
A Visual Tool for Analysing IoT Trigger/Action Programming AVI2018, May 2018, Castiglion della Pescaia, Grosseto Italy

A Visual Tool for Analysing IoT Trigger/Action Programming

Author1
Institut
Address

State
me@me.com

Author2
Institut
Address

State
me@me.com

Author3
Institut
Address

State
me@me.com

ABSTRACT
The Trigger-Action programming paradigm has been widely

adopted in the last few years, especially in the Internet of Things

(IoT) domain because it allows end users without programming

experience to describe how their applications should react to the

many events that can occur in such very dynamic contexts. Several

end user tools exist, in both research and industrial fields, which

aim to support the increasing need to specify such rules. Thus, it

becomes important to enrich such rule editors with functionalities

able to monitor how users actually interact with them and show

useful information to analyse their use. In this short paper, we

present a visual tool for monitoring and analysing the use of a

trigger-action rule editor. The goal is to provide a tool useful to

better understand what the end users’ personalization needs are,

how they are expressed, how users actually carry out the

specification of rules, and whether users encounter any issues in

interacting with the personalization features offered by the editors.

The proposed solution supports the analysis through a set of

timelines describing the actual use of the personalization tool, with

the possibility to select specific events of interest, and provides data

useful for understanding the types of triggers, actions and rules

actually composed by users, and whether the personalization

features offered by the editors are effectively exploited by users.

CCS CONCEPTS

• Human-centered computing → Visual analytics; • Human-

centered computing → User interface programming

KEYWORDS
Trigger Action Programming, Visual Analytics, Log User

Interaction

1 INTRODUCTION
The environments where we live and act are increasingly

characterised by the presence of a multitude of interactive devices

and smart objects interconnected with each other. Since we interact

with our applications in such very dynamic and unpredictable

environments it is not possible to foresee at design time how an

application should react to all the possible contextual changes that

can occur during its use.

1 https://ifttt.com

For such reasons in order to obtain applications able to adapt to the

context of use in an effective way it becomes important to allow

end users themselves to ‘program’ the behaviour of their

applications.

In this trend trigger-action programming has emerged as a useful

and intuitive approach. Users can personalise the application

behaviour through sets of rules indicating triggers and consequent

effects. Triggers can be either instantaneous events (corresponding

to context changes) or conditions that, when satisfied, activate the

execution of specific actions. This type of approach has stimulated

several contributions both from research [3,5,8] and industrial

viewpoints (IFTTT, Tasker, Resonance AI, …). In particular,

IFTTT has been particularly successful. It has more than 320,000

automation scripts (called “applets”) offered by more than 400

service providers. The applets have been installed more than 20

million times, and more than half of IFTTT services are IoT devices

related [9]. Thus, we can foresee in the near future an increasing

interest to environments allowing people to provide many rules to

personalize their context-dependent applications. In this

perspective, having some tools able to analyse how actually users

try to personalise their context-dependent applications with such

approaches can become very useful not only for developers of

trigger-action authoring environments, but also for application

developers and domain experts. However, differently from other

existing tools that exploit log analysis for usability evaluation

purposes, in this case the goal is not strictly to understand whether

there is some bad user interface design, but rather to see what the

personalization needs are, how they are expressed by users, and

whether they have some conceptual problems in expressing them.

2 RELATED WORK
Both in research and industrial fields there has been interest in the

trigger-action programming to allow users to define their own

adaptation rules. From the commercial point of view IFTTT1 is one

of the most used application. It provides mechanisms to create rules

composed of one trigger and one action. Triggers are events

occurring in the user’s context, and which cause the execution of

an action. They are grouped according to their intended goal, i.e.

environment control & monitoring, calendars & scheduling, news

& information. Resonance AI2 is a tool for developers which aims

to automate and personalize every application. It provides

contextual awareness services to enhance products and services

with real-time understanding and reactions based on the current

2 https://www.resonance-ai.com

AVI2018, May 2018, Castiglion della Pescaia, Grosseto Italy Author1 et al.

user’s environment. Such data become actionable triggers that

developers can use to automate or suggest actions, allowing to

personalize apps and devices behaviour.

