainder this section, we will

analyze this relationship and suggest how to use ambiguity

as a tool to disclose tacit knowledge.

5.1 Ambiguity and tacit knowledge

To better understand the connection between ambiguity

and tacit knowledge, we rely again on the framework for

tacit knowledge illustrated by Gervasi et al. [28]. The

framework considers four different classes of knowledge

that play a role in requirements elicitation:

• known known, as relevant information that is success-

fully passed from the customer to the analyst;

• known unknown, as relevant information that was not

expressed by the customer, but that the analyst knows

or suspects that the customer has;

• unknown known—i.e., tacit knowledge—as relevant

information that the customer can in principle express,

but does not pass to the analyst, and the analyst is not

aware of the existence of this information;

• unknown unknown, as relevant information that is

unknown to both the customer and the analyst.

Sutcliffe and Sawyer [75] provide some examples of these

phenomena. Here, we will contribute with examples taken

from our direct experience.

Example 5.1 As an example of known unknown, consider

the case of one of our interviews, in which the customer, a

domain expert in Public Administration, wishes to realize a

Web-based platform to monitor the activities of different

European Union (EU)-funded projects. The analyst knows

that the customer has the knowledge associated with the

current process adopted for monitoring such projects, and

will ask questions concerning the process. This sort of

knowledge is part of the known unknown class.

Example 5.2 As an example of unknown known, consider

again the case of the History of Arts expert. The customer

knew that pictures of paintings are available in specialized

archives called photo libraries, but, in many of the cases

considered interesting for the customer, are in paper format

and not digitalized. However, he did not consider this

aspect relevant for the system, and this information was

withheld from the analyst. The fact was discovered only

when the analyst asked: In which format do you have the

pictures, .jpg, .tiff? (assuming that photo libraries were

storing digital pictures), and the customer—after asking

whether the information was important—replied: Well, a

digital archive does not exist!.

Example 5.3 As an example of unknown unknown, con-

sider the following case, which involves regulatory

requirements. In one of our interviews, we had a customer

who wanted to define a smart elevator system. The con-

versation took into account many functional and safety

aspects, but none of the participants raised issues con-

cerning the certification of the system, since, in the moment

of the interview, this aspect was unknown to both the

customer and the analyst.

Ambiguity can turn a potentially known known into a

known unknown in practice. In other terms, in the presence

of ambiguity, information that can potentially pass from

the customer to the analyst becomes information that is not

successfully accessed by the analyst. Nevertheless, this

information becomes accessible when the analyst detects

the ambiguity during the articulation of the information,

and asks the right questions to enlarge the space of shared

understanding. In cases of undetected incorrect disam-

biguation, a potentially known known can even become an

unknown known, i.e., a tacit knowledge that the analyst

does not suspect it exists, and that, if no further event

occurs, will not be articulated again by the customer.

Ambiguities are also a resource, since an ambiguity

might appear in situations in which the customer cannot

articulate an idea properly. In some cases, this might

happen because some domain knowledge could be hidden

in his/her mind in the form of procedural knowledge [46],

which is sometimes hard to express. In other cases, when

the unit of information refers to the system-to-be, an

improper articulation might occur because the customer’s

needs are still vague to the customer himself or herself.

These cases can contribute to reveal both unknown

unknown situations—in case of vague needs—and un-

known known—in case of procedural knowledge—and turn

them into known unknown. Then, the analyst can leverage

the ambiguity to ask for further clarifications and possibly

opening new directions for scoping the problem.

5.2 Disclosing tacit knowledge through ambiguity

We have previously introduced two predicates defined by

Gervasi et al. [28], namely articulatedc;iðkÞ and

accessiblea;iðkÞ (see Sect. 3). The framework of Gervasi

et al. [28] introduces two additional predicates to define

tacit knowledge, which are:

• expressiblec;iðkÞ: k can be expressed through i by the

customer c;

• relevant(k): k is relevant for the system or project that is

discussed in the interview.

Moreover, the framework considers also the predicate

accessiblec;iðkÞ, to express the idea that a unit of

Requirements Eng

123

information is accessible by the customer. The framework

illustrates several interactions of the given predicates and

defines the different notions of tacit knowledge (i.e., when

an information is not expressible by a customer, or when it

is not accessible for the analyst). Here, we will refer to the

following notion of tacit knowledge:

tacitðk�Þ ¼ relevantðk�Þ ^ accessiblec;iðk�Þ
^ :expressiblec;iðk�Þ ^ articulatedc;iðkÞ
^ :accessiblea;iðk�Þ

The expression means that the customer has access to a

relevant unit of information k� but cannot express it

properly, or in its entirety, through i. Therefore, he/she

articulates a unit of information k that has some link in his/

her mind with k�. The inadequate or insufficient expression

of the customer makes k� not accessible for the analyst

within the expression i. Let us now consider the examples

of ambiguity presented in this paper in light of this notion.

Consider the example Example 3.1, in which the His-

tory of Arts expert mentioned the connoisseurship method.

The customer articulated a unit of information k that was

linked to a larger topic k�—i.e., the procedure associated

with the method—which was not accessible by the analyst.

However, the interpretation unclarity perceived by the

analyst helped in discovering the k� topic and, ultimately,

achieving accessiblea;iðk�Þ. Instead, in the other example of

interpretation unclarity (Example 3.2), the customer could

not express his idea k�—i.e., preserving the shades of the

wall—properly, and used a vague expression. The identi-

fication of the problem helped the analyst in accessing the

tacit idea k� of the customer. A similar case of vague

expression can be observed in Example 4.3, in which a

detected incorrect disambiguation case occurred, and in

Example 4.1, in which a multiple understanding situation

is shown.

Another representative case is Example 3.4, in which

the hidden goal of the bus tracking system—i.e., being able

to change transportation means—can be regarded as tacit

knowledge k�, which the analyst elicited after perceiving

an acceptance unclarity for the information k—i.e., the

requirement concerning the need to know the position of

the bus. Still on acceptance unclarity, Example 3.6 shows

that the requirement of the customer was associated with a

hidden domain knowledge k�—i.e., the fact that in certain

municipalities people who do not recycle properly get

fined. This knowledge was unknown to the analyst and was

discovered after clarification of the ambiguity.

The analysis of these examples should give the rationale

under which we perform our statement that ambiguity can

help in discovering tacit knowledge, related either to

requirements (Examples 3.2, 4.3, 4.1), to goals (Exam-

ple 3.4) or to the domain (Examples 3.6, 3.1).

Disclosing unknown unknowns In some cases, ambiguity

also led to disclose unknown unknowns. An example in this

group concerns the swim keeper in Example 3.7, in which

a previously unknown unknown requirement (i.e., the need

to detect when the swimmer changes direction) emerged

thanks to an acceptance unclarity. Unknown unknown can

be associated also with domain aspects or even with goals.

In our experience, the identification of domain unknown

unknowns occurred mainly (a) in the case of regulatory

requirements, as in Example 5.3, or (b) when the knowl-

edge of some domain rule appears to be needed to define

the system, but the customer does not know that rule.6 In

both cases, another source, i.e., a stakeholder or a docu-

ment, has to be identified in the domain to access the

required information. Instead, goal unknown unknowns can

be discovered when the customer expresses a novel

requirement for the system, or describes a practical domain

scenario, which is inconsistent with the system goals pre-

viously specified, causing an acceptance unclarity (i.e.,

:acceptableGa;iðkÞ). Let us see these phenomena in two

examples coming from our interviews.

