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Abstract

In this paper we consider Description Logics (DLs), well-known logics
for managing structured knowledge, with its fuzzy extension to deal with
vague information.

While for fuzzy DLs correct and complete ad-hoc reasoning procedures
have been given, the topic of this paper is to present a reasoning preserving
transformation of fuzzy DLs into classical DLs. This has the considerable
practical consequence that reasoning in fuzzy DLs is feasible using already
existing DL systems.

Category: I.2.4: Artificial Intelligence: Knowledge Representation Formalisms and
Methods [Representation languages]
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1 INTRODUCTION

In the last decade a substantial amount of work has been carried out in the con-
text of Description Logics (DLs) [1]. DLs are a logical reconstruction of the so-called
frame-based knowledge representation languages, with the aim of providing a simple
well-established Tarski-style declarative semantics to capture the meaning of the most
popular features of structured representation of knowledge. Nowadays, a whole family
of knowledge representation systems has been build using DLs, which differ with re-
spect to their expressiveness and their complexity, and they have been used for building
a variety of applications (see the DL community home page http://dl.kr.org/).

Despite their growing popularity, relative little work has been carried out 1 in
extending them to the management of uncertain information. This is a well-known and

1Comparing with other formalisms -notably logic programming (see, e.g. [9, 11], for an
overview).
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important issue whenever the real world information to be represented is of imperfect
nature. In DLs, the problem has attracted the attention of some researchers and some
frameworks have been proposed, which differ in the underlying notion of uncertainty,
e.g. probability theory [5, 6, 8, 10, 15], possibility theory [7], metric spaces [13] and
fuzzy theory [4, 16, 18, 19].

In this paper we consider the fuzzy extension of DLs towards the management
of vague knowledge [16]. The choice of fuzzy set theory as a way of endowing a DL
with the capability to deal with imprecision is motivated as fuzzy logics capture the
notion of imprecise concept, i.e. a concept for which a clear and precise definition is
not possible. Therefore, fuzzy DLs allow to express that a sentence, like “it is Cold”,
is not just true or false like in classical DLs, but has a degree of truth, which is taken
from the real unit interval [0, 1]. The truth degree dictates to which extent a sentence
is true.

From a computational point of view, the reasoning procedures in [16] are based
on an ad-hoc tableaux calculus, similar to the ones presented for almost all DLs.
Unfortunately, a drawback of the tableaux calculus in [16] is that any system, which
would like to implement this fuzzy logic, has to be worked out from scratch.

The contribution of this paper is as follows. Primarily, we present a reasoning
preserving transformation of fuzzy DLs into classical DLs. This has the considerable
practical consequence that reasoning in fuzzy DLs is feasible using already existing DL
systems. Secondarily, we allow the representation of so-called general terminological
axioms, while in [16], the axioms were very limited in the form. To best of our
knowledge, no algorithm has yet been worked out for general axioms in fuzzy DLs.
Overall, our approach may be extended to more expressive DLs than the one we present
here as well.

We proceed as follows. In the next section, we recall some fundamental notions
about DLs. In Section 3 we recall fuzzy DLs. Section 4 is the main part of this paper,
where we present our reduction of fuzzy DLs into classical DLs. Finally, Section 5
concludes the paper.

2 A QUICK LOOK TO DLs

Instrumental to our purpose, the specific DL we extend with “fuzzy” capabilities is
ALC, a significant representative of DLs (see, e.g. [1, 14]. ALC is sufficiently expressive
to illustrate the main concepts introduced in this paper. More expressive DLs will be
the subject of an extended work. Note that [16] considered ALC as well.

Consider three alphabets of symbols, for concepts names (denoted A), for roles
names (denoted R) and individual names (denoted a and b) 2. A concept (denoted C
or D) of the language ALC is built inductively from concept names A and role names
R according to the following syntax rule:

2Metavariables may have a subscript or a superscript.
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C, D −→ >| (top concept)
⊥ | (bottom concept)
A| (concept name)

C uD| (concept conjunction)
C tD| (concept disjunction)

¬C| (concept negation)
∀R.C| (universal quantification)
∃R.C (existential quantification) .

