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ABSTRACT 
The Trigger-Action programming paradigm has been widely 

adopted in the last few years, especially in the Internet of Things 

(IoT) domain because it allows end users without programming 

experience to describe how their applications should react to the 

many events that can occur in such very dynamic contexts. Several 

end user tools exist, in both research and industrial fields, which 

aim to support the increasing need to specify such rules. Thus, it 

becomes important to enrich such rule editors with functionalities 

able to monitor how users actually interact with them and show 

useful information to analyse their use. In this short paper, we 

present a visual tool for monitoring and analysing the use of a 

trigger-action rule editor. The goal is to provide a tool useful to 

better understand what the end users’ personalization needs are, 

how they are expressed, how users actually carry out the 

specification of rules, and whether users encounter any issues in 

interacting with the personalization features offered by the editors. 

The proposed solution supports the analysis through a set of 

timelines describing the actual use of the personalization tool, with 

the possibility to select specific events of interest, and provides data 

useful for understanding the types of triggers, actions and rules 

actually composed by users, and whether the personalization 

features offered by the editors are effectively exploited by users. 

CCS CONCEPTS 

• Human-centered computing → Visual analytics; • Human-

centered computing → User interface programming 
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1 INTRODUCTION 
The environments where we live and act are increasingly 

characterised by the presence of a multitude of interactive devices 

and smart objects interconnected with each other. Since we interact 

with our applications in such very dynamic and unpredictable 

environments it is not possible to foresee at design time how an 

application should react to all the possible contextual changes that 

can occur during its use. 

                                                                 
1 https://ifttt.com 

For such reasons in order to obtain applications able to adapt to the 

context of use in an effective way it becomes important to allow 

end users themselves to ‘program’ the behaviour of their 

applications. 

In this trend trigger-action programming has emerged as a useful 

and intuitive approach. Users can personalise the application 

behaviour through sets of rules indicating triggers and consequent 

effects. Triggers can be either instantaneous events (corresponding 

to context changes) or conditions that, when satisfied, activate the 

execution of specific actions. This type of approach has stimulated 

several contributions both from research [3,5,8] and industrial 

viewpoints (IFTTT, Tasker, Resonance AI, …). In particular, 

IFTTT has been particularly successful. It has more than 320,000 

automation scripts (called “applets”) offered by more than 400 

service providers. The applets have been installed more than 20 

million times, and more than half of IFTTT services are IoT devices 

related [9]. Thus, we can foresee in the near future an increasing 

interest to environments allowing people to provide many rules to 

personalize their context-dependent applications. In this 

perspective, having some tools able to analyse how actually users 

try to personalise their context-dependent applications with such 

approaches can become very useful not only for developers of 

trigger-action authoring environments, but also for application 

developers and domain experts. However, differently from other 

existing tools that exploit log analysis for usability evaluation 

purposes, in this case the goal is not strictly to understand whether 

there is some bad user interface design, but rather to see what the 

personalization needs are, how they are expressed by users, and 

whether they have some conceptual problems in expressing them. 

2 RELATED WORK 
Both in research and industrial fields there has been interest in the 

trigger-action programming to allow users to define their own 

adaptation rules. From the commercial point of view IFTTT1 is one 

of the most used application. It provides mechanisms to create rules 

composed of one trigger and one action. Triggers are events 

occurring in the user’s context, and which cause the execution of 

an action. They are grouped according to their intended goal, i.e. 

environment control & monitoring, calendars & scheduling, news 

& information. Resonance AI2 is a tool for developers which aims 

to automate and personalize every application. It provides 

contextual awareness services to enhance products and services 

with real-time understanding and reactions based on the current 

2 https://www.resonance-ai.com 
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user’s environment. Such data become actionable triggers that 

developers can use to automate or suggest actions, allowing to 

personalize apps and devices behaviour. 

