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Designing a supply chain to comply with environmental 
policy requires awareness of how work and/or production 
methods impact the environment and what needs to be 
done to reduce those environmental impacts and make the 
company more sustainable. This is a dynamic process that 
occurs at both the strategic and operational levels. However, 
being environmentally friendly does not necessarily mean 
improving the efficiency of the system at the same time. 
Therefore, when allocating a production budget in a supply 
chain that implements the green paradigm, it is necessary 
to figure out how to properly recover costs in order to 
improve both sustainability and routine operations, offsetting 
the negative environmental impact of logistics and production 
without compromising the efficiency of the processes to be 
executed. In this paper, we study the latter problem in 
detail, focusing on the CO2 emissions generated by the 
transportation from suppliers to production sites, and by 
the production activities carried out in each plant. We do 
this using a novel mathematical model that has a quadratic 
objective function and all linear constraints except one, which 
is also quadratic, and models the constraint on the budget that 
can be used for green investments caused by the increasing 
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internal complexity created by large production flows in the 
production nodes of the supply network. To solve this model, 
we propose a multistart algorithm based on successive linear 
approximations. Computational results show the effectiveness 
of our proposal.
© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Green management is a philosophy that is becoming prevalent in industry. It is a new 
way of thinking stimulated by the awareness of the need to respect the environment as 
it is exposed to the negative impacts, such as CO2 emissions, caused by production and 
logistics operations worldwide. Indeed, industrial companies have a huge carbon foot-
print; their manufacturing and logistics activities account for more than half of all global 
carbon dioxide equivalent (CO2e) emissions from fuel combustion ([15]). Given current 
trends, emissions from manufacturing and logistics would need to fall by about 45% by 
2030 to meet the 1.5°C target of the Paris Agreement to limit global temperature rise 
([8], [9]). Leading companies have recognized the need for action and are implementing 
initiatives to decarbonize their operations. In addition, some companies have gone further 
and begun requiring their supply chain business partners to commit to decarbonization 
as well. The result is a convergence of environmental and economic imperatives for which 
all industrial companies must be prepared. Companies are planning to implement decar-
bonization measures and tend to allocate a portion of their manufacturing investment 
budget to decarbonization measures in the coming years. A study conducted in the lit-
erature states that companies will spend more than 10% of their available investment 
budget on decarbonization in the next few years.

Clearly, green management needs to be integrated into traditional supply chain man-
agement approaches, taking into account and complementing different paradigms to 
improve performance, such as manufacturing processes. This integration of management 
approaches leads to the goal of maximizing the efficiency of business processes while 
minimizing the impact on the environment, eliminating all types of waste, and ensuring 
better use of all types of resources.

As with all integrated approaches, managers working with them must pay particular 
attention to tradeoffs. Indeed, some measures may be beneficial for both process perfor-
mance and environmental protection, while some others may not. In the latter cases, the 
overall impact of two different decisions may be the same in terms of economic costs, 
but one decision may result in higher costs for ensuring high efficiency/performance and 
lower environmental protection costs, while the second decision has the opposite effect. 
Finding a balance between the two costs is therefore an issue that should be explored to 
ensure a fair use of the total economic resources available to manage a supply chain. It 
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is therefore a matter of solving a strategic problem that involves understanding how to 
allocate a budget to each facility in the supply chain in order to achieve both objectives, 
i.e., maximizing the effectiveness of the activities to be carried out in each production 
center, and minimizing the environmental impact generated by the activities processed 
there.

Seeking to minimize the CO2 emissions caused by the transportation from the sup-
pliers to the production facilities and by the production activities carried out in each 
facility, in this paper we propose a novel mathematical model able to find an optimal 
budget allocation for each facility in a two-stage supply chain, where the first stage is 
represented by the suppliers and the second stage by the production centers. In mod-
eling this system, economic resources are consumed by both green activities associated 
with transportation and production, and by activities needed to manage the complexity 
resulting from increasing commodity flows in each facility, which can adversely affect 
the efficiency of the system. The mathematical model includes capacity constraints on 
both sides of the supply chain, i.e., suppliers are allowed to serve plants within a certain 
service level and plants cannot serve market demand beyond a certain plant capacity. In 
addition to capacity constraints, each plant is given a budget to manage its processes. 
This budget is a linear function of the total amount of products reaching the plant from 
suppliers. However, we need to consider the effect of a growing incoming flow, which, 
on the one hand, increases the budget that can potentially be used to manage green 
operations by that plant, but, on the other hand, also increases the complexity associ-
ated with managing higher flows through the plant. The latter effect, i.e., the increasing 
costs caused by the direct and indirect cost components of an increasing flow, is modeled 
using a quadratic function that defines a constraint that reduces the available portion of 
a facility’s budget that can be spent on green operations.