A terminology, T , is a finite set of concept inclusions or role inclusions, called termi-
nological axioms, τ , where given two concepts C and D, and two role names R and
R′, a terminological axiom is an expression of the form C v D (D subsumes C) or of
the form R v R′ (R′ subsumes R) .

An assertion, α, is an expression of the form a:C (“a is an instance of C”), or an
expression (a, b):R (“(a, b) is an instance of R”).

A Knowledge Base (KB), K = 〈T ,A〉, is such that T and A are finite sets of
terminological axioms and assertions, respectively.

An interpretation I is a pair I = (∆I , ·I) consisting of a non empty set ∆I (called
the domain) and of an interpretation function ·I mapping individuals into elements
of ∆I (note that usually the unique name assumption 3 is considered, but it does not
matter us here), concepts names into subsets of ∆I and roles names into subsets of
∆I ×∆I .

The interpretation of complex concepts is defined inductively as usual:

>I = ∆I

⊥I = ∅
(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = ∆I \ CI

(∀R.C)I = {d ∈ ∆I | ∀d′.(d, d′) 6∈ RI or d′ ∈ CI}
(∃R.C)I = {d ∈ ∆I | ∃d′.(d, d′) ∈ RI and d′ ∈ CI} .

A concept C is satisfiable iff there is an interpretation I such that CI 6= ∅. Two
concepts C and D are equivalent (denoted C ≡ D) iff CI = DI , for all interpretations
I.

An interpretation I satisfies an assertion a:C (resp. (a, b):R) iff aI ∈ CI (resp. (aI , bI) ∈
RI), while I satisfies a terminological axiom C v D iff CI ⊆ DI . The satisfiability
of role inclusions R v R′ is similar.

Furthermore, an interpretation I satisfies (is a model of) a terminology T (resp. a
set of assertions A) iff I satisfies each element in T (resp. A), while I satisfies (is a
model of) a KB K = 〈T ,A〉 iff I satisfies both T and A. Finally, given a KB K and
an assertion α we say that K entails α, denoted K |= α, iff each model of K satisfies
α.

Example 1 Consider the following KB K = 〈T ,A〉, where

T = {A: = ∀R.¬B}
A = {a:∀R.C} .

3aI 6= bI , if a 6= b.
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Consider the assertion

α = a:A t ∃R.(B u C) .

It can be shown that K |= α holds. In fact, consider a model I of K. Then either
aI ∈ AI or aI 6∈ AI . In the former case, I satisfies α. In the latter case, as I
satisfies T , aI 6∈ (∀R.¬B)I , i.e. aI ∈ (∃R.B)I holds. But, I satisfies A as well,
i.e. aI ∈ (∀R.C)I and, thus, aI ∈ (∃R.(B u C))I . Therefore, I satisfies α, which
concludes.

Finally, note that there exists decision procedures for the satisfiability and the entail-
ment problems in ALC (see, e.g. [1]) and there are implemented reasoners like, for
instance, RACER 4 or FACT 5, which allow to reason in quit more expressive DLs as
ALC. This concludes this part.

3 A QUICK LOOK TO FUZZY DLs

We recall here the main notions related to fuzzy DLs, taken from [16]. Worth noting
is that we deal with general terminological axioms of the form C v D, while in [16]
the terminological component is restricted in the form, i.e. in [16] a terminology, T ,
is a finite set of concept definitions and concept inclusions, where (i) for a concept
name A and a concept C, a concept definition is an expression of the form A: = C,
while a concept inclusion is an expression of the form A v C; and (ii) T is such that
no concept name A appears more than once on the left hand side of a terminological
axiom τ ∈ T and that no cyclic definitions are present in T 6. In this work, we do not
impose these restrictions on the terminological component.

For convenience, we call the fuzzy extension of ALC, µALC. The main idea under-
lying µALC is that an assertion a:C, rather being interpreted as either true or false,
will be mapped into a truth value c ∈ [0, 1]. The intended meaning is that c indicates
to which extend (how certain it is that) ‘a is a C’. Similarly for role names.