Example 5.4 (domain unknown unknown) Consider again

the mechanical engineer of Example 3.10. The customer

said that a recent norm asks him to provide his institution

with evidence that the component that he buys is actually

the most convenient in the market. He said: [According to

the norm,] we have to search all the sellers of that specific

component [to ask for an offer]. According to his view of

the domain, the analyst considered the task of knowing all

the sellers unfeasible in practice (i.e., :acceptableDA

a;i ðkÞ),
and he asked clarifications. The customer said: Well, the

norm is changing [...]. After some discussion, it became

clear that the customer did not know the actual norm.

Hence, to develop a system to automatically support the

order of components, and that would comply to the norm,

another stakeholder with experience about the norm should

have been involved, or, more rigorously, the actual norm

should have been retrieved.

Example 5.5 (goal unknown unknown) Consider the

physician of Example 3.3, who wishes to develop a system

to predict the dermal or systemic pathology of a patient,

given his/her symptoms. The customer said that the system

would have addressed the following problem. Many gen-

eral practice doctors tend to send patients to the derma-

tologist when the patient has cutaneous manifestations,

because in many cases they cannot precisely associate a

disease to the manifestation. This leads to many unneces-

sary visits to the specialist. Indeed, he said: The main

problem is that the non-specialist doctor [...], when a

6 This latter case is only speculative, since we were not able to see

these cases in practice.

Requirements Eng

123

patient arrives who has cutaneous manifestations, he [the

doctor] sends him [the patient] to the dermatologist.

Addressing this problem was assumed as a domain goal by

the analyst (i.e., it became part of the DO component), and

explicitly agreed as a system goal, becoming part of the G

component. To have more insight, the analyst asked which

were the most frequent cases in which the general practice

doctor sends the patient to the dermatologist unnecessarily.

He started exemplifying, and then he said: Often I see

people to whom the [general practice] doctor prescribed

an antihistamine, and instead he should have prescribed an

antibiotic. So the problem was also that some incorrect

diagnosis was performed by general practice doctors. This

fragment was inconsistent with the previously described

problem (i.e., :acceptableDO

a;i ðkÞ) and in turn caused an

inconsistency with the main goal of the system that was

previously agreed (i.e., :acceptableGa;iðkÞ). The analyst

made this inconsistency explicit, and, after ten seconds of

hesitation, the customer said: We can say that the excessive

number of visits to the dermatologist is not the main

objective, the main objective is making the general practice

doctor able to recognize whether a certain pathology could

be severe. This latter objective can be regarded as an

unknown unknown goal, disclosed thanks to an acceptance

unclarity.

Disclosing tacit knowledge The only cases in which tacit

knowledge cannot be accessed, are those of undetected

incorrect disambiguation. Indeed, except for those situa-

tions in which another ambiguity helps in discovering the

problem (see Examples 3.5 and 4.4), if an undetected

incorrect disambiguation occurs, the analyst has no means

to discover tacit knowledge during the interview.

Therefore, we can state that tacit knowledge k� can be

potentially disclosed when there is an ambiguity in the

conversation with the customer, but no undetected incor-

rect disambiguation phenomena occurred. Formally:

D� tacitðk�Þ ¼ tacitðk�Þ ^ ambiguous� strictiðkÞ
^ :ð:acceptablea;iðkÞ ^ accessiblea;iðk0ÞÞ

Of course, this finding relies on the need to have

articulatedc;iðkÞ, with k associated with some tacit knowl-

edge k�. Hence, those cases in which the customer does not

articulate any unit of information that might be linked to

some tacit knowledge cannot be accessed through ambi-

guity, and different strategies are required to address these

situations [75].

5.3 Quantitative view of tacit knowledge

According to the rationale explained above, we inspected

the fragments that caused ambiguity in our interviews, and,

through joint discussions among the authors, we considered

whether the identified cases helped in disclosing tacit

knowledge. The result of this analysis is shown in Fig. 3

for the CS set and in Fig. 4 for the DE set. A first evident

difference among the two sets resides on the dominant type

of tacit knowledge discovered. In interviews with computer

scientists, most of the tacit knowledge discovered through

ambiguity is related to requirements (59 %), i.e., some

requirement was incorrectly assumed by the customer as

understood in the context of the conversation. Instead, in

interviews with domain expert most of the tacit knowledge

was associated with the domain (61 %). This is a pre-

dictable result, also looking at the different types of

ambiguities found during the interviews, and reported in

Fig. 2. Indeed, in the DE set, the higher number of

acceptance unclarities associated with the domain knowl-

edge dimension led to the disclosure of a higher amount of

domain tacit knowledge. We also notice that tacit

Fig. 3 Types of knowledge discovered during the interviews with

computer scientists (tk = tacit knowledge, unk unk = unknown

unknown)

Fig. 4 Types of knowledge discovered during the interviews with

domain experts (tk = tacit knowledge, unk unk = unknown unknown)

Requirements Eng

123

knowledge about goals is rather low for both sets (4 % for

the CS set and 8 % for the DE set). We argue that these

values could be possibly improved by involving a business

analyst in the interviews, who is in principle more aware of

the high-level needs and motivations of a customer.

Concerning the unknown unknown class, we see that, in

both sets, a non-negligible number of cases led to the dis-

closure of some unknown unknown. But while in the CS

set all cases are associated with unknown unknown

requirements that emerged during the conversation, in the

DE set we also observed a small part of unknown unknowns

related to domain and goals. The major number of unknown

unknown requirements in the CS set can be traced to the

different types of systems discussed in the interviews.

Indeed, in the DE set, systems were more domain specific,

i.e., solutions to particular problems of the domain (see, e.g.,

Examples 3.3 or 3.9). Instead, in the CS set, the systems

discussed were more innovative kinds of consumer’s prod-

ucts (see, e.g., Examples 3.2 or 3.5). Hence, unknown

unknown requirements are probably due to the innovative

aspect of the products discussed: Neither the customer nor

the analyst knew in advance the potential requirements that

the system would need. On the other hand, unknown

unknown domain aspects and goals probably remained

uncovered also in the CS set, due to the lower awareness of

the analyst of the issue of tacit knowledge. Indeed, recall that

the interviews in the CS set were completed before devel-

oping the theory reported earlier [23]. Of course, given the

low percentages of these categories of unknown unknowns in

the DE set, also sheer chance could have played a role.

We see that only in 9 and 4 % of the cases, the ambi-

guity did not lead to disclosing some type of knowledge.

These were the cases in which the ambiguity either was not

resolved, was caused by babbling [28], or was the result of

inapplicable technological expectations of the customer

(i.e., the customer had a solution in mind, but the solution

was unfeasible from the technological point of view). It is

worth highlighting that, since the evaluation was performed

by the authors, these results have to be considered as part

of the vision presented, and not as an empirical confirma-

tion of this vision.

6 Discussion

Our phenomenology of ambiguity and the analysis on how

ambiguity is a means to disclose tacit knowledge represent

a first step in much broader research on the role of ambi-

guities in interviews. Such research poses fundamental

challenges and requires a systematic validation of the

corresponding answers. In the following, we analyze four

main challenges and some lesson learnt about them during

our on-the-field experience.

6.1 Challenge 1: Identification of ambiguity cues

We have shown that ambiguity can be used to discover

tacit knowledge, but how can an analyst discover ambi-

guity? In some cases, the detection of typical term-based

cues discussed in the previous literature on NL require-

ments (see e.g., [9, 10, 33, 44]) can provide a first help, as

shown in Example 3.2, in which the vague expression

taking light into account triggered the discovery of tacit

requirements knowledge. In other cases, domain-specific

terms that are unknown to the analyst (e.g., connoisseur-

ship method in Example 3.1) can also be used as cues.