From the research perspective, we started our study from TARE [5]

a Trigger-Action Rule Editor that provides the possibility to create

rules more flexible than IFTTT since they can be created as a

composition of multiple triggers and actions. In this area, Desolda

et al. [3] developed EFESTO, a visual environment that allows

users to express rules for controlling smart objects. The followed

paradigm is based on a model, called 5W, which defines some

specification constructs (Which, What, When, Where, Why) to

build rules coupling multiple events and conditions exposed by

smart objects, and for defining temporal and spatial constraints on

rule activation and actions execution. Coutaz and al. presented

AppsGate [2], an EUD environment designed to empower people

with tools to augment and control their home. AppsGate aims to

support different activities such as monitoring the home state and

programming its behaviour in a context-dependent manner.

Another similar approach is [4] ImAtHome, an IOS application

built over Apple HomeKit, and allowing home inhabitants without

any programming skills to control home automation by means of

creating scenes and rules for defining the complex behaviour of a

smart home. Still in this area Metaxas and Markopoulos [8] defined

the concept of affinity regrouping heuristics and presents the

mechanisms applied throughout the contextual ranges of the

involved services. The semantic information that the services

disclose lets the editor recognize this affinity and allows it to group

them together in logical expressions since they refer to the same

aspect (e.g. user’s activity). The context-range editor supports end

users formulate logical expression regarding the context. The

proposed monitoring and visualization method can be useful to

analyse the user interactions with such tools as well, since they still

support trigger-action rules for IoT applications.

One typical use of the information contained in logs of user

interactions is for usability studies. Palmer [10] presents different

metrics for measuring usability, and lists different types of methods

to evaluate a user interface. UsaProxy [1] exploits a proxy-based

solution to access remote web pages: the proxy adds some

JavaScript code to specify the listeners which log the user

interaction with the concerned page(s). The output produced by the

proxy is a simple list representing the IP address of the connected

device, the visited pages, and some events’ description, without any

particular visualization able to support their analyses. MUSE [11]

also exploits a proxy server in order to insert in the target web pages

some code to log user interactions. The logged events are shown in

a timeline representation in which it is possible to compare a

timeline representing the ‘optimal’ interaction with the one

expressing the ‘real’ user interactions in order to help designers to

discover some usability issues in the user interaction. WELFIT [12]

is a tool to identify usage patterns based on client-side event logs

and by presenting event stream composition characteristics. The

system records usage data during real use, identifies usage patterns,

and indicates potential user interface design problems. Harms and

Grabowsky [6] proposed to transform the recorded user interaction

in task trees that are then checked to identify usability issues. The

goal of such contributions is to identify a method to record user

interactions and then further analyse the logs in order to highlight

usability problems. Differently from such proposals, in this work

we focus on providing designers of trigger-action rule editors with

interactive visualisations supporting exploration and filtering of the

logged relevant interaction data, so as to derive higher-level

information such as the types of rules that users were interested in

creating with the tool, the most popular trigger and action types

used, and the types of usage patterns followed by users while

interacting with the tool. Moreover, by analysing the users’ log it is

possible to understand what the personalization needs are, how they

are expressed by the users, whether their rules actually support the

desired results, if the personalization features offered by the editors

are sufficient.

3 THE SUPPORTED ANALYSIS
In this study we considered the TARE tool (Trigger Action Rule

Editor) [5], which allows users to define their trigger action rules

in an intuitive way. The tool is flexible in the order in which users

specify the rules (they can start either from triggers or from

actions), they can re-use a previously defined rule in order to create

a new one. Moreover, they can combine multiple triggers by using

the Boolean operators AND and OR.