From the research perspective, we started our study from TARE [5] 

a Trigger-Action Rule Editor that provides the possibility to create 

rules more flexible than IFTTT since they can be created as a 

composition of multiple triggers and actions. In this area, Desolda 

et al. [3] developed EFESTO, a visual environment that allows 

users to express rules for controlling smart objects. The followed 

paradigm is based on a model, called 5W, which defines some 

specification constructs (Which, What, When, Where, Why) to 

build rules coupling multiple events and conditions exposed by 

smart objects, and for defining temporal and spatial constraints on 

rule activation and actions execution. Coutaz and al. presented 

AppsGate [2], an EUD environment designed to empower people 

with tools to augment and control their home. AppsGate aims to 

support different activities such as monitoring the home state and 

programming its behaviour in a context-dependent manner. 

Another similar approach is [4] ImAtHome, an IOS application 

built over Apple HomeKit, and allowing home inhabitants without 

any programming skills to control home automation by means of 

creating scenes and rules for defining the complex behaviour of a 

smart home. Still in this area Metaxas and Markopoulos [8] defined 

the concept of affinity regrouping heuristics and presents the 

mechanisms applied throughout the contextual ranges of the 

involved services. The semantic information that the services 

disclose lets the editor recognize this affinity and allows it to group 

them together in logical expressions since they refer to the same 

aspect (e.g. user’s activity). The context-range editor supports end 

users formulate logical expression regarding the context. The 

proposed monitoring and visualization method can be useful to 

analyse the user interactions with such tools as well, since they still 

support trigger-action rules for IoT applications. 

One typical use of the information contained in logs of user 

interactions is for usability studies. Palmer [10] presents different 

metrics for measuring usability, and lists different types of methods 

to evaluate a user interface. UsaProxy [1] exploits a proxy-based 

solution to access remote web pages: the proxy adds some 

JavaScript code to specify the listeners which log the user 

interaction with the concerned page(s). The output produced by the 

proxy is a simple list representing the IP address of the connected 

device, the visited pages, and some events’ description, without any 

particular visualization able to support their analyses. MUSE [11] 

also exploits a proxy server in order to insert in the target web pages 

some code to log user interactions. The logged events are shown in 

a timeline representation in which it is possible to compare a 

timeline representing the ‘optimal’ interaction with the one 

expressing the ‘real’ user interactions in order to help designers to 

discover some usability issues in the user interaction. WELFIT [12] 

is a tool to identify usage patterns based on client-side event logs 

and by presenting event stream composition characteristics. The 

system records usage data during real use, identifies usage patterns, 

and indicates potential user interface design problems. Harms and 

Grabowsky [6] proposed to transform the recorded user interaction 

in task trees that are then checked to identify usability issues. The 

goal of such contributions is to identify a method to record user 

interactions and then further analyse the logs in order to highlight 

usability problems. Differently from such proposals, in this work 

we focus on providing designers of trigger-action rule editors with 

interactive visualisations supporting exploration and filtering of the 

logged relevant interaction data, so as to derive higher-level 

information such as the types of rules that users were interested in 

creating with the tool, the most popular trigger and action types 

used, and the types of usage patterns followed by users while 

interacting with the tool. Moreover, by analysing the users’ log it is 

possible to understand what the personalization needs are, how they 

are expressed by the users, whether their rules actually support the 

desired results, if the personalization features offered by the editors 

are sufficient. 

 

3 THE SUPPORTED ANALYSIS 
In this study we considered the TARE tool (Trigger Action Rule 

Editor) [5], which allows users to define their trigger action rules 

in an intuitive way. The tool is flexible in the order in which users 

specify the rules (they can start either from triggers or from 

actions), they can re-use a previously defined rule in order to create 

a new one. Moreover, they can combine multiple triggers by using 

the Boolean operators AND and OR. 