However, in these cases, it is important for the analyst to

identify when a common term is used with a specific

meaning in the domain of the customer. For example, our

Public Administration expert was using the common term

program to refer to his administrative office. Techniques

have been developed to detect domain-specific terms and

abstractions in NL requirements (see, e.g., [20, 26]). At the

conversation level, analogous goals should be achieved

also for oral interviews.

Term-based cues can also be associated with a peculiar

phenomenon of requirements interviews that we observed

and that we call meaning migration. When a novel system

has to be developed, novel terminology is needed to

describe its structure and behavior. Therefore, the cus-

tomers tend to use common terms to denote system-specific

entities or actions. The term tap in Example 3.5 is an

example of this phenomenon, in which a term migrates

from the vocabulary of the customer to the terminology of

the system. Identifying this type of cues is not easy and

requires further research. From our experience, we

hypothesize that an index that computes the degree of fit-

ness of a term within a given linguistic context (i.e., an

indicator that tells how common is the usage of the term in

conjunction with the other terms used) can quantify the

potential novelty—and, hence, ambiguity—of the term

within the context. For example, we expect that the term

tap is not often used in a linguistic contexts that speak

about windshield wipers.

In many cases, ambiguity cannot be directly associated

with the usage of specific terms (see, e.g., Examples 3.6

and 3.7), and research has to go beyond term-based cues. In

these situations, pragmatic cues at the level of discourse

have to be identified, which take into account the pragmatic

facet described in Sect. 2.3. In NL requirements, we

studied methods to detect pragmatic ambiguities [21, 22]

that consider the background knowledge of a reader.

However, the research in this domain is still at its early

stages, and further insights are required to accounts for all

the components of the pragmatic facet, their evolution

along the interview and their connection with the dis-

course-level structure of customer–analyst dialogs [15].

Requirements Eng

123

6.2 Challenge 2: Ambiguity-based elicitation

methodologies

To profitably employ ambiguity in interviews, elicitation

methods that leverage ambiguities have to be defined and

integrated with existing practices [62, 75]. Such methods

should take into account the fact that the analyst has to be

trained in ambiguity detection, keep his/her ears open to

ambiguity cues (Challenge 1), and be able to explicitly dis-

cuss his/her current understanding of the problem domain. A

good practice that we used was taking notes of ambiguous

terms used by the customer during the conversation. Such

terms were used to ask further clarification to the customer,

after the customer terminated his/her discourse. Another

good practice was immediately summarizing the discourse to

the customer. Rephrasing is indeed recognized as a powerful

strategy to achieve a shared understanding [43, 68]. In our

experiments, we were able to detect cases of incorrect dis-

ambiguation specifically thanks to rephrasing. Moreover, we

saw that summarizing the discourse helps establish a shared

terminology and gently drives the customer toward an

algorithmic mindset and a lexicon, in which terms have

precise meanings, and system goals and behaviors are shar-

ply defined. In particular, during the interviews with the

History of Arts and Public Administration expert, the sum-

marization let a common vocabulary [53] gradually emerge,

a vocabulary whose terms came from the domain of the

customer, but whose usage structure was more computer

science oriented.

6.3 Challenge 3: Ambiguity in the process

Requirements collected during elicitation evolve during the

whole software lifecycle. After the requirements have been

elicited, they are normally committed to a document, most

of the time in NL [51]. In a NL requirements document, the

terminology and the syntax tend to be more precise, and

ambiguity not found during elicitation could emerge in the

editing phase, when the requirements analyst discovers that

some concepts that emerged during elicitation cannot be

properly expressed in the written language. On the other

hand, the precision could also lead to over-confidence of

the requirements analyst as to the absence of ambiguity,

whose presence could be hidden by the more formal sur-

face of the written text. Understanding how the concept of

ambiguity evolves along the process is therefore paramount

to define proper tools and techniques to detect ambiguities

in different stages of development. To this end, a phe-

nomenology of ambiguity, similar to the one presented in

this paper, should be defined at the levels of editing,

negotiating, refining and testing requirements. Such a

phenomenology should take into account the expected

readers of the requirements, and the components of the

pragmatic dimension involved in each phase. For example,

in the testing phase, the reader of a requirement will be a

software testing expert, who is more concerned with input–

output relations than with goals, which are more relevant

during the elicitation phase. Therefore, the concept of ac-

ceptance unclarity has to be tailored for these cases, to

account for different dominant pragmatic components of

the reader’s mental context.

6.4 Challenge 4: Ambiguity on the customer’s side

In our framework, we have focused on ambiguities per-

ceived by the analyst, but to have a complete view of the

phenomenon, also the perception of ambiguity from the

customer side has to be investigated and modeled. In our

experience, for the analyst, many ambiguities are triggered

by domain-specific terms, while for the customer, many

ambiguities are triggered by technical terms or computer

science jargon, e.g., acronyms such as ‘‘*.jpg,’’ ‘‘FTP,’’

‘‘SVM,’’ and terms such as ‘‘Actor,’’ ‘‘Scenario,’’

‘‘Model.’’ Achieving a shared understanding [32] is a pri-

mary goal in interviews. Just as analyst-perceived ambi-

guity can disclose tacit knowledge of the customer, we

hypothesize that customer-perceived ambiguity can dis-

close the tacit knowledge of the analyst. Such tacit

knowledge—which includes technological and implemen-

tation aspects—should become part of the common ground

[14] between customer and analyst. Hence, we argue that a

correct comprehension of the customer’s side of ambiguity

can be used to enlarge the space of shared understanding of

the problem domain. However, since we analysts are aware

of ambiguities in general and our jargon, we can prepare

upfront a lexicon of technical terms, acronyms and jargon.

After understanding the customer’s side of ambiguity, we

expect to have a sufficiently clear view of both sides to start

investigating the emergent properties of their interaction,

and the role of dialog and argumentation.

7 Related works

The current paper stems from previous works in three main

fields, namely ambiguity in NL requirements, requirements

elicitation interviews and tacit knowledge, and identifies a

red thread that crosses these three research areas. There-

fore, we present relevant related works within these areas,

and we make our contribution explicit with respect to

previous literature.

7.1 Definitions and classifications of ambiguity

Ambiguity has interested philosophers and linguists for

very long time. One of the first studies is included in the

Requirements Eng

123

Sophistical Refutations of Aristotle [4]. This philosophical

study classifies ambiguity into three categories: the one that

occurs when a used expression (or name) has strictly more

than one meaning; the one that occurs when an expression

is used on purpose to have more than one meaning; and the

one that occurs when words that have a simple sense taken

alone have more than one meaning in combination. Over

the years, linguists and philosophers have kept studying the

phenomenon of ambiguity and created detailed ambiguity

classifications (see Sennet [70] for a reference work in

linguistics, and Empson [19], for a reference work in lit-

erary criticism, originally published in 1930). Since natural

language (NL), which is inherently ambiguous and

imprecise [7], is often involved in the requirements life

cycle, the phenomenon of ambiguity has been deeply

analyzed also by the requirements engineering (RE) com-

munity. In particular, the literature focuses on the analysis

of ambiguity in requirements documents, i.e., written

requirements. To the best of our knowledge, our work—

originally presented at RE’15 [23]—is the first attempt to

analyze how ambiguity appears in requirements elicitation

interviews. Let us know look at the different definitions and

classification of ambiguity in RE.

7.1.1 Definition of ambiguity

In requirements engineering, there is not yet a single,

comprehensive, accepted definition for ambiguity [10]. For

example, according to the IEEE Std 830-1998 [73], a

requirement is ambiguous if it admits more than one

interpretation—i.e., to be unambiguous, a requirement

needs to have a unique interpretation. This is a rather strict

definition, since it entails the idea that any subject shall

give the same interpretation to the requirement. With a

more pragmatic perspective, Harwell et al. [37] define a

requirement as unambiguous if different stakeholders with

similar backgrounds give the same interpretation to it.