The resulting model is a quadratic programming problem with an additional quadratic 
constraint, known in the literature as quadratic constrained quadratic programming 
(QCQP) where the objective function has an indeterminate Hessian. To solve this model, 
we implemented an iterative scheme given by the hybridization of two known approaches. 
The core of the generic iteration is the linear approximation of the nonlinear constraint 
and the objective function; namely, we consider a feasible solution of the QCQP problem 
and approximate the quadratic constraint and the quadratic function around this feasi-
ble solution using a first order Taylor polynomial. We then solve the linear problem so 
obtained. This linear approximation phase is executed iteratively by a multistage general 
engine that ensures an effective diversification offering each time a different feasible solu-
tion to the problem. The algorithm stops when either a maximum number of iterations 
or a time limit is met. Computational results and a comparison with a commercial solver 
show the effectiveness of our proposal on synthetic instances. To give further insight on 
the performance of our proposal, we compared the latter to a state of art model on a 
real world instance.

The reminder of the paper is organized as follows. The literature review is reported 
in Section 2. Section 3 describes the formulation of the problem. Section 4 contains the 
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solution approach. Section 5 discusses the computational results and, finally, Section 6
draws conclusions.

2. Literature review

The literature on mathematical programming for green supply chain design and green 
logistics covers a wide range of methods, applications, and levels of decision-making, and 
it continues to grow. However, it is still difficult to find approaches that comprehensively 
consider financial, environmental, and operational aspects. [24] discuss combinatorial 
methods applied to green logistics, defined as all activities concerned with the sustain-
able production and distribution of goods, taking into account environmental and social 
factors. The paper examines combinatorial optimization methods used in reverse logis-
tics, waste management, and vehicle routing problems with green aspects. In this paper, 
no attention is paid to facilities. In the review of [5], a different selection of articles is 
made to study the application of operations research methods to green logistics. The 
authors analyze OR methods for green logistics for the drivers of transportation, inven-
tory, and asset supply chain. From the review emerges that, while several articles apply 
OR for green transportation and inventory, facilities are not yet sufficiently considered. 
However, often a facility is also a processing hub, and the impact of reducing green 
emissions for operational activities can be remarkable. In the review of [25], it can be 
noted that most of the works are related to emission control applications, paying par-
ticular attention to the transportation phase, using linear programming or linearization 
approaches. In some cases, emissions are considered nonlinearly, as in the work of [23], 
which use a concave function to model warehouse emissions. Concave relationships are 
also treated by [7], where emissions grow nonlinearly with transported weight. The re-
sulting concave network design problem is solved using a Lagrangian relaxation based 
approach. In [12], the supply chain design problem is applied to a green product. In 
this case, emissions are considered as constraints along with the required service level. 
The model is solved using a decomposition approach where subproblems are solved in-
dependently. Multi-objective aspects are addressed in the work of [21], where financial 
and environmental objectives are considered. The resulting mathematical model is solved 
considering the weighted sum of different objective functions. In [4], multiobjective opti-
mization for green corridors is treated using bilevel programming. In [17], a mixed-integer 
linear program is presented for designing a network with emissions accounting as a car-
bon tax in both production and transportation. Stochastic aspects are addressed in [20]
to solve aggregate production scheduling of green supply chains. The authors also con-
sider nonlinear convex relationships between the ordered quantity and the unit cost of 
the product, nonlinear shortage costs, and flexible lead times. These relationships are 
linearized using piecewise linear functions and the model is solved using a commercial 
solver.

As for the solution approaches of non convex problems, one of the most general 
and widely used methods is proposed by [2], who develop a very effective approach 
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based on approximated duals used in general algorithmic frameworks. [13] determine 
specific optimality conditions in nonconvex quadratic problems and applied them to 
the weighted least squares minimization problems with ellipsoidal constraints. [10] use 
quadratic convex relaxation on 0-1 quadratic constrained quadratic programming deal-
ing with equality constraints, in conjunction with methods for convexifying the objective 
value based on the minimum eigenvalue. [14] propose the use of 0-1 mixed integer pro-
grams to reformulate binary QCQP; they showed that this approach can lead to tighter 
linear relaxations. Several heuristic approaches based on relaxations and local meth-
ods are combined by [22] in a software tool. [11] exploit the use of linear relaxations 
in a branch-and-bound reduction algorithm and improved the dual relaxation gap for 
some specific problems. One of the most effective approaches is the use of semidefinite 
programs as relaxation-based approaches to QCQP, which can be further improved if cer-
tain conditions are met. Non-negative relaxation semidefinite programs and first-order 
relaxation linearization techniques are compared by [1] and [3]. [27] generate convex re-
laxations of the original QCQP using decomposition of nonconvex quadratic functions. 
[18] develop a branch-and-bound approach; they pointed out that improvements can be 
obtained by considering sensitive eigenvalues that have a greater impact on the relaxation 
gap.

3. Problem definition and mathematical formulation

In this section we formally define the framework of the problem, starting with the 
notations. We then present the mathematical model.