Formally, a µinterpretation is a pair I = (∆I , ·I), where ∆I is the domain and ·I
is an interpretation function mapping

• individuals as for the classical case;

• a concept C into a function CI : ∆I → [0, 1]; and

• a role R into a function RI :∆I ×∆I → [0, 1].

If C is a concept then CI will naturally be interpreted as the membership degree
function (µC in ‘fuzzy notation’) of the fuzzy concept (set) C w.r.t. I, i.e. if d ∈ ∆I is
an object of the domain ∆I then CI(d) gives us the degree of being the object d an
element of the fuzzy concept C under the µinterpretation I. Similarly for roles.

The definition of concept equivalence is like for ALC. Two concepts C and D are
equivalent iff CI = DI , for all µinterpretations I.

4http://www.cs.concordia.ca/∼haarslev/racer/
5http://www.cs.man.ac.uk/∼horrocks/FaCT/
6We say that A directly uses primitive concept B in T , if there is τ ∈ T such that A is on

the left hand side of τ and B occurs in the right hand side of τ . Let uses be the transitive
closure of the relation directly uses in T . T is cyclic iff there is A such that A uses A in T .
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The interpretation function ·I has also to satisfy the following equations: for all
d ∈ ∆I ,

>I(d) = 1
⊥I(d) = 0

(C uD)I(d) = min(CI(d), DI(d))

(C tD)I(d) = max(CI(d), DI(d))

(¬C)I(d) = 1− CI(d)

(∀R.C)I(d) = infd′∈∆I{max(1−RI(d, d′), CI(d′))}
(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′))} .

These equations are the standard interpretation of conjunction, disjunction, negation
and quantification, respectively for fuzzy sets [20] (see also [12, 18]). Nonetheless,
some conditions deserve an explanation.

• The semantics of ∃R.C is the result of viewing ∃R.C as the open first order
formula ∃y.R(x, y)∧ C̄(y) (where C̄ is the translation of C into first-order logic)
and ∃ is viewed as a disjunction over the elements of the domain;

• Similarly, the semantics of ∀R.C is related to ∀y.¬R(x, y) ∨ C̄(y), where ∀ is
viewed as a conjunction over the elements of the domain.

As for the classical DLs, dual relationships between concepts hold: e.g. (C u D) ≡
¬(¬C t ¬D) and (∀R.C) ≡ ¬(∃R.¬C), but C u (¬C tD) 6≡ D.

A µassertion (denoted µα) is an expression of the form 〈α ≥ c1〉, 〈α > c2〉, 〈α′ ≤ c2〉
or 〈α′ < c1〉, where α is an ALC assertion, c1 ∈ (0, 1] and c2 ∈ [0, 1), but α′ is an
ALC assertion of the form a:C only. For coherence, we do not allow µassertions of the
form 〈(a, b):R ≤ c〉 or 〈(a, b):R < c〉 as they relate to ‘negated roles’, which is not part
of classical ALC.

From a semantics point of view, a µassertion 〈α ≤ c〉 constrains the truth value of
α to be less or equal to c (similarly for ≥, > and <). So, a µinterpretation I satisfies
〈a:C ≥ c〉 (resp. 〈(a, b):R ≥ c〉) iff CI(aI) ≥ c (resp. RI(aI , bI) ≥ c). Similarly for
>,≤ and <. Note that, e.g. 〈a:¬C ≥ c〉 and 〈a:C ≤ 1− c〉 are satisfied by the same
set of µinterpretations, i.e.