Hence, if a lack of detail in a requirement can be covered

by the shared background knowledge of the stakeholders,

then the requirement is not ambiguous. Similarly, if a

requirement has multiple syntactic readings, but all that

stakeholders read it in the same way, the requirement is not

ambiguous. In a sense, this definition is related to the

notion of innocuous ambiguity, introduced by Chantree

et al. [12], and referred in Sect. 4.4.

Gause and Weinberg [27] implicitly introduce the role

of the information producer in their definition of ambiguity.

Indeed, they define requirements ambiguity in relation to

its sources, namely, missing information and communica-

tion errors. The former can be caused by humans errors in

observation and recall, tendency to leave out self-evident

facts, and incorrect generalization. The latter are usually

due to expression inadequacies in the writing. Similarly,

Schneider et al. [69] define as ambiguous any important

term, phrase, or sentence that is essential to understand a

system behavior, and that (a) is left undefined, or (b) is

defined in a way that can cause confusion and misunder-

standing. As for Gause and Weinberg’s [27], this definition

tells that missing information and communication errors

are sources of ambiguity. However, the definition focuses

solely on those communication items that carry essential

information. In this sense, anything that is not considered

essential is not ambiguous.

All these different definitions are interesting and give a

flavor of how researchers and practitioners have tried to

constrain the fluid notion of ambiguity. A throughout

analysis of the different definitions is given by Berry and

Kamsties [7]. In terms of balance between rigor and

pragmatism, our definition in Sect. 2.1 is somehow in

between that of the IEEE Std 830-1998 [73] and that of

Harwell’s et. al. [37]. Moreover, as did Gause and Wein-

berg [27] and Schneider et al. [69], we introduce the role of

the information producer. Our idea is that, given an

expression, a correct interpretation exists in the intention of

the producer of the expression, i.e., the customer in our

case. However, the interpretation needs to be acknowl-

edged by the receiver of the information, i.e., the analyst.

Differently from Aristotle’s definitions [4], our definition

does not explicitly account for intentional ambiguities.

7.1.2 Categorization of ambiguity

Now, it is useful to look at the categorizations of

requirements ambiguity provided in the literature. We will

discuss two reference works, the traditional categorization

of Berry et al. [10], and one, more recent, provided by

Massey et al. [49].

Berry et al. [7, 10] distinguish ambiguity into four cat-

egories: lexical (i.e., the terms used have several mean-

ings), syntactic (i.e., the requirement sentence has more

than one syntax tree, each one with a different meaning),

semantic (i.e., the sentence has more than one meaning

within its context) and pragmatic (i.e., the meaning of the

sentence depends on the context in which it is used).

Moreover, they speak about two other phenomena that are

closely related to ambiguity, namely vagueness (i.e., a term

is vague if it admits borderline cases, for which no inquiry

or conceptual analysis can assign a precise meaning to the

term) and generality (i.e., the expression could be specified

more precisely).

Massey et al. [49] define as unambiguous those state-

ments with only a single, clear interpretation and specify

that this includes statements with no interpretation, such as

vague or incomplete statements. This latter amendment is

in line with our vision, which includes cases in which the

analyst cannot give any interpretation. Starting from this

Requirements Eng

123

definition, Massey et al. [49] propose a taxonomy with six

ambiguity types, namely lexical, syntactic, semantic,

vagueness, incompleteness (i.e., when relevant details are

missing) and referential (i.e., when a word or phrase does

not have a clear reference). Lexical, syntactic and semantic

ambiguity—and vagueness as well—are defined as in the

work of Berry et al. [10]. However, for Berry et al. [10],

vagueness is treated as a phenomenon that is distinct from

ambiguity. Moreover, to our understanding, generality of

terms is treated as part of lexical ambiguity by Massey

et al. [49], while generality of sentences could be associ-

ated with the definition of incompleteness. Finally, refer-

ential ambiguity according to Massey et al. [49] is

considered as a sub-type of pragmatic ambiguity by Berry

et al. [10], a category that is not explicitly mentioned by

Massey et al. [49]. Of course, this comparison is based on

our understanding of the works and might be questionable.

The main difference between these categorizations and

ours is that Berry et al. [10] and Massey et al. [49] mainly

focus on the triggers—or cues—of ambiguity, while we

investigate the perceptual consequences of ambiguity from

the point of view of the analyst. Hence, our categorization

shall be seen as complementary to the previous ones and as

a means to better understand the phenomenon. A

throughout work on ambiguity cues in interviews, as

foreseen in Sect. 6, will clarify the relation between the

mentioned classifications and ours.

7.2 Preventing and detecting ambiguities

Several techniques have been developed to address the

problem of ambiguity in written requirements. Such tech-

niques can be broadly partitioned into two sets. The first set

of techniques suggests to use formal, semiformal languages

or constrained NL to prevent or limit ambiguity. The sec-

ond set of techniques starts from unconstrained NL and

generally aims at detecting ambiguity.

7.2.1 Constrained NL and (semi-)formal languages

A requirements document can be written in NL, or using a

formal or semiformal language. Both the approaches have

advantages and disadvantages [6]. In particular, NL has the

advantages that does not require technical competences to

be used and is always more or less understood by all

stakeholders. The main disadvantage is of course the

‘‘more or less,’’ i.e., ambiguity. Conversely, (semi-)formal

languages are inherently unambiguous, but they require

time to be learnt and most stakeholders cannot understand

them. The debate on which of the two approaches is more

appropriate is still open. However, through an analysis of

two empirical studies, Kamsties [42] concludes that for-

malization does not help to eliminate ambiguity from

informal requirements documents. Indeed, during the for-

malization process the analyst makes implicit assumptions,

transforming ambiguities into errors. Analogously,

Osborne [58] shows that, partly because of their restric-

tiveness and partly because they are difficult to use, formal

languages do not solve the ambiguity problem. As an

alternative approach, he proposes the use of a controlled

natural language, which does not solve all the ambiguity

problem but is easier to be analyzed. Following the same

idea of constraining NL, Ambriola et al. propose the

CIRCE framework [3], which encourages a rigorous use of

NL. The idea is to structure requirements documents in the

three layers of designations, definitions and requirements

and to apply parsing and information extraction techniques

to obtain precise and unambiguous information from NL

requirements. Again based on the idea of using a controlled

NL, but on a complete different note, Zowghi et al. [82]

and Gervasi and Zowghi [29] suggest logic as a tool to

identify and analyze inconsistency in requirements from

multiple stakeholders. More specifically, they propose a

tool, named CARL, that automatically translates NL into

logic and then uses theorem proving and model checking to

detect inconsistency in the requirements. Popescu et al.

[61] developed a semiautomated process for reducing

ambiguity in software requirements using object-oriented

modeling. They present a three-step approach to reducing

the number of ambiguities, inconsistencies and under-

specifications. They first parse NL requirements using a

constraining grammar. Then, they elicit relevant terms to

create an object-oriented model, which is used to detect

ambiguities and inconsistencies.

7.2.2 Unconstrained NL

The previously cited works mainly focus on constrained

NL, or on formal and semiformal languages. Let us now

look at some of the works that focus on preventing and

detecting ambiguities in unconstrained NL. Some of the

studies have a specific focus, i.e., they address how to

handle some of those mistakes that are typically in the

analysts’ list when they are reviewing a requirements

documents. In particular, Berry and Kamsties [9] explain

how to handle the syntactically dangerous ‘‘all’’ and plural

in requirements, Neumann [54] covers the dangerously

misplaced ‘‘only,’’ and Rupp and Goetz [66] discuss the

semantically dangerous ‘‘all.’’