3.1. Problem notation

Given is a two-layer supply chain network modeled by a bipartite graph G = (S, F, A), 
where S is a partite set of nodes representing the set of suppliers, F is the other partite 
set modeling the set of facilities, and A is the set of arcs modeling the links between 
pairs of nodes belonging to the Cartesian product S × F . We assume that there is a 
customer zone associated with an aggregate customer demand d that must be satisfied 
by the facilities. The latter have a finite capacity, say cj , with j ∈ F , and we further 
assume that each supplier k ∈ S also has a finite capacity sk to serve the facilities’ 
requests.

In an effort to minimize CO2 emissions caused both by transportation from suppliers 
to facilities and by the facilities themselves during the production phase, we aim at 
finding a strategy to allocate a budget b for the implementation of green strategies to 
achieve the green goals of each facility, taking into account that coordination and flow 
processing activities must also be carried out and, therefore, a percentage of this budget 
is also consumed by the latter activities, which proves to be an obstacle to the use of 
the entire budget for green activities. In other words, we assume that the budget bj
that must be allocated to plant j depends on the amount of flow that reaches that plant 
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from the suppliers, and that an increase in the incoming flow in a plant is simultaneously 
associated with increasing costs to coordinate the operations and to ensure the right level 
of effectiveness of the system. This results in the need to allocate a portion of the budget 
to handle the increasing complexity of the system as larger flows are processed in a 
facility. Therefore, the total budget bj allocated to the plant j ∈ F can only theoretically 
be used to implement green strategies, since the actual amount that can be used is less 
than or equal to a limit represented by a quadratic function as defined below.

Let us first define the problem notation. The sets and parameters are:

• S: the set of supplies;
• F : the set of facilities;
• k: index for suppliers;
• j: index for facilities;
• d: the demand the supply chain must satisfy;
• b: the budget available for emission containment;
• sk: the supply capacity of supplier k ∈ S;
• cj : the capacity of facility j ∈ F ;
• φ emission conversion factor equal to et · ef where et is the amount of CO2 emission 

generated by each unit of flow associated on arc (i, i′) ∈ A and ef is the emission 
reduction factor per unit of budget invested in green technologies.

The decision variables are:

• bj : economical budget available at facility j ∈ F ; bj ≥ 0;
• xkj : the flow of product from node k ∈ S to node j ∈ F ; xkj ≥ 0;
• zj : the environment protection investment in facility j ∈ F ; zj ≥ 0.

The variables zj , ∀j ∈ F , represent the investments made in each facility j ∈ F for 
environmental protection. More precisely, a higher value of zj corresponds to a larger 
environmental protection investment and results in a lower CO2 emission.

3.2. The mathematical model

Once defined sets, parameters, and variables, we define the objective function f(x, z)
of our model as follows:

min f(x, z) =
∑
k∈S

∑
j∈F

φxkj (bj − zj) (1)

The objective f(x, z) measures the total CO2 emission in the entire supply chain. The 
constraints of the problem are as follows:
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Table 1
Units of measurement of parameters and variables.

Parameter/Variable Unit of measurement
d units of flow
sk units of flow
xkj units of flow
cj units of flow
φ [gCO2/(e·unit of flow)]
et [gCO2/ unit of flow)]
ef e−1

f(x, z) gCO2
z e
b e

bj = b
∑

k∈S xkj

d , ∀j ∈ F,∑
j∈F xkj ≤ sk, ∀k ∈ K,∑
k∈S xkj ≤ cj , ∀j ∈ F,

zj ≤ bj

[
1 −

∑
k∈S xkj

cj

]
, ∀j ∈ F,∑

k∈K

∑
j∈F xkj = d.

(2)

The first constraint defines the maximum budget allocated to each facility j ∈ F . This 
is the total budget multiplied by the flow entering the facility and divided by the total 
demand d. The second constraint limits the flow from each supplier k ∈ S to its maximum 
capacity, while the third constraint imposes a maximum capacity on each facility j ∈ F . 
The fourth constraint limits, for each plant j ∈ F , the investment zj dedicated to CO2

reduction to a percentage, i.e. 
(

1 −
∑

k∈S∗xkj

cj

)
of the budget bj allocated to plant j to 

model the coordination costs associated with large outflows in j that require additional 
investment in logistical operations in manufacturing. The fifth constraint ensures the 
satisfaction of total customer demand d.

If we now put the first constraint into the objective function and into the fourth 
condition, we get the mathematical program QP :

min
∑

k∈S

∑
j∈F φxkj

(
b
d

∑
k′∈S xk′j − zj

)∑
j∈F xkj ≤ sk, ∀k ∈ K,∑
k∈S xkj ≤ cj , ∀j ∈ F,

zj ≤
b
∑

k∈S xkj

d

[
1 −

∑
k∈S xkj

cj

]
, ∀j ∈ F,∑

k∈S

∑
j∈F xkj = d.