 

 
Figure 1: TARE editor 

Figure 1 shows how users navigate through the context hierarchy 

by selecting the context dimension to which the considered trigger 

belongs and by traversing the context categories (and sub-

categories), which logically group together related context 

elements. The leaves of the context hierarchy refer to context 

entities, and are used to specify triggers. For instance, in Figure 1 

the trigger is “IF humidity is > 80%, and it involves the context 

entity “humidity”. The same hierarchical structure is used to 

categorize the actions. In addition, TARE provides users with the 

possibility to search for a specific trigger, by specifying a concept 
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to search for in the hierarchy of triggers. TARE has been validated 

in three different trials that involved 58 users in total. During the 

tests users had to perform various tasks concerning the 

specification of personalization rules with different complexity in 

terms of number of triggers and actions. Thus, by observing the 

results in the trials and considering previous work in the area, we 

identified some features that an environment supporting the 

analysis of how users define context-dependent personalization 

rules should provide to facilitate such analysis.   

One important requirement of a visual analyser is the availability 

of interactive data exploration: the tool should provide users with 

different zooming levels, as well as the possibility to select 

individual items and get specific details on demand. In addition, it 

should also provide different interactive features to enable users to 

focus on different aspects of trigger-action programming. In the 

case of the type of tool considered in this study, relevant 

information includes: the most recurring/frequent context entities 

used in rules, the most recurring combinations of trigger types and 

action types used in created rules, the most recurring sequences of 

usage patterns logged, etc. For this purpose, in order to analyse the 

behaviour of users interacting with TARE, we identified a number 

of meaningful events to log, thus excluding some low-level events 

to log (like e.g. mouseover, mouseout, blur) which were judged not 

particularly relevant for the type of planned analysis. The logging 

implementation was done by a JavaScript file which appends 

handlers to various events supported in TARE and related to rule 

creation, editing, saving. In particular, we found useful to log user’s 

selections of: 

 “New Rule”, “Save Rule”, “Save Rule as”, “Edit Rule” and 

“Delete Rule” buttons (used to manage rules); 

 “Triggers” and “Actions” buttons (used to go to the part of the 

tool dedicated respectively to trigger and to action 

specification); 

 “AND” and “OR” buttons (used to compose two triggers); 

 Trigger/Context Dimension (User, Environment, Technology, 

Social), to select one specific trigger dimension; 

 Action Dimension Selection (Update/Distribute UI, Change 

Appliance State, Activate Functionalities, Alarm, Reminder), 

to select one specific action dimension; 

 Trigger type, to select a specific type of trigger within the 

hierarchy of triggers; 

 Action type, to select a specific type of actions within the 

hierarchy of actions; 

 Trigger Operator (e.g. equal, different, more, less; to select the 

operator involved in the trigger specification); 

 Action Operator (e.g. turn on-off, open, close; to select a 

specific type of action); 

 Event/Condition (to specify whether the statement involved in 

the trigger specification refers to an event or to a condition); 

 Insert specific Trigger value; 

 Save/Update/Cancel Trigger or Action; 

 Search Trigger Element. 

By analysing the logs produced during user sessions, the tool 

provides the possibility to know, for each user and also across 

users, the following information: 

 From which rule part users prefer to start editing the rules 

(whether first from triggers and then the actions or vice versa); 

 The sequence of trigger/action dimensions and entities that 

users have passed through to reach the trigger/action leaf; 

 The time spent to create a rule (max, min, average); 

 The time spent to edit a rule (max, min, average); 

 The number of rules created in each session and in all sessions; 

 The number of triggers/actions created in each session and in 

all sessions; 

 The number of rules/triggers/actions that users started to edit 

without saving them. 

We also judge it useful to provide designers with the possibility to 

filter the results listed above to allow the user to configure the list 

of events of interest on which they want to focus, as well as to 

provide further quantitative information such as the context 

dimension and the trigger entity that have been most used in defined 

triggers. A similar type of analysis has also been provided for 

actions. Such summarised representations of the users’ sessions are 

particularly useful when the number of events becomes very high 

and difficult to manage. 

For each trigger/action entity it is possible to identify the optimal 

path to follow for reaching it. For instance, in order to reach 

Respiration Rate entity a user has to select the User dimension and 

then traverse the subcategories Physical and Mental and Physical. 