Rule-based approaches Other works are based on the defi-

nition of a set of language rules that allow to identify typi-

cally ambiguous words and constructions. Stemming from

the work of Berry et al. [10], Gnesi et al. [33] developed

QuARS, a tool that detects ambiguity and vagueness based

on keyword-based linguistic indicators. The tool mainly

Requirements Eng

123

focuses on vague terms and on potential sources of refer-

ential ambiguities and coordination ambiguities, which are

particular types of syntactic ambiguities involving the

improper usage of coordinating conjunctions (e.g., ‘‘and,’’

‘‘or’’). Kiyavitskaya et al. [44] propose a two-step approach

to identifying ambiguities in NL requirements. In the first

step, a tool applies a set of ambiguity measures to the

requirements, in order to identify potentially ambiguous

sentences. In the second step, a (manually simulated) tool

shows the specific parts that are potentially ambiguous in

the set of sentences identified. As in the work of Gnesi et al.

[33], the approach leaves the final decision of ambiguity to

human users, but provides them with further elements to

decide. Analogously, Tjong and Berry [76] propose a tool,

SREE (Synthesized Requirements Engineering Environ-

ment), that detects potential ambiguities in the requirements

document and report them to the user, who has to correct the

requirements if he/she believes that they are truly ambigu-

ous. Following the same idea of Kiyavitskaya et al. [44],

Gleich et al. [31] propose a Web-based lightweight tool to

detect ambiguities and to explain the ambiguity sources.

When detecting ambiguities, the tool basically relies on a

grep-like technique, which makes it highly reliable, appli-

cable to different languages, and independent from error-

prone natural language parsing. For every detected ambi-

guity, the tool provides an explanation of the reason why the

detected item represents a potential problem. Following the

rationale of these research tools, Sirius Requirements

developed Requirements AssistantTM[72], which, to our

knowledge, is the only commercial tool that supports NL

requirements analysis. Finally, it is worth mentioning the

recent work of Arora et al. [5], which presents RETA

(REquirements Template Analyzer), a tool that employs

rule-based approaches to detect typical ambiguous terms

and constructions, as the other mentioned works, and, in

addition, checks the conformance of the requirements to a

given template.

Statistical approaches Another group of works uses sta-

tistical techniques to identify ambiguities. Chantree et al.

[12] present a technique that helps requirements analysts to

identify nocuous ambiguities by automatically identifying

innocuous ambiguities, and reporting only the remaining

nocuous ones. The focus of this work is on coordination

ambiguities, and a set of heuristics, developed according to

a dataset built by human assessors, is presented to dis-

criminate between nocuous and innocuous ambiguities.

This approach was extended for referential ambiguities—

referred as anaphoric ambiguities—-by Yang et al. [78,

79]. The authors propose a number of heuristics, each of

which captures information that may lead a reader to favor

a particular interpretation of the text and use them to build

a classifier. The classifier predicts the degree to which

particular interpretations are preferred. Ferrari et al. [21,

22] propose to detect pragmatic ambiguities in NL

requirements defined for a specific application domain. The

idea is to first perform a Web search to retrieve a set of

documents focused on the same domain of the require-

ments. These documents are used to build multiple

knowledge graphs, which model the domain knowledge of

potential readers of the requirements. Then, each require-

ment is enriched with the domain knowledge of the dif-

ferent graphs. Finally, these enriched representations of a

requirement are compared to detect potential ambiguities.

Observations The main difference between rule-based

approaches and statistical approaches resides on the fact that

the former find all the potential ambiguities, within the limits

of the rules, and let the analyst decide whether the detected

ambiguity is nocuous or not. Instead, the latter are oriented to

automatically discard innocuous ambiguities. In other terms,

rule-based approaches are designed to bring 100 % recall,

while statistical approaches aim at maximizing precision. The

usage of statistical techniques in requirements analysis has

been questioned by several authors (see, e.g., [8, 67]). In

particular, for ambiguity detection, Berry et al. [8] advocate

the usage of clerical, rule-based tools to detect ambiguities that

can be identified without producing false negatives (i.e.,

without leaving ambiguities undiscovered). If part of the

ambiguity detection task cannot be performed without false

negatives, that part shall be left to the thinking analyst. Though

we agree with Berry’s arguments, we observe that certain

types of ambiguities, and, in particular, context-dependent

ones (i.e., pragmatic), have a inherent statistical nature—since

contexts are uncountable—and, except for a limited set of

cases, are hardly detectable with infallible rule-based tools.

Hence, for these types of ambiguities, we should rely on fal-

lible non-rule-based tools, which shall however be tuned to

maximize recall.

In this review, we have mentioned only part of the

works on ambiguity prevention and detection. A complete

overview of the currently available techniques can be

found in a recent survey [71]. At its current stage, our work

does not propose a solution to prevent or detect ambiguity.

On the other hand, our work, and our examples, can be

used as a starting point for further research on ambiguity

detection tools, which are mainly focused on detecting

vagueness, syntactic and referential ambiguities, and do not

account for many of the cases that we encountered in

interviews.

7.3 Requirements elicitation interviews

Theoretical (e.g., [16]) and empirical (e.g., [1, 11]) studies

have been performed to understand the relevance of ade-

quate communication during requirements elicitation and

Requirements Eng

123

to assess the effectiveness of interviews in eliciting

requirements. Davis et al. [17] perform a systematic liter-

ature review on previous empirical works concerning

requirements elicitation techniques and conclude that

structured interviews appear as the most effective strategy

for elicitation. Moreover, Portugal [62] provides a large set

of guidelines, based on the author’s experience, to conduct

a successful interview.

Contextual factors Other works focus on contextual

factors and communication defects that might affect

knowledge transfer. Among them, Coughlan and Macredie

[16] identifies articulation (i.e., difficulty in expressing

concepts) misunderstanding (i.e., divided interpretation on

the same piece of information) and conflict (i.e., dis-

agreements due to different viewpoints) as the general

classes of problems that hamper communication during

requirements elicitation. Distanont et al. [18] makes a more

fine-grained analysis of the contextual factors affecting

knowledge transfer and identifies three main classes of

factors, namely human-oriented (e.g., trust between cus-

tomer and analyst, expressive ability of the customer,

absorptive capacity of the analyst), process-oriented (e.g.,

nature of information to be transferred, time constraints)

and context-oriented (e.g., culture diversity, executive

support commitment). In general, these works have a rather

broad perspective and treat the different factors in con-

junction, without specifically investigating one particular

class of factors.

Domain knowledge A more focused approach appears in

the work of Hadar et al. [36], in which the authors analyze

the effect of common domain knowledge between analyst

and stakeholders in interviews. The authors’ observation is

that, even though such knowledge is commonly assumed to

have positive effects on the requirements engineering

process, it can cause some negative effects as well. On the

one hand, while being familiar with the domain, the analyst

prepares more focused questions for the interview and uses

a domain-specific language, which is shared with the cus-

tomer. Moreover, domain knowledge can help in directing

the interview, since it gives to the interviewer the ability to

promptly assess the information received by the stake-

holders, in terms of both relevance and clarity. On the other

hand, domain knowledge might lead the analyst toward a

fixed point of view, in the sense that the analyst is biased to

think that he/she knows the answers better than the cus-

tomer, neglecting to incorporate relevant information.