(3)

Note that the objective function is a quadratic function, as is the right-hand side of 
the third constraint, which bounds the investment zj that can be used to implement 
green strategies in facility j ∈ F .

For the sake of completeness in Table 1 we report the units of measurement of pa-
rameters and variables.
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3.3. Analysis of the objective function

In the proposed objective function, we have two contributions defining emissions. On 
the one hand there is the term bj − zj which decreases over increasing values of the 
investment in green technologies. In other words, we assume that there is contribution 
given by technologies available in each production plant in reducing the emission level.

Indeed, manufacturing machines produce different amount of CO2 per unit of product 
worked based on their energy consumption which, in turn, depends on their technology 
level. Establishing the right level of technology to be used in a plant to limit the emissions 
is an issue, and should be carefully taken into account in association to the amount of 
products worked in the plant. The relations between green investment and carbon emis-
sions have been analysed in several studies, in particular applied to the manufacturing 
industry. [16] presented the results of a study in China demonstrating the inverse relation 
between green investments and carbon emissions. The short and long-term green invest-
ments elasticity of carbon emissions showed that increasing of 1% the level of the green 
investments conducts to a 0.071% and a 0.085% reduction of the short and long-term 
carbon emission levels, respectively. This reveals that green investments have negative 
and statistically significant relationship with carbon emissions. [19] conducted a similar 
empirical study concluding that a 1% increase in technology innovations leads to reduce 
CO2 emissions by 0.14635% and 0.28375% the same terms.

Further pursuing this aspect, we can find the study by [6] focusing on milling ma-
chines which are among the most critical equipment in manufacturing supply chains. The 
authors assess the carbon emissions of different milling machines in different production 
settings. Considering the emissions produced by these machines in their operative life, 
they range from a minimum of 93 grams of CO2 per worked part to 160 grams of CO2

per worked part. Using these values, for ease of exemplification of the objective function 
behavior, considering an average emission per part equal to 126.5 grams of CO2 along 
with an emission reduction factor per unit of budget invested in green technologies equal 
to 0.2 ·10−4 e−1, we get a conversion factor φ = et ·ef = 126.5 ·0.00002 = 0.00253 gCO2

/ e· part.
Now, once assumed that, based on the level of the green investment zj in a plant j, we 

can transform by means of φ this investment in an emission level, we can also see that 
the number of worked products plays a relevant role in determining the overall level of 
emissions. Indeed, since φ · (bj − zj) is an emission level per unit of product, in order to 
wholly define the objective function f we have to take into account the overall number 
of worked products in plant j which equals the flow entering that facility, i.e., 

∑
k∈S xkj .

If we consider a simple scenario with just one plant, a number of worked parts equal 
to 100,000 units, and an assigned budget b1 = b = 1, 000, 000 e, f can be depicted as in 
the chart of Fig. 1, when the green investment z1 = z ranges from 0 to 500,000 e. As it 
can be seen, an investment of 500,000 e can decrease the emissions from around 18 to 
10 tons of CO2.
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Fig. 1. The behavior of the objective function over varying green investment values for a fixed flow pattern.

For ease of completeness, we conclude the section defining the objective function 
explicitly on a gadget network with |S| = 3, |F | = 2, and φ = 1. We have

f(x, z) =
∑3

k=1
∑2

j=1 xkj

(
b
d

∑3
k′=1 xk′j − zj

)
= x11

(
b
d (x11 + x21 + x31) − z1

)
+x21

(
b
d (x11 + x21 + x31) − z1

)
+x31

(
b
d (x11 + x21 + x31) − z1

)
+x12

(
b
d (x12 + x22 + x32) − z2

)
+x22

(
b
d (x12 + x22 + x32) − z2

)
+x32

(
b
d (x12 + x22 + x32) − z2

)
f(x, z) = b

d

(
x2

11 + x11x21 + x11x31 + x21x11 + x2
21 + x21x31 + x31x11 + x31x21 + x2

31
+x2

12 + x12x22 + x12x32 + x22x12 + x2
22 + x22x32 + x32x12 + x32x22 + x2

32
)

−x11z1 − x21z1 − x31z1 − x12z2 − x22z2 − x32z2
= b

d

(
x2

11 + x2
12 + x2

13 + x2
21 + x2

22 + x2
32 + 2x11x21 + 2x11x31 + 2x21x31

+ 2x12x22 + 2x12x32 + 2x32x22) − x11z1 − x21z1 − x31z1 − x12z2 − x22z2
−x32z2

Let us now merge x and z in a unique vector y as follows:

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11
x12
x21
x22
x31
x32
z1
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2
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We can write the objective function f(y) = 1
2y

THy, where H is the Hessian of f(y)
and, in detail, it can be written as:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 b
d 0 2 b

d 0 2 b
d 0 −1 0

0 2 b
d 0 2 b

d 0 2 b
d 0 −1

2 b
d 0 2 b

d 0 2 b
d 0 −1 0

0 2 b
d 0 2 b

d 0 2 b
d 0 −1

2 b
d 0 2 b

d 0 2 b
d 0 −1 0

0 2 b
d 0 2 b

d 0 2 b
d 0 −1

−1 0 −1 0 −1 0 0 0
0 −1 0 −1 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Vertical and horizontal bars are used to analyse patterns of the matrix, which can be 
divided into blocks. In particular,

• blocks defined by pairs of variables which do not belong to z, are diagonal matrices 
with dimension |F | × |F | (|F | = 2 in the example) and diagonal elements all equal 
to 2 b

d ;
• blocks defined by pairs of variables from both x and z are diagonal matrices with 

dimension |F | × |F | and diagonal elements all equal to −1;
• the block defined by only components in z is a |F | × |F | zero matrix.