In this way the tool can compare the real path performed by the 

users with the optimal one, which can be useful to understand the 

difficulties that users faced during the trigger definition. In 

addition, we can also compare the performance of two users 

performing the same tasks, and to derive information about their 

interaction patterns.

 
Figure 2:Example of Timeline Representing Events during Rule Composition
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4 THE TOOL VISUALIZATIONS 
In order to visualize in a simple manner the sequence of events 

logged during users’ activities we decided to use a dynamic 

timeline visualization [7] (see Figure 2), in order to provide a time-

dependent overview of the relevant events occurred. For each user 

the tool shows a set of timelines, each one presenting the list of 

events recorded in an interactive session. On the X axis the timeline 

shows the sequence of relevant events ordered by time, also 

indicating the time when the events occurred. However, due to the 

large amount of events that can be recorded, it may happen that the 

timeline could be difficult to interpret. For this reason, we provide 

users with a functionality that allows them to filter events according 

to specific criteria. For instance, it is possible to select the events 

that involve a specific context dimension. In addition, in order to 

allow users to better perceive the differences between the various 

types of events, users can select a specific colour to assign to each 

of them. Figure 2 shows an example timeline: in this case it is 

possible to see that at the beginning the user interacts with the 

hierarchy of events by following a quite "explorative" pattern, 

selecting different context dimensions (e.g. first environment, then 

user, then technology) and some elements in their lower levels in a 

'sparse' manner i.e. without focusing on particular contextual 

entities to use for specifying the intended rule. As such, this part of 

the timeline can be interpreted as reflecting the behaviour of a user 

who wants to familiarise with the event hierarchy and the included 

concepts. In the second part of the timeline (highlighted by the red 

rectangle) the behaviour of the user is more focused, the 

interactions are more locally concentrated on e.g. a few 

events/actions belonging to a specific category (i.e. environment), 

and the user in the end is also able to finalise the rule editing by 

saving the rule. These two different usage patterns in the first part 

and in the second part of the timeline can be identified by the fact 

that each trigger dimension/action type is associated with a 

different colour and then, in the first part of the timeline several 

different colours appear, whereas in the second part of the timeline 

there is just one prevailing colour (the one associated with the 

dimension finally used in the rule). One interesting type of analysis 

that can be done concerns the use of the search functionality 

included in the rule editor. For example, a large use of the search 

functionality by a user can suggest that this user found quicker to 

use that functionality instead of exploring the trigger top-down 

hierarchy. Furthermore, it could be useful to compare what users 

specify in the “search” field and what they actually used afterwards 

in the rule specification; or analysing whether, after searching for 

an element, users actually found an element of interest and 

proceeded with the rule specification or they needed to repeat the 

process multiple times (and which terms they used in such 

repetitions). In addition, when a specific trigger element that was 

already used in a rule is repetitively searched by the same user using 

the search functionality (instead of exploring the hierarchy) could 

be a sign that the position of that concept within the hierarchy is not 

very logical for that user and therefore not easy to locate.  

Another related source of information provided is a dashboard 

(Figure 3) with an overview of the activities carried out by the 

considered user: the rules that have been specified (described in 

natural language), the context dimensions involved in the rule 

editing (see the pie chart on the right), the most used triggers and 

actions grouped by dimensions and the time of each working 

session. In addition, the tool shows information about the number 

of rules that have been completed and not completed (see the bar 

charts visualised in the bottom part and clustered by session). Such 

bars are interactive and the user can select each bar to get the details 

of the concerned rules.  

 
Figure 3: The dashboard presenting summary information. 

4 CONCLUSIONS 
In this short paper we present a method and the features of a 

supporting tool for analysing the users’ behaviour when interacting 

with a trigger-action rule editor for personalising their context-

dependent applications. We discuss the more relevant features for 

this analysis and provide example visualizations that can be 

provided.  

While in this work we applied the approach to a specific tool 

(TARE), the type of analysis of the users’ behaviour presented can 

be easily extended to other similar tools supporting trigger-action 

programming of IoT context-dependent applications.  

Future work will be dedicated to empirical validation of the visual 

tool proposed. 