Moreover, given his/her experience in the domain, the

analyst might perceive some questions as trivial. Avoiding

to ask trivial questions can lead to implicit assumptions and

incomplete requirements. The findings of Hadar et al. [36]

are in line with the empirical observations of Berry et al.

[55, 56], in which the authors validate the intuition that the

presence of a smart ignoramus—i.e., a domain ignorant

with critical sense—in a requirements engineering team

helps in spotting out inconsistencies, and contributes to the

success of a project.

Observations Overall, our work mainly differs from the

literature in interviews for its focus, namely ambiguity.

Indeed, though Distanont et al. [18] mentions ambiguity

among the factors affecting knowledge transfer, we are not

aware of any study that specifically investigates ambiguity

in interviews. Our work contributes to the research on

interview methods by highlighting the positive role of

ambiguity during requirements elicitation. Moreover, in

relation to the work of Hadar et al. [36], we reveal the part

played by the domain knowledge dimension in the per-

ception of ambiguity from the analyst’s point of view. In

this sense, our quantitative data in Sect. 4.5 suggest that

domain knowledge plays a role on the types of ambiguity

that occur in interviews. Empirical validation of this early

finding might clarify the relation between ambiguity,

degree of domain knowledge of the analyst and interview

success.

7.4 Tacit knowledge

The notion of tacit knowledge was first introduced by

Polany [60]. The essay speaks about the role of language in

communicating knowledge and tells that some type of

knowledge has limited capability for transfer, and, hence, it

has a tacit component. He makes the example of art, which

can be transferred only by example, from expert to

apprentice. In this sense, tacit knowledge can be regarded

as know-how [46]. Nevertheless, as noted by the analysis of

Grant [34], for Polany each knowledge has a tacit part, and,

in his vision, knowledge has multiple shades of tacitness,

which go from ineffable knowledge—i.e., when articula-

tion is not possible—to explicit knowledge. However, to

make the concept of tacit knowledge applicable in practical

domains, a sort of dichotomy between tacit and explicit

knowledge has been introduced, as, e.g., in corporate set-

tings [57]. Though some differences exist in the interpre-

tations of these concepts, explicit knowledge is normally

referred as the knowledge that can be aggregated and

written down, while tacit knowledge is the knowledge that

has some difficulty in being written down, and hence,

transferred [28]. This difficulty may change depending on

the situation; however, extracting tacit knowledge is gen-

erally recognized as a bottleneck since the start of a project,

as shown for expert systems [40] and knowledge man-

agement systems [63].

Tacit knowledge and RE Since one of the goals of a RE

process is making explicit what is implicit—or considered

as understood by the stakeholders (i.e., domain knowledge,

Requirements Eng

123

goals, requirements)—the concept of tacit knowledge is a

matter of interest for the RE community, and approaches

have been developed to disclose tacit knowledge (see,

e.g., Rugg et al. [65], and Grunbacher and Briggs [35]).

Along this line of research, Gervasi et al. [28] proposed a

framework based on predicates to reason on the notion of

tacit knowledge in RE. The framework defines a set of

predicates to model the communication between a cus-

tomer and a requirements analyst. Based on the truth

value of these predicates, the framework distinguishes

multiple practical cases in which tacit knowledge sur-

faces, and suggests strategies to elicit such knowledge. As

mentioned, our work stems from this framework and

focuses on one aspect, i.e., ambiguity, that is only touched

upon in the work of Gervasi et al. [28]. In this sense, our

paper can be seen as an independent follow-up of the

mentioned work. Among the other papers that followed

Gervasi et al. [28], it is worth citing the work of Sutcliffe

and Sawyer [75], which surveys the different require-

ments elicitation techniques available, in light of the tacit

knowledge framework [28]. Sutcliffe and Sawyer [75]

suggest the following research directions to address the

challenge of tacit knowledge and unknown unknowns. For

green-field applications, in which unknown unknowns

might be dominant, they encourage the development of

creativity techniques and their integration with socio-

technical models. For brown-field applications, in which

tacit knowledge appears to be the main problem, text

mining and IR techniques are encouraged. Indeed, the

idea is that in brown-fields, the required knowledge is

documented somewhere, but is not easily accessible.

Overall, they recommend the usage of rich-media and

interactive elicitation approaches to extend the common

ground between the different stakeholders. In light of our

experience in interviews, we particularly agree on the

need for rich-media approaches. Indeed, in our interviews

we did not use graphical tools, but the analyst often felt

that a simple informal diagram would have helped in

spotting out missing information, in particular about the

domain. This need can be also explained in light of our

framework. In our domain component, we included a

business rules sub-component (in D-Rules, Fig. 1), but we

did not include a business process sub-component.

Indeed, the actual processes of the domain appear hard to

be mentally visualized in their entirety, unless one does

not unfold them explicitly with the support of a diagram.

In other terms, our framework takes into account the

intuition that the capability of our brains is limited,

especially when we have to consciously analyze a com-

plex process. Hence, external tools become key assets.

This need for external means of representations applies

also to system requirements. This observation is in line

with the solution proposed by Zhang et al. [80], another

work that follows the footsteps of Gervasi et al. [28] and

of Sutcliffe and Sawyer [75], and that presents a meta-

model approach for identifying missing information in

requirements. The work highlights that not only external

tools—such as diagrams, or models in general—are

required to disclose tacit knowledge, but also meta-

models are needed to reason on the information that

requirements models might have left behind.

Our contribution to the research on tacit knowledge in

RE resides on the identification of ambiguity as a tool for

disclosing tacit knowledge. Of course, language ambiguity

is one of the tools, and, as pointed out by Sutcliffe and

Sawyer [75], the challenge of unknowns is still open.

8 Conclusion

This paper presents a phenomenology of ambiguity in

requirements elicitation interviews and stresses the pri-

mary role of ambiguity in disclosing tacit knowledge. Our

vision is based on the conviction, in line with the argu-

ments of Chantree et al. [12] and of Massey et al. [49],

that ambiguity is a subjective phenomenon, which derives

from the relation between the signifier (i.e., speech frag-

ment, word or sentence) and the reader (or listener), who

assigns a meaning to the signifier. Moreover, our view

shows that ambiguity is also a contextual and situational

phenomenon, in which the pragmatic facet of the recipient

of the signifier plays a primary role. At this stage of the

research, requirements analyst shall be aware that what

they normally call ambiguity can have different names,

namely interpretation unclarity, acceptance unclarity,

multiple understanding, detected and undetected incorrect

disambiguation, and correct disambiguation. Naming

concepts is a primary means to understand relevant

aspects of our reality. Hence, given the relevance of

ambiguity in requirements engineering, we argue that

these different names, and the meanings that they convey,

can be useful to foster a deeper understanding of the

ambiguity phenomenon. As the research matures, we

expect to give requirements analysts a clearer view of

their perception of the customer’s words, and of the

potential benefits of any misunderstanding. Our emphasis

on the role of ambiguity in disclosing tacit knowledge is

not merely speculative. Indeed, humans tend to overlook

ambiguity and subconsciously take an effort to assign a

meaning to what they perceive [36]. Our near future

commitment is to provide conceptual models to further

clarify the phenomenon. Such models will enable analysts

to achieve a conscious skeptical attitude [43, 68], to go

beyond the surface meaning of what they hear, and ulti-

mately access the unknown.

Requirements Eng

123

Acknowledgments The authors would like to thank Daniel M.

Berry for his precious recommendations and all the anonymous

reviewers who helped improving this paper. This work was partially

supported by the LearnPAd FP7-ICT-2013.8.2 European Project.