4. The solution approach

In this section, we describe the solution approach, which, as introduced in the first 
section of the paper, puts together two known approaches in order to solve successive 
linear approximations of the QP model.

Let y(0) be a starting initial feasible solution of the model. Since ∇f(y) = Hy, we 
can write the first order approximation of the function f(y) as follows:

f(y) ≈ f̄(y) = f(y(0)) + φ(Hy(0))T(y − y(0)).

Let us now consider the quadratic constraints

gj(y) = zj −
b

d

[∑
k∈S

xkj −
(∑

k∈S xkj

)2
cj

]
≤ 0,

with j ∈ F , the gradient vector ∇gj(y), and the first order approximation of constraints 
gj(y), i.e.,

gj(y) ≈ gj(y(0)) + ∇gj(y)T(y − y(0)),

where
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∇gj(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂gj(y)
∂x11

...
∂gj(y)
∂x1j

...
∂gj(y)
∂x1|F |

...

...
∂gj(y)
∂x|S|1

...
∂gj(y)
∂x|S|j

...
∂gj(y)
∂x|S||F |
∂gj(y)
∂z1
...

∂gj(y)
∂zj
...

∂gj(y)
∂z|F |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

b
d

(
2
∑

k∈S xkj

C1
− 1
)

...
0
...
...
0
...

b
d

(
2
∑

k∈S xkj

cj
− 1
)

...
0
0
...
1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which means that

gj(y) ≈ z
(0)
j − b

d

⎡
⎢⎣∑
k∈S

x
(0)
kj −

(∑
k∈S x

(0)
kj

)2

C

⎤
⎥⎦+

∑
k∈S

[
b

d

(
2
∑

k′∈S x
(0)
k′j

cj
− 1
)

(xkj − x
(0)
kj )
]

+ zj − z
(0)
j = zj −

b

d

⎡
⎢⎣∑
k∈S

x
(0)
kj −

(∑
k∈S x

(0)
kj

)2

cj

⎤
⎥⎦

+
∑
k∈S

[
b

d

(
2
∑

k′∈S x
(0)
k′j

cj
− 1
)

(xkj − x
(0)
kj )
]

= zj + b

d

∑
k∈S

[(
2
∑

k′∈S x
(0)
k′j

cj
− 1
)
xkj

]

− b

d

⎧⎪⎨
⎪⎩
∑
k∈S

x
(0)
kj −

(∑
k∈S x

(0)
kj

)2

cj
+
∑
k∈S

[(
2
∑

k′∈S x
(0)
k′j

cj
− 1
)
x

(0)
kj

]⎫⎪⎬
⎪⎭ . (4)

Now, defining



12 M. Caramia, G. Stecca / EURO Journal on Computational Optimization 10 (2022) 100040
δ
(0)
j = b

d

{∑
k∈S x

(0)
kj −

(∑
k∈S x

(0)
kj

)2
cj

+
∑

k∈S

[(
2
∑

k′∈S x
(0)
k′j

cj
− 1
)
x

(0)
kj

]}
,

γ(0) = f(y(0)) − φ(Hy(0))Ty(0),

and substituting (4) in the quadratically constrained quadratic formulation QP, we have 
the following linear program LAP(t), with t = 0:

min φ(Hy(0))Ty + γ(0)∑
j∈F xkj ≤ sk, ∀k ∈ K,∑
k∈S xkj ≤ cj , ∀j ∈ F,

zj + b
d

∑
k∈S

[(
2
∑

k′∈S x
(0)
k′j

cj
− 1
)
xkj

]
≤ δ

(0)
j , ∀j ∈ F,∑

k∈S

∑
j∈F xkj = d.

(5)

Now, consider LAP(t) solved in an iterative fashion as defined by Algorithm Multistart 
Successive Linear Approximations (MSLA), whose pseudocode is reported in Algorithm 1. 
The idea is to develop a multi-start procedure which works into phases. Each phase starts 
from a feasible solution y(t) of QP computed by Algorithm Starting Solution and solves
LAP(t). Denoting with ȳ∗ the optimal solution of the latter problem, if this solution 
is feasible for QP and improves the best solution found so far, then ȳ∗ is stored as the 
best solution and the best solution value is updated and stored as well. The algorithm 
therefore keeps on iterating assigning ȳ∗ to y(t+1). The stopping criterion of a phase 
is attained when the norm of the difference between the incumbent best (feasible) QP
solution and the previous best (feasible) QP solution are less than or equal to a given 
threshold ε. When a phase ends, the algorithm changes the starting feasible solution and 
enters a new phase carrying out the same steps as those performed in the previous phases. 
The overall stopping criterion is reached when either a prefixed number of restarts, i.e., 
max_restarts, or a maximum time limit is met.