A Visual Tool for Analysing IoT Trigger/Action Programming AVI2018, May 2018, Castiglion della Pescaia, Grosseto Italy 

 

 

REFERENCES 
[1] Richard Atterer, Monika Wnuk, and Albrecht Schmidt. 2006. Knowing the 

user's every move: user activity tracking for website usability evaluation and 

implicit interaction. In Proceedings of the 15th international conference on 

World Wide Web (WWW '06). ACM, New York, NY, USA, 203-212. 

DOI=http://dx.doi.org/10.1145/1135777.1135811 

[2] Joelle Coutaz and James L. Crowley. 2016. A First-Person Experience with 

End-User Development for Smart Homes. IEEE Pervasive Computing 15, 2 

(April 2016), 26-39. DOI=http://dx.doi.org/10.1109/MPRV.2016.24 

[3] Giuseppe Desolda, Carmelo Ardito, Maristella Matera: End-user 

development for the internet of things: EFESTO and the 5W composition 

paradigm. In: Daniel, F., Gaedke, M. (eds.) RMC 2016. CCIS, vol. 696, pp. 

74–93. Springer, Cham (2017). doi:10.1007/978-3-319-53174-8_5 

[4] Daniela Fogli, Matteo Peroni, Claudia Stefini: ImAtHome: Making trigger-

action programming easy and fun. J. Vis. Lang. Comput. 42: 60-75 (2017) 

[5] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017. 

Personalization of Context-Dependent Applications Through Trigger-

Action Rules. ACM Trans. Comput.-Hum. Interact. 24, 2, Article 14 (April 

2017), 33 pages. DOI: https://doi.org/10.1145/3057861 

[6] Patrick Harms and Jens Grabowski. 2014. Usage-Based Automatic 

Detection of Usability Smells. In Proceedings of the 5th IFIP WG 13.2 

International Conference on Human-Centered Software Engineering - 

Volume 8742 (HCSE 2014), Stefan Sauer, Cristian Bogdan, Peter Forbrig, 

Regina Bernhaupt, and Marco Winckler (Eds.), Vol. 8742. Springer-Verlag 

New York, Inc., New York, NY, USA, 217-234. 

DOI=http://dx.doi.org/10.1007/978-3-662-44811-3_13 

[7] David M. Hilbert and David F. Redmiles. 2000. Extracting usability 

information from user interface events. ACM Comput. Surv. 32, 4 

(December 2000), 384-421. DOI=http://dx.doi.org/10.1145/371578.371593 

[8] Georgios Metaxas and Panos Markopoulos. 2017. Natural Contextual 

Reasoning for End Users. ACM Trans. Comput.-Hum. Interact. 24, 2, 

Article 13 (April 2017), 36 pages. DOI: https://doi.org/10.1145/3057860 

[9] Xianghang Mi, Feng Qian, Ying Zhang, XiaoFeng Wang: An empirical 

characterization of IFTTT: ecosystem, usage, and performance. IMC 2017: 

398-404 

[10]  Jonathan W. Palmer. 2002. Web Site Usability, Design, and 

Performance Metrics. Info. Sys. Research 13, 2 (June 2002), 151-167. 

DOI=http://dx.doi.org/10.1287/isre.13.2.151.88 

 

[11] Fabio Paternò, Antonio G. Schiavone, and Pierpaolo Pitardi. 2016. 

Timelines for Mobile Web Usability Evaluation. In Proceedings of the 

International Working Conference on Advanced Visual Interfaces (AVI 

'16), P. Buono, R. Lanzilotti, and M. Matera (Eds.). ACM, New York, 

NY, USA, 88-91. 

 

[12] Vagner. F. de Santana and M. C. Calani Baranauskas “WELFIT: A 

Remote Evaluation Tool for Identifying Web Usage Patterns through 

Client-Side Logging” in International Journal of Human-Computer 

Studies, vol. 76 no. C pp 40-49, 2015. 

 

 

https://doi.org/10.1145/3057861
https://doi.org/10.1145/3057860