References

1. Agarwal R, Tanniru MR (1990) Knowledge acquisition using

structured interviewing: an empirical investigation. JMIS

7(1):123–140

2. Alves CF, Pereira S, Valença G, Pimentel J, de Andrade RV

(2007) Preliminary results from an empirical study in market-

driven software companies. In: WER’07, pp 127–134

3. Ambriola V, Gervasi V (2006) On the systematic analysis of

natural language requirements with Circe. ASE 13

4. Aristotle (1984) On sophistical refutations. In: Barnes J (ed) The

complete works of Aristotle: the revised Oxford translation.

Princeton University Press, Princeton, New Jersey

5. Arora C, Sabetzadeh M, Briand L, Zimmer F (2015) Automated

checking of conformance to requirements templates using natural

language processing. IEEE Trans Softw Eng 41(10):944–968

6. Berry D (2008) Ambiguity in natural language requirements

documents. In: Paech B, Martell C (eds) Innovations for

requirement analysis. From stakeholders needs to formal designs,

LNCS, vol 5320. Springer, Berlin, pp 1–7

7. Berry D, Kamsties E (2004) Ambiguity in requirements specifi-

cation. In: Sampaio do Prado Leite JC, Doorn JH (eds) Per-

spectives on software requirements. The Springer International

Series in engineering and computer science, vol 753. Springer,

New York, pp 7–44

8. Berry DM, Gacitua R, Sawyer P, Tjong SF (2012) The case for

dumb requirements engineering tools. In: Regnell B, Damian D

(eds) REFSQ, LNCS, vol 7195. Springer, pp 211–217

9. Berry DM, Kamsties E (2005) The syntactically dangerous all

and plural in specifications. IEEE Softw 22(1):55–57

10. Berry DM, Kamsties E, Krieger MM (2003) From contract

drafting to software specification: linguistic sources of ambiguity

11. Browne GJ, Rogich MB (2001) An empirical investigation of

user requirements elicitation: comparing the effectiveness of

prompting techniques. JMIS 17(4):223–249

12. Chantree F, Nuseibeh B, Roeck AND, Willis A (2006) Identi-

fying nocuous ambiguities in natural language requirements. In:

RE’06, pp 56–65

13. Cimatti A, Roveri M, Susi A, Tonetta S (2011) Formalizing

requirements with object models and temporal constraints.

SoSyM 10(2):147–160

14. Clark HH (1996) Using language. Cambridge University Press,

Cambridge

15. Corvera Charaf M, Rosenkranz C, Holten R (2013) The emer-

gence of shared understanding: applying functional pragmatics to

study the requirements development process. ISJ 23(2):115–135

16. Coughlan J, Macredie RD (2002) Effective communication in

requirements elicitation: a comparison of methodologies. Requir

Eng 7(2):47–60

17. Davis A, Dieste O, Hickey A, Juristo N, Moreno AM (2006) Effec-

tiveness of requirements elicitation techniques: empirical results

derived from a systematic review. In: RE’06. IEEE, pp 179–188

18. Distanont A, Haapasalo H, Vaananen M, Lehto J (2012) The

engagement between knowledge transfer and requirements

engineering. IJKL 1(2):131–156

19. Empson W (1966) Seven types of ambiguity. New Directions

Paperbook, New York

20. Ferrari A, dell’Orletta F, Spagnolo GO, Gnesi S (2014) Mea-

suring and improving the completeness of natural language

requirements. In: REFSQ’14, LNCS, vol 8396. Springer,

pp 23–38

21. Ferrari A, Gnesi S (2012) Using collective intelligence to detect

pragmatic ambiguities. In: RE’12. IEEE, pp 191–200

22. Ferrari A, Lipari G, Gnesi S, Spagnolo GO (2014) Pragmatic

ambiguity detection in natural language requirements. In:

AIRE’14. IEEE, pp 1–8

23. Ferrari A, Spoletini P, Gnesi S (2015) Ambiguity as a resource to

disclose tacit knowledge. In: 2015 23rd IEEE international

requirements engineering conference (RE). IEEE, pp 26–35

24. Friedrich WR, Van Der Poll JA (2007) Towards a methodology

to elicit tacit domain knowledge from users. IJIKM 2(1):179–193

25. Gacitua R, Ma L, Nuseibeh B, Piwek P, De Roeck A, Rounce-

field M, Sawyer P, Willis A, Yang H (2009) Making tacit

requirements explicit. In: MARK’09. IEEE, pp 40–44

26. Gacitua R, Sawyer P, Gervasi V (2011) Relevance-based

abstraction identification: technique and evaluation. Requir Eng

16(3):251–265. doi:10.1007/s00766-011-0122-3

27. Gause D, Weinberg G (1989) Exploring requirements: quality

before design. Dorset House Pub

28. Gervasi V, Gacitua R, Rouncefield M, Sawyer P, Kof L, Ma L,

Piwek P, De Roeck A, Willis A, Yang H et al (2013) Unpacking

tacit knowledge for requirements engineering. In: Maalej W,

Thurimella AK (eds) Managing requirements knowledge.

Springer, pp 23–47

29. Gervasi V, Zowghi D (2005) Reasoning about inconsistencies in

natural language requirements. ACM Trans Softw Eng Methodol

14(3):277–330

30. Gleich B, Creighton O, Kof L (2010) Ambiguity detection:

towards a tool explaining ambiguity sources. In: REFSQ’10,

LNCS, vol 6182. Springer, pp 218–232

31. Gleich B, Creighton O, Kof L (2010) Ambiguity detection:

towards a tool explaining ambiguity sources. In: Requirements

engineering: foundation for software quality. Lecture notes in

computer science, vol 6182. Springer, Berlin, pp 218–232. http://

dx.doi.org/10.1007/978-3-642-14192-8_20

32. Glinz M, Fricker SA (2014) On shared understanding in software

engineering: an essay. CSRD, pp 1–14

33. Gnesi S, Lami G, Trentanni G (2005) An automatic tool for the

analysis of natural language requirements. IJCSSE 20(1)

34. Grant KA (2007) Tacit knowledge revisited—we can still learn

from Polanyi. Electron J Knowl Manag 5(2):173–180

35. Grunbacher P, Briggs RO (2001) Surfacing tacit knowledge in

requirements negotiation: experiences using easywinwin. In:

Proceedings of the 34th annual Hawaii international conference

on system sciences, 2001. IEEE, 8pp

36. Hadar I, Soffer P, Kenzi K (2014) The role of domain knowledge

in requirements elicitation via interviews: an exploratory study.

Requir Eng 19(2):143–159

37. Harwell R, Aslaksen E, Mengot R, Hooks I, Ptack K (1993) What

is a requirement? INCOSE Int Symp 3(1):17–24

38. Hay D, Healy KA, Hall J et al (2000) Defining business rules—

What are they really? Technical report Rev 1.3, the Business
Rules Group

39. Hickey AM, Davis AM (2004) A unified model of requirements

elicitation. J Manag Inf Syst 20(4):65–84

40. Horvath JA (2000) Working with tacit knowledge. Knowl Manag

Yearb 2000–2001:34–51

41. Ide N, Véronis J (1998) Introduction to the special issue on word

sense disambiguation: the state of the art. Comput Linguist

24(1):2–40

42. Kamsties E (2005) Understanding ambiguity in requirements

engineering. In: Engineering and managing software require-

ments. Springer, Berlin, pp 245–266

43. Karten N (2013) Managing expectations: working with people

who want more, better, faster, sooner, Now! Addison-Wesley

Requirements Eng

123

http://dx.doi.org/10.1007/s00766-011-0122-3
http://dx.doi.org/10.1007/978-3-642-14192-8_20
http://dx.doi.org/10.1007/978-3-642-14192-8_20

44. Kiyavitskaya N, Zeni N, Mich L, Berry DM (2007) Requirements

for tools for ambiguity identification and measurement in natural

language requirements specifications. In: WER’07, pp 197–206

45. Kof L (2010) From requirements documents to system models: a

tool for interactive semi-automatic translation. In: RE’10

46. Kogut B, Zander U (1992) Knowledge of the firm, combinative

capabilities, and the replication of technology. Org Sci

3(3):383–397

47. van Lamsweerde L (2009) Requirements engineering—from

system goals to UML models to software specifications. Wiley,

London

48. Maiden N, Rugg G (1996) ACRE: selecting methods for

requirements acquisition. Softw Eng J 11(3):183–192

49. Massey AK, Rutledge RL, Anton AI, Swire PP (2014) Identifying

and classifying ambiguity for regulatory requirements. In: RE’14.