Figure 1: TARE editor

Figure 1 shows how users navigate through the context hierarchy

by selecting the context dimension to which the considered trigger

belongs and by traversing the context categories (and sub-

categories), which logically group together related context

elements. The leaves of the context hierarchy refer to context

entities, and are used to specify triggers. For instance, in Figure 1

the trigger is “IF humidity is > 80%, and it involves the context

entity “humidity”. The same hierarchical structure is used to

categorize the actions. In addition, TARE provides users with the

possibility to search for a specific trigger, by specifying a concept

A Visual Tool for Analysing IoT Trigger/Action Programming AVI2018, May 2018, Castiglion della Pescaia, Grosseto Italy

to search for in the hierarchy of triggers. TARE has been validated

in three different trials that involved 58 users in total. During the

tests users had to perform various tasks concerning the

specification of personalization rules with different complexity in

terms of number of triggers and actions. Thus, by observing the

results in the trials and considering previous work in the area, we

identified some features that an environment supporting the

analysis of how users define context-dependent personalization

rules should provide to facilitate such analysis.

One important requirement of a visual analyser is the availability

of interactive data exploration: the tool should provide users with

different zooming levels, as well as the possibility to select

individual items and get specific details on demand. In addition, it

should also provide different interactive features to enable users to

focus on different aspects of trigger-action programming. In the

case of the type of tool considered in this study, relevant

information includes: the most recurring/frequent context entities

used in rules, the most recurring combinations of trigger types and

action types used in created rules, the most recurring sequences of

usage patterns logged, etc. For this purpose, in order to analyse the

behaviour of users interacting with TARE, we identified a number

of meaningful events to log, thus excluding some low-level events

to log (like e.g. mouseover, mouseout, blur) which were judged not

particularly relevant for the type of planned analysis. The logging

implementation was done by a JavaScript file which appends

handlers to various events supported in TARE and related to rule

creation, editing, saving. In particular, we found useful to log user’s

selections of:

 “New Rule”, “Save Rule”, “Save Rule as”, “Edit Rule” and

“Delete Rule” buttons (used to manage rules);

 “Triggers” and “Actions” buttons (used to go to the part of the

tool dedicated respectively to trigger and to action

specification);

 “AND” and “OR” buttons (used to compose two triggers);

 Trigger/Context Dimension (User, Environment, Technology,

Social), to select one specific trigger dimension;

 Action Dimension Selection (Update/Distribute UI, Change

Appliance State, Activate Functionalities, Alarm, Reminder),

to select one specific action dimension;

 Trigger type, to select a specific type of trigger within the

hierarchy of triggers;

 Action type, to select a specific type of actions within the

hierarchy of actions;

 Trigger Operator (e.g. equal, different, more, less; to select the

operator involved in the trigger specification);

 Action Operator (e.g. turn on-off, open, close; to select a

specific type of action);

 Event/Condition (to specify whether the statement involved in

the trigger specification refers to an event or to a condition);

 Insert specific Trigger value;

 Save/Update/Cancel Trigger or Action;

 Search Trigger Element.

By analysing the logs produced during user sessions, the tool

provides the possibility to know, for each user and also across

users, the following information:

 From which rule part users prefer to start editing the rules

(whether first from triggers and then the actions or vice versa);

 The sequence of trigger/action dimensions and entities that

users have passed through to reach the trigger/action leaf;

 The time spent to create a rule (max, min, average);

 The time spent to edit a rule (max, min, average);

 The number of rules created in each session and in all sessions;

 The number of triggers/actions created in each session and in

all sessions;

 The number of rules/triggers/actions that users started to edit

without saving them.

We also judge it useful to provide designers with the possibility to

filter the results listed above to allow the user to configure the list

of events of interest on which they want to focus, as well as to

provide further quantitative information such as the context

dimension and the trigger entity that have been most used in defined

triggers. A similar type of analysis has also been provided for

actions. Such summarised representations of the users’ sessions are

particularly useful when the number of events becomes very high

and difficult to manage.

For each trigger/action entity it is possible to identify the optimal

path to follow for reaching it. For instance, in order to reach

Respiration Rate entity a user has to select the User dimension and

then traverse the subcategories Physical and Mental and Physical.