The computation of the starting feasible solution is done by means of Algorithm 
Starting Solutions SS, which is a randomized procedure whose pseudocode is reported 
in Algorithm 2. In its initialization phase, the algorithm orders at random nodes in S
and next nodes in F . Then, the starting flows x0

kj , with k ∈ S and j ∈ F , are allocated 
sequentially following the two orderings and taking into account capacity and demand 
constraints. In particular, for each j and k, a value t is generated uniformly at random 
between 0 and cj

2|S| and assigned to x0
kj as far as it is lower than the residual capacity of 

j and the residual demand to be served; otherwise, the assignment is made taking the 
minimum among the latter two quantities.
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Algorithm 1 Successive Linear Approximations.
fbest = +∞;
t ← 0;
phase ← 1
repeat

halt ← 0;
Find a starting feasible solution y(t) by means of algorithm SS;
if f(yt) < fbest then

y∗ = y(t);
fbest ← f(y∗);

end if
repeat

Solve LAP(t);
Let ȳ∗ be the optimal solution of LAP(t);
if f(ȳ∗) < fbest and ȳ∗ is feasible for QP then

fbest ← f(ȳ∗);
yπ = y∗

y∗ = ȳ∗

y� = ȳ∗

if ||y� − yπ|| ≤ ε then
halt ← 1;

end if
end if
y(t+1) = ȳ∗

t ← t + 1;
until halt = 1;
phase ← phase + 1;

until phase = max_restarts or a time limit is exceed;
return

Algorithm 2 Starting Solution.
set feas ← False;
Set d0 ← d; x0 ← 0, z0 ← 0;
Set s0

k ← sk ∀k ∈ S; c0j ← cj ∀j ∈ F ;
Let S be an ordering of nodes in S;
Let F be an ordering of nodes in F ;
repeat

for k ∈ S and j ∈ F do
Set t ← uniform

(
0, cj

2|S|

)
;

x̄ ← min
{
d0, S0

k, t
}
;

x0
kj ← x0

kj + x̄;
d0 ← d0 − x̄;
s0
k ← s0

k − x̄;
c0j ← c0j − x̄;
if d0 = 0 then

feas ← True;
break for;

end if
end for

until feas = True;
for j ∈ F do

z0
j ← b

d

[∑
k∈K x0

kj −
(∑

k∈K x0
kj

)2
cj

]
;

end for
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5. Computational analysis

The proposed algorithm has been tested on a set of randomly generated instances. 
In addition, a comparison with a literature based model and a real world instance has 
been performed to validate the model. In this section, we present results of these two 
test campaigns.

5.1. Tests on random instances

The baseline settings for random instaces are as follows:

• sk ∈ uniform [100, 150] , ∀k ∈ S;
• cj ∈ uniform [100, 150] , ∀j ∈ F ;
• d = 1

2
∑

k∈S sk;
• φ = 1.

The algorithm has been implemented in Python 3.7. The LAP model has been solved 
by means of GUROBITM version 9.1.1. The computational tests have been executed on 
a laptop equipped with Intel CoreTM i7-5600U CPU @ 2.60 GHz with 4 cores, 8 GB 
RAM, Operating System Ubuntu 20.04.

Table 2 summarizes the performance of the algorithm over different instance sizes 
with a maximum running time of 300 seconds and b

d = 2. The table reports, for each 
instance, the number |S| of suppliers, the number |F | of facilities, the value bsv of the 
best solution found, the iteration it_b at which such a solution is found, and the time t_b
(in seconds) at which this has been recorded. The behavior of the algorithm is depicted, 
in particular, in Fig. 2 for instance with |S| = 5 and |F | = 5, in Fig. 3 for instance with 
|S| = 20 and |F | = 20, in Fig. 4 for instance with |S| = 50 and |F | = 50, and in Fig. 5
for instance with |S| = 75 and |F | = 100. In these figures we can see the progress of the 
best solution value over time.

In Table 3, we show the performance of our algorithm on the same instances with 
b
d = 10.