IEEE, pp 83–92

50. Mich L (1996) NL-OOPS: from natural language to object ori-

ented requirements using the natural language processing system

LOLITA. NLE 2(2):161–187

51. Mich L, Franch M, Inverardi PN (2004) Market research for

requirements analysis using linguistic tools. Requir Eng

9(1):40–56

52. Mich L, Garigliano R (2000) Ambiguity measures in require-

ments engineering. In: ICS’00, 16th IFIP WCC, pp 39–48

53. Mühlhäusler P (1986) Pidgin and creole linguistics. Blackwell,

Oxford

54. Neumann PG (1986) Only his only grammarian can only say only

what only he only means. ACM SIGSOFT SE Notes 9(1):6

55. Niknafs A, Berry DM (2012) The impact of domain knowledge

on the effectiveness of requirements idea generation during

requirements elicitation. In: 2012 20th IEEE international

requirements engineering conference (RE). IEEE, pp 181–190

56. Niknafs A, Berry DM (2013) An industrial case study of the

impact of domain ignorance on the effectiveness of requirements

idea generation during requirements elicitation. In: 2013 21st

IEEE international requirements engineering conference (RE).

IEEE, pp 279–283

57. Nonaka I (1991) The knowledge-creating company. Harvard Bus

Rev 69(6):96–104

58. Osborne M, MacNish CK (1996) Processing natural language

software requirement specifications. pp 229–236

59. Pitts MG, Browne GJ (2004) Stopping behavior of systems

analysts during information requirements elicitation. J Manag Inf

Syst 21(1):203–226

60. Polanyi M (1966) The tacit dimension. Doubleday, Garden City

61. Popescu D, Rugaber S, Medvidovic N, Berry D (2008) Reducing

ambiguities in requirements specifications via automatically

created object-oriented models. In: Innovations for requirement

analysis. From stakeholders needs to formal designs, lecture notes

in computer science, vol 5320. Springer, Berlin, pp 103–124

62. Portugal S (2013) Interviewing users: how to uncover compelling

details. Louis Rosenfeld

63. Riege A (2005) Three-dozen knowledge-sharing barriers man-

agers must consider. J Knowl Manag 9(3):18–35

64. Robertson S, Robertson J (2012) Mastering the requirements

process: getting requirements right. Addison-Wesley, Boston

65. Rugg G, McGeorge P, Maiden N (2000) Method fragments.

Expert Syst 17(5):248–257

66. Rupp C, Goetz R (2000) Linguistic methods of requirements-

engineering (nlp). In: Proceedings of European software process

improvement conference (EuroSPI)

67. Ryan K (1993) The role of natural language in requirements

engineering. In: Proceedings of IEEE international symposium on

requirements engineering, 1993, pp 240–242

68. Saiedian H, Dale R (2000) Requirements engineering: making the

connection between the software developer and customer. Inf

Softw Technol 42(6):419–428

69. Schneider GM, Martin J, Tsai WT (1992) An experimental study

of fault detection in user requirements documents. ACM Trans

Softw Eng Methodol 1(2):188–204

70. Sennet A (2015) Ambiguity. In: Zalta EN (ed) The Stanford

encyclopedia of philosophy, spring 2015 edition

71. Shah US, Jinwala DC (2015) Resolving ambiguities in natural

language software requirements: a comprehensive survey. SIG-

SOFT Softw Eng Notes 40(5):1–7

72. Sirius Requirements: http://www.sirius-requirements.com

73. Software Engineering Technology Committee and Institute of

Electrical and Electronics Engineers (1994) IEEE recommended

practice for software requirements specifications. IEEE Std

830-1998. Institute of Electrical and Electronics Engineers. IEEE

Computer Society

74. Sommerville I, Sawyer P (1997) Viewpoints: principles, prob-

lems and a practical approach to requirements engineering. Ann

Softw Eng 3(1):101–130

75. Sutcliffe A, Sawyer P (2013) Requirements elicitation: towards

the unknown unknowns. In: RE’13. IEEE, pp 92–104

76. Tjong S, Berry D (2013) The design of SREE a prototype

potential ambiguity finder for requirements specifications and

lessons learned. In: Doerr J, Opdahl A (eds) Requirements

engineering: foundation for software quality, lecture notes in

computer science, vol 7830. Springer, Berlin, pp 80–95

77. Wilson WM, Rosenberg LH, Hyatt LE (1997) Automated anal-

ysis of requirement specifications. In: ICSE’97, pp 161–171

78. Yang H, De Roeck A, Gervasi V, Willis A, Nuseibeh B (2010)

Extending nocuous ambiguity analysis for anaphora in natural

language requirements. In: RE’10. IEEE, pp 25–34

79. Yang H, Roeck AND, Gervasi V, Willis A, Nuseibeh B (2011)

Analysing anaphoric ambiguity in natural language requirements.

Requir Eng 16(3):163–189

80. Zhang Z, Thanisch P, Nummenmaa J, Ma J (2014) Detecting

missing requirements in conceptual models. In: Dregvaite G,

Damasevicius R (eds) Information and software technologies.

Springer, Berlin, pp 248–259

81. Zowghi D, Coulin C (2005) Requirements elicitation: a survey of

techniques, approaches, and tools. In: Engineering and managing

software requirements. Springer, Berlin, pp 19–46

82. Zowghi D, Gervasi V, McRae A (2001) Using default reasoning

to discover inconsistencies in natural language requirements. In:

APSEC 2001 eighth Asia-Pacific software engineering confer-

ence, 2001, pp 133–140

Requirements Eng

123

http://www.sirius-requirements.com

	Ambiguity and tacit knowledge in requirements elicitation interviews
	Abstract
	Introduction
	Context
	Ambiguity in interviews
	Interviews
	The pragmatic facet

	Definition of ambiguity
	Accessible
	Interpretable
	Acceptable
	Ambiguity

	Categories of ambiguities
	Unclarity
	Multiple understanding
	Incorrect disambiguation
	Correct disambiguation: also-known-as innocuous ambiguity
	Quantitative view of ambiguity types

	Disclosing tacit knowledge
	Ambiguity and tacit knowledge
	Disclosing tacit knowledge through ambiguity
	Quantitative view of tacit knowledge

	Discussion
	Challenge 1: Identification of ambiguity cues
	Challenge 2: Ambiguity-based elicitation methodologies
	Challenge 3: Ambiguity in the process
	Challenge 4: Ambiguity on the customer’s side

	Related works
	Definitions and classifications of ambiguity
	Definition of ambiguity
	Categorization of ambiguity

	Preventing and detecting ambiguities
	Constrained NL and (semi-)formal languages
	Unconstrained NL

	Requirements elicitation interviews
	Tacit knowledge

	Conclusion
	Acknowledgments
	References