I satisfies 〈a:¬C ≥ c〉 iff I satisfies 〈a:C ≤ 1− c〉 . (1)

Concerning terminological axioms, a µALC terminological axiom is, as for the classical
DL ALC, of the form C v D, where C and D are ALC concepts, or of the form R v R′,
where R and R′ are role names. From a semantics point of view, a µinterpretation I
satisfies C v D iff for all d ∈ ∆I , CI(d) ≤ DI(d). Similarly, µinterpretation I satisfies

R v R′ iff for all {d, d′} ⊆ ∆I , RI(d, d′) ≤ R′I(d, d′).
A µKnowledge Base (µKB) is pair µK = 〈T ,A〉, where T and A are finite sets of

terminological axioms and µassertions, respectively. A µinterpretation I satisfies (is
a model of) a terminology T (resp. a set of µassertions A) iff I satisfies each element
in T (resp. A), while I satisfies (is a model of) a KB µK = 〈T ,A〉 iff I satisfies both
T and A.

Given a µKB µK, and a µassertion µα, we say that µK entails µα, denoted µK |=
µα, iff each model of µK satisfies µα. For instance, if c′ > 1− c then

{〈(a, b):R ≥ c′〉, 〈a:∀R.C ≥ c〉} |= 〈a:C ≥ c〉 . (2)

Finally, given µK and an ALC assertion α, it is of interest to compute α’s best lower
and upper truth value bounds. The greatest lower bound of α w.r.t. µK (denoted
glb(µK, α)) is
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glb(µK, α) = sup{c : µK |= 〈α ≥ c〉} ,

while the least upper bound of α with respect to µK (denoted lub(µK, α)) is

lub(µK, α) = inf{c : µK |= 〈α ≤ c〉}

where sup ∅ = 0 and inf ∅ = 1. Determining the lub and the glb is called the Best
Truth Value Bound (BTVB) problem. Note that

lub(Σ, a:C) = 1− glb(Σ, a:¬C) , (3)

i.e. the lub can be determined through the glb (and vice-versa). The same reduction to
glb does not hold for lub(Σ, (a, b):R) as (a, b):¬R is not an expression of our language.7

Finally, note that, Σ |=L 〈α ≥ n〉 iff glb(Σ, α) ≥ n, and similarly Σ |=L 〈α ≤ n〉 iff
lub(Σ, α) ≤ n hold. Concerning roles, note that Σ |=L 〈(a, b):R ≥ n〉 iff 〈(a, b):R ≥ m〉 ∈
Σ with m ≥ n. Therefore,

glb(Σ, R(a, b)) = max{n : 〈R(a, b) ≥ n〉 ∈ Σ} . (4)

Concerning the entailment problem, it is quite easily verified that the entailment prob-
lem can be reduced to the unsatisfiability problem:

〈T ,A〉 |= 〈α ≥ n〉 iff 〈T ,A ∪ {〈α < n〉}〉 is not satisfiable , (5)

〈T ,A〉 |= 〈α ≤ n〉 iff 〈T ,A ∪ {〈α > n〉}〉 is not satisfiable . (6)

In [16] decision procedures for the satisfiability, the entailment and the BTVB prob-
lem are given for µALC, but with the already discussed restrictions on the form of
terminological axioms and terminologies.

Example 2 Similarly to Example 1, consider µK = 〈T ,A〉, where

T = {A: = ∀R.¬B}
A = {〈a:∀R.C ≥ 0.7〉} .

Consider the assertion

α = a:A t ∃R.(B u C) .

It can be shown that

glb(µK, α) = 0.5
lub(µK, α) = 1

hold. In fact, for any model I of µK, we have that

(A t ∃R.(B u C))I(aI) ≥ max(c, min(0.7, 1− c)) , (7)

for any c ∈ [0, 1]. Indeed, let I be a model of µK. Assume that (A t ∃R.(B u C))I(aI) =
w. Consider c ∈ [0, 1]. Then either AI(aI) ≥ c or AI(aI) < c. In the former case,