5.2. Comparison with a commercial solver

In order to evaluate the effectiveness of the model and the proposed approach, we 
solved the same instances with GUROBITM solver with the NonConvex flag enabled. In 
Table 4, we compared the performance of our algorithm to that of the solver with the 
same time limit of 300 seconds on medium to large instances. The best solution value 
of our algorithm is named MSLA best, while the solver best solution value is denoted 
with SO best. The column gap reports the ratio of the difference between the solution 
values achieved by the MSLA algorithm and the solver over the MSLA best solution value. 
Improvements of our algorithm w.r.t. the solver are reported in bold. In Table 5, we 
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Table 2
Results of the MSLA algorithm on instances with b

d = 2.

|S| |F | bsv it_b t_b

5 5 17407 153 0.50
5 10 7187 35751 194.79
10 10 38226 3876 83.73
10 15 21865 7599 239.18
15 15 73106 5304 214.89
15 20 32678 2040 109.31
20 20 103752 2907 252.10
30 30 149259 102 16.37
30 40 69491 969 195.00
40 40 199615 306 79.39
40 50 91221 306 93.24
50 50 254319 663 263.24
75 75 392807 204 170.89
75 100 179325 204 218.00
100 100 522385 51 79.06

Fig. 2. Progress of the best solution value over time (instance with |S| = 5 and |F | = 5).

Fig. 3. Progress of the best solution value over time (instance with |S| = 20 and |F | = 20).
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Fig. 4. Progress of the best solution value over time (instance with |S| = 50 and |F | = 50).

Fig. 5. Progress of the best solution value over time (instance with |S| = 75 and |F | = 100).

report the comparison between the MSLA algorithm and the commercial solver on the 
same instances with bd = 10. As it can be noted, in both the two scenarios, MSLA is able 
to considerably improve the best solution value found by the solver.

5.3. Comparison with a state of the art model on a real world instance

In order to prove the effectiveness of our model, we compared the latter with the state 
of the art model and the real world problem detailed in [26]. The former is a network 
design model for green supply chain management with two objectives to be minimized, 
i.e., the cost and the emission, respectively. Similarly to what happens in our model, the 
higher green investments the lower the CO2 emissions per unit of product handled in 
the facilities. In particular, the competing model is defined on a graph G = (V, A) where 
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Table 3
Performance of the MSLA algorithm on instances with 
b
d = 10.

|S| |F | bsv it_b t_b

5 5 92080 37842 128.02
5 10 37317 2907 16.01
10 10 174849 11373 261.46
10 15 108270 3315 107.13
15 15 397828 3366 157.47
15 20 182594 3060 191.74
20 20 515340 2856 234.77
30 30 775278 1326 216.14
30 40 350650 102 20.44
40 40 1019081 816 203.61
40 50 509924 306 90.67
50 50 1304508 714 297.09
75 75 1965578 51 44.13
75 100 912849 51 60.35
100 100 2676473 102 178.73

Table 4
Comparison between the performance of the MSLA algo-
rithm and the commercial solver; max computation time 
is set to 300 seconds; b

d = 2.

|S| |F | MSLA best SO best gap

30 30 149259 145927 2.28
30 40 69491 219108 -68.28
40 40 199615 200873 -0.63
40 50 91221 320786 -71.56
50 50 254319 403052 -36.90
75 75 392807 678049 -42.07
75 100 179325 725397 -75.28
100 100 522385 894257 -41.58

Table 5
Comparison between the performance of the MSLA algo-
rithm and the commercial solver; max computation time 
is set to 300 seconds; b

d = 10.

|S| |F | MSLA best SO best gap

30 30 775278 764151 1.46
30 40 350650 826665 -57.58
40 40 1019081 1738974 -41.40
40 50 509924 1239300 -58.85
50 50 1304508 2194397 -40.55
75 75 1965578 3657521 -46.26
75 100 912849 3521618 -74.08
100 100 2676473 5241653 -48.94

V = S ∪ F ∪ C, where S, F , and C are the sets of suppliers, facilities, and customers, 
respectively. A is the set of arcs connecting suppliers with facilities, and facilities with 
customers. The variables of the model are the amount of product xii′ transported along 
arc (i, i′) ∈ A, the amount of product xjl processed in each facility j ∈ F , with an 
environmental protection level l ∈ L, and the binary variable zjl which equals 1 whether 
the environmental protection level l is selected in facility j, and holds 0 otherwise. The 
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objective functions f1 and f2 defined in the model in [26] are defined in (6), and (7), 
respectively.

f1 =
∑

(i,i′)∈A

cii′xii′ +
∑

j∈F, l∈L

gjlzjl +
∑

j∈F, k∈S

�jxkj (6)

f2 =
∑

j∈F, l∈L

wjlxjl +
∑

(i,j)∈A

eii′xii′ (7)

Function f1 has three terms: the traveling cost, the cost associated with the green 
investment in the facilities, and the handling cost of the products in the facilities. f2 has 
two terms: the emissions in the production facilities, and the emissions associated with 
traversing a certain arc. The first term, as detailed in Table 6, is non linear w.r.t. green 
investment level l. The model constraints are defined in (8).