In this way the tool can compare the real path performed by the

users with the optimal one, which can be useful to understand the

difficulties that users faced during the trigger definition. In

addition, we can also compare the performance of two users

performing the same tasks, and to derive information about their

interaction patterns.

Figure 2:Example of Timeline Representing Events during Rule Composition

AVI2018, May 2018, Castiglion della Pescaia, Grosseto Italy Author1 et al.

4 THE TOOL VISUALIZATIONS
In order to visualize in a simple manner the sequence of events

logged during users’ activities we decided to use a dynamic

timeline visualization [7] (see Figure 2), in order to provide a time-

dependent overview of the relevant events occurred. For each user

the tool shows a set of timelines, each one presenting the list of

events recorded in an interactive session. On the X axis the timeline

shows the sequence of relevant events ordered by time, also

indicating the time when the events occurred. However, due to the

large amount of events that can be recorded, it may happen that the

timeline could be difficult to interpret. For this reason, we provide

users with a functionality that allows them to filter events according

to specific criteria. For instance, it is possible to select the events

that involve a specific context dimension. In addition, in order to

allow users to better perceive the differences between the various

types of events, users can select a specific colour to assign to each

of them. Figure 2 shows an example timeline: in this case it is

possible to see that at the beginning the user interacts with the

hierarchy of events by following a quite "explorative" pattern,

selecting different context dimensions (e.g. first environment, then

user, then technology) and some elements in their lower levels in a

'sparse' manner i.e. without focusing on particular contextual

entities to use for specifying the intended rule. As such, this part of

the timeline can be interpreted as reflecting the behaviour of a user

who wants to familiarise with the event hierarchy and the included

concepts. In the second part of the timeline (highlighted by the red

rectangle) the behaviour of the user is more focused, the

interactions are more locally concentrated on e.g. a few

events/actions belonging to a specific category (i.e. environment),

and the user in the end is also able to finalise the rule editing by

saving the rule. These two different usage patterns in the first part

and in the second part of the timeline can be identified by the fact

that each trigger dimension/action type is associated with a

different colour and then, in the first part of the timeline several

different colours appear, whereas in the second part of the timeline

there is just one prevailing colour (the one associated with the

dimension finally used in the rule). One interesting type of analysis

that can be done concerns the use of the search functionality

included in the rule editor. For example, a large use of the search

functionality by a user can suggest that this user found quicker to

use that functionality instead of exploring the trigger top-down

hierarchy. Furthermore, it could be useful to compare what users

specify in the “search” field and what they actually used afterwards

in the rule specification; or analysing whether, after searching for

an element, users actually found an element of interest and

proceeded with the rule specification or they needed to repeat the

process multiple times (and which terms they used in such

repetitions). In addition, when a specific trigger element that was

already used in a rule is repetitively searched by the same user using

the search functionality (instead of exploring the hierarchy) could

be a sign that the position of that concept within the hierarchy is not

very logical for that user and therefore not easy to locate.

Another related source of information provided is a dashboard

(Figure 3) with an overview of the activities carried out by the

considered user: the rules that have been specified (described in

natural language), the context dimensions involved in the rule

editing (see the pie chart on the right), the most used triggers and

actions grouped by dimensions and the time of each working

session. In addition, the tool shows information about the number

of rules that have been completed and not completed (see the bar

charts visualised in the bottom part and clustered by session). Such

bars are interactive and the user can select each bar to get the details

of the concerned rules.

Figure 3: The dashboard presenting summary information.

4 CONCLUSIONS
In this short paper we present a method and the features of a

supporting tool for analysing the users’ behaviour when interacting

with a trigger-action rule editor for personalising their context-

dependent applications. We discuss the more relevant features for

this analysis and provide example visualizations that can be

provided.

While in this work we applied the approach to a specific tool

(TARE), the type of analysis of the users’ behaviour presented can

be easily extended to other similar tools supporting trigger-action

programming of IoT context-dependent applications.