7Of course, lub(Σ, (a, b):R) = 1−glb(Σ, (a, b):¬R) holds, where (¬R)I(d, d′) = 1−RI(d, d′).
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it follows that w ≥ c. In the latter case, as I satisfies T , from AI(aI) < c it follows
that (∀R.¬B)I(aI) < c. But, ∀R.¬B ≡ ¬∃R.B and, thus, (∃R.B)I(aI) > 1 − c.
Therefore, there is d ∈ ∆I such that RI(aI , d) > 1 − c and BI(d) > 1 − c. But, I
satisfies µA, i.e. (∀R.C)I(aI) ≥ 0.7. By definition, this means that infd′∈∆I{max(1−
RI(aI , d′), CI(d′))} ≥ 0.7 and, in particular, for d′ = d, max(1−RI(aI , d), CI(d)) ≥
0.7 holds. Therefore, 1−RI(aI , d) < 0.7 (i.e., RI(aI , d) > 0.3) implies CI(d)) ≥ 0.7.
As a consequence, from RI(aI , d) > 1 − c, for c ≤ 0.7 it follows that CI(d) ≥ 0.7
(see also Equation 2). Therefore, (∃R.(B u C))I(aI) ≥ min(0.7, 1 − c) and, thus,
w ≥ max(c, min(0.7, 1− c)), which proofs (7).

Finally, as for any c ∈ [0, 1], max(c, min(0.7, 1− c)) ≥ 0.5 and there is no c′ > 0.5
such that for all c ∈ [0, 1], max(c, min(0.7, 1−c)) ≥ c′, by (7), glb(µK, α) = 0.5 follows.

The proof of lub(µK, α) = 1 is easy.

4 MAPPING µALC INTO ALC
Our aim is to map µALC knowledge bases into satisfiability and entailment preserving
classical ALC knowledge bases. An immediate consequence is then that (i) we have
reasoning procedures for µALC with general terminological axioms, which are still
unknown; and (ii) we can rely on already implemented reasoners to reason in µALC.

Before we are going to formally present the mapping, we first illustrate the basic
idea we rely on. Our mapping relies on ideas presented in [2, 3].

Assume we have a µKB, µK = 〈∅,A〉, where A = {µα1, µα2, µα3, µα4} and

µα1 = 〈a:A ≥ 0.4〉
µα2 = 〈a:A ≤ 0.7〉
µα3 = 〈a:B ≤ 0.2〉
µα4 = 〈b:B ≤ 0.1〉 .

Let us introduce some new concepts, namely A≥0.4, A≤0.7, B≤0.2 and B≤0.1. Infor-
mally, the concept A≥0.4 represents the set of individuals, which are instance of A
with degree c ≥ 0.4, while A≤0.7 represents the set of individuals, which are instance
of A with degree c ≤ 0.7. Similarly, for the other concepts. Of course, we have to
consider also the relationships among the introduced concepts. For instance, we need
the terminological axiom

B≤0.1 v B≤0.2 .

This axiom dictates that if a truth value is ≤ 0.1 then it is also ≤ 0.2. We may
represent, thus, the µassertion µα1 with the ALC assertion a:A≥0.4, indicating that a
is an instance of A with a degree ≥ 0.4. Similarly, µα2 may be mapped into a:A≥0.7,
µα3 may be mapped into a:B≥0.2, while µα4 may be mapped into b:B≥0.1. From
a semantics point of view, let us consider the so-called canonical model [1] I of the
resulting classical ALC KB, i.e.

I = {A≥0.4(a), A≤0.7(a), B≤0.2(a), B≤0.1(b), B≤0.2(b)} .

It is then easily verified that, from I a model I′ of µK can easily be built and, vice-
versa, if I′ is a model of µK, then a model like I above can be obtained as well.
Therefore, our transformation of µK into an ALC KB, at least for the above case, is
satisfiability preserving. This illustrates our basic idea.
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Let us now proceed formally. Consider a µKB µK = 〈T ,A〉. Let AµK and RµK

be the set of concept names and concept roles occurring in µK. Of course, both |AµK|
and |RµK| are linearly bounded by |µK|. Consider

XµK = {0, 0.5, 1} ∪ {c : 〈α ≥ c〉 ∈ A}
∪{1− c : 〈α ≤ c〉 ∈ A}

from which we define

NµK = XµK ∪ {1− c : c ∈ XµK} . (8)

Note that |NµK| is linearly bounded by |A|. Essentially, with NµK we collect from µK
all the relevant numbers we require for the transformation. Without loss of generality,
we may assume that NµK = {c1, . . . , c|NµK|} and ci < ci+1, for 1 ≤ i ≤ |NµK| − 1.
Note that c1 = 0 and c|NµK| = 1.