∑
k∈S xkj −

∑
i∈C xji = 0 ∀j ∈ F,∑

l∈L xjl =
∑

k∈S xkj ∀j ∈ F,∑
j∈F xji = di ∀i ∈ C,∑
j∈F xkj ≤ sk ∀k ∈ S,

rjxjl ≤ ujzjl ∀j ∈ F, l ∈ L,∑
l∈L zjl ≤ 1 ∀j ∈ F,

xii′ , xjl ≥ 0 ∀(i, i′) ∈ A, l ∈ L, j ∈ F,

zjl ∈ {0, 1} ∀l ∈ L, j ∈ F.

(8)

The first constraint of (8) is the balance of product flows at the facilities. The sec-
ond constraint defines the relation between xii′ and xjl variables. The third constraint 
satisfies customer demand. The fourth constraint limits capacity for suppliers, while the 
fifth constraint limits the handling capacity for each facility. The sixth constraint im-
poses that at most one environmental protection level can be set for each facility. The 
other constraints define the domains of the variables. With respect to the [26] model, we 
explicitly inserted the link between xkj and xjl, and we represented the problem with a 
single commodity.

In order to compare with the model in [26], we adapted our model to consider 
customers, traveling costs, traveling emissions, and handling costs. This extension is 
straightforward.

We took the input data, i.e., network topology, range of emissions, and costs, verbatim 
from [26] and built the instance for comparison. The parameter settings are detailed in 
Table 6. With respect to [26], since there is no information on arc distances, we redefined 
a set of geographic points as shown in Fig. 6 for which it was possible to calculate arc 
lengths. By solving the [26] model with the two objectives it was possible to evaluate 
the maximum and minimum costs and the emissions, respectively. This information has 
been useful to define the budget bj and the φ value necessary to implement our model, 
as detailed in the last two rows of Table 6.
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Table 6
Parameter settings for the [26] case study.

Parameter Setting
Number of suppliers |S| = 6
Number of facilities |F | = 8
Number of customers |C| = 12
Investment levels l ∈ L = {0, . . . , 4}
Demand [units] dj = 3000
Supply capacity [units] sk = 3000 · |C|

|S| · 3
Arc geographic distance [km] distii′
Transportation cost [e/unit] cii′ = 0.1 · distii′
CO2 per transported product [e/unit] eii′ = 0.1 · distii′
CO2 per worked product [gCO2/unit] wjl = 60/(2(l−1))
Cost factor [e] f · rcost, f = 65, rcost = 1000
Environment investment per product [e/unit] gjl = f · rcost · l
Handling cost per product [e/unit] �j = 75
Processing required capacity per product rj = 8
Processing capacity per facility [unit] uj = 45, 000
CO2 per investment per product [gCO2/(e·unit)] φ = 1.167 · 10−5

Max green investment [e] b = 1,800,000

Fig. 6. The network associated with the case study. The diamond symbols represent customers, the star 
symbols represent facilities, and the square symbols represent the suppliers.

Table 7 reports the results of our model compared to those found by the [26] model 
solved with only the f2 objective function. The first and the second columns report 
the minimum emissions found by our model (a) and that in [26] (b), respectively. The 
third and the fourth columns report the cost for the green investment found by our 
model and by the [26] model, respectively. The fifth and the sixth columns report a cross 
comparison between the two models. In particular, the fifth column reports the solution 
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Table 7
Results of the proposed model (a), compared with the results of the [26] model (b). G.I. is the green 
investment. (a)vs(b) measures the solution of the proposed model with the [26] emission objective function. 
(b)vs(a) measures the solution of the [26] model with our objective function. CO2 in grams, green investment 
in e.

min CO(a)
2 min CO(b)

2 G.I.(a) G.I.(b) CO(a)vs(b)
2 CO(b)vs(a)

2

2,044,220 2,070,000 1,800,000 1,820,000 2,192,154 2,090,244

of the proposed model measured by the [26] emission objective function, while the sixth 
column reports the solution of the [26] model measured with our objective function. The 
results show how our model produces promising results both in terms of emissions and 
investments compared to the competing state of the art model on the same instance.

6. Conclusions

Green management in supply chains requires the decarbonisation of operations and a 
proper allocation of a budget for green investments in order to attain both effectiveness 
and environmental sustainability. In this paper, we formulated this problem in terms 
of quadratic optimization with a quadratic constraint. The objective function is non 
convex, being the Hessian indefinite. The quadratic constraint gives a limit to the bud-
get allocable for emission mitigation which depends on the product flow entering the 
downstream supply chain layer. A multistart algorithm based on successive linear ap-
proximations has been proposed to solve the problem. The approach has been tested on 
instances with different sizes, proving its capability of providing promising solutions in 
limited running times. These results have been also compared to those obtained with 
a commercial solver on the same instances. Furthermore, we implemented a competing 
approach from the state of the art and compared its performance to that of our model 
on an instance depicting a real world application. Future work may focus on improving 
the algorithm in order to get rid of the quadratic constraint and the negativity of some 
of the eigenvalues of the Hessian matrix of the objective function.
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