Future work will be dedicated to empirical validation of the visual

tool proposed.

A Visual Tool for Analysing IoT Trigger/Action Programming AVI2018, May 2018, Castiglion della Pescaia, Grosseto Italy

REFERENCES
[1] Richard Atterer, Monika Wnuk, and Albrecht Schmidt. 2006. Knowing the

user's every move: user activity tracking for website usability evaluation and

implicit interaction. In Proceedings of the 15th international conference on

World Wide Web (WWW '06). ACM, New York, NY, USA, 203-212.

DOI=http://dx.doi.org/10.1145/1135777.1135811

[2] Joelle Coutaz and James L. Crowley. 2016. A First-Person Experience with

End-User Development for Smart Homes. IEEE Pervasive Computing 15, 2

(April 2016), 26-39. DOI=http://dx.doi.org/10.1109/MPRV.2016.24

[3] Giuseppe Desolda, Carmelo Ardito, Maristella Matera: End-user

development for the internet of things: EFESTO and the 5W composition

paradigm. In: Daniel, F., Gaedke, M. (eds.) RMC 2016. CCIS, vol. 696, pp.

74–93. Springer, Cham (2017). doi:10.1007/978-3-319-53174-8_5

[4] Daniela Fogli, Matteo Peroni, Claudia Stefini: ImAtHome: Making trigger-

action programming easy and fun. J. Vis. Lang. Comput. 42: 60-75 (2017)

[5] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017.

Personalization of Context-Dependent Applications Through Trigger-

Action Rules. ACM Trans. Comput.-Hum. Interact. 24, 2, Article 14 (April

2017), 33 pages. DOI: https://doi.org/10.1145/3057861

[6] Patrick Harms and Jens Grabowski. 2014. Usage-Based Automatic

Detection of Usability Smells. In Proceedings of the 5th IFIP WG 13.2

International Conference on Human-Centered Software Engineering -

Volume 8742 (HCSE 2014), Stefan Sauer, Cristian Bogdan, Peter Forbrig,

Regina Bernhaupt, and Marco Winckler (Eds.), Vol. 8742. Springer-Verlag

New York, Inc., New York, NY, USA, 217-234.

DOI=http://dx.doi.org/10.1007/978-3-662-44811-3_13

[7] David M. Hilbert and David F. Redmiles. 2000. Extracting usability

information from user interface events. ACM Comput. Surv. 32, 4

(December 2000), 384-421. DOI=http://dx.doi.org/10.1145/371578.371593

[8] Georgios Metaxas and Panos Markopoulos. 2017. Natural Contextual

Reasoning for End Users. ACM Trans. Comput.-Hum. Interact. 24, 2,

Article 13 (April 2017), 36 pages. DOI: https://doi.org/10.1145/3057860

[9] Xianghang Mi, Feng Qian, Ying Zhang, XiaoFeng Wang: An empirical

characterization of IFTTT: ecosystem, usage, and performance. IMC 2017:

398-404

[10] Jonathan W. Palmer. 2002. Web Site Usability, Design, and

Performance Metrics. Info. Sys. Research 13, 2 (June 2002), 151-167.

DOI=http://dx.doi.org/10.1287/isre.13.2.151.88

[11] Fabio Paternò, Antonio G. Schiavone, and Pierpaolo Pitardi. 2016.

Timelines for Mobile Web Usability Evaluation. In Proceedings of the

International Working Conference on Advanced Visual Interfaces (AVI

'16), P. Buono, R. Lanzilotti, and M. Matera (Eds.). ACM, New York,

NY, USA, 88-91.

[12] Vagner. F. de Santana and M. C. Calani Baranauskas “WELFIT: A

Remote Evaluation Tool for Identifying Web Usage Patterns through

Client-Side Logging” in International Journal of Human-Computer

Studies, vol. 76 no. C pp 40-49, 2015.

https://doi.org/10.1145/3057861
https://doi.org/10.1145/3057860