For each c ∈ NµK, for each relation ./∈ {≥, >,≤, <}, for each A ∈ AµK and for
each R ∈ RµK, consider a new concept name A./c and new role names R≥c and R>c,
but we do not consider A<0, A>1 and R>1 (which are not needed). There are as many
as (4|NµK|−2)|AµK| new concept names and (2|NµK|−1)|RµK| new role names. Note
that we do not require new role names R≤c and R<c, as e.g. expressions of the form
〈(a, b):R ≤ c〉 are not part of our language.

Let T (NµK) be the following terminology relating the newly introduced concept
names and role names: T (NµK) is the smallest terminology such that for each 1 ≤ i ≤
|NµK| − 1, for each 2 ≤ j ≤ |NµK|, for each A ∈ AµK and for each R ∈ RµK, T (NµK)
contains

A≥ci+1 v A>ci

A>ci v A≥ci

A<cj v A≤cj

A≤ci v A<ci+1

A≥cj uA<cj v ⊥
A>ci uA≤ci v ⊥

> v A≥cj tA<cj

> v A>ci tA≤ci .

The first two groups reflect the ≥, <,≤, > ordering among the newly introduced con-
cepts, while the third group identifies ‘disjointness’ conditions. For instance, among
these terminological axioms we may have A≥0.4 uA<0.4 v⊥ indicating that it cannot
be that an individual a is an instance of the concept name A with degree ≥ 0.4 and
degree < 0.4. The last group establishes the complimentarily relationships among the
new concepts, e.g. A≥0.4 tA<0.4 ≡ >. Note that T (NµK) contains 8|AµK|(|NµK| − 1)
terminological axioms involving the newly introduced concepts names.

The terminological axioms in T (NµK) relating the newly introduced role names
are quite similar to the above axioms:

R≥ci+1 v R>ci

R>ci v R≥ci

8



Note that T (NµK) contains 2|RµK|(|NµK| − 1) terminological axioms involving the
newly introduced role names. Please note also that in case we would like to allow
expressions of the form 〈(a, b):R ≤ c〉 and 〈(a, b):R < c〉, then we need new role names
R≤c and R<c (excluding R<0), and terminological axioms R<cj v R≤cj , R≤ci v
R<ci+1 , R≥cjuR<cj v⊥r, R>ciuR≤ci v⊥

r, >r v R≥cjtR<cj and >r v R>citR≤ci .
In particular, note that ‘role conjunction’, ‘role disjunction’ and a ‘bottom role’ and a
‘top role’ are needed.

Example 3 Consider Example 2. Then NµK is

NµK = {0, 0.3, 0.5, 0.7, 1} ,

while AµK = {A, B, C} and RµK = {R}. Below, we provide an excerpt of the termi-
nology T (NµK):

T (NµK) = {A≥1 v A>0.7, A≥0.7 v A>0.5, . . .}
∪ {A>0.7 v A≥0.7, A>0.5 v A≥0.5, . . .}
∪ {A<0.3 v A≤0.3, A<0.5 v A≤0.5, . . .}
∪ {A≤0 v A<0.3, A≤0.3 v A<0.5, . . .}
∪ {A≥0.3 uA<0.3 v⊥, . . .}
∪ {A>0 uA≤0 v⊥, . . .}
∪ {> v A≥0.3 tA<0.3, . . .}
∪ {> v A>0 tA≤0, . . .}
∪ {B≥1 v B>0.7, . . .}
∪ . . .
...
∪ {R≥1 v R>0.7, . . .}
∪ {R>0.7 v R≥0.7, . . .} .

This concludes the management of the newly introduced concept names and role
names.

We proceed now with the mapping of the µassertions in a µKB intoALC assertions.
We define two mappings σ and ρ, defined as follows. Let µα be a µassertion. Then σ
maps a µassertion into a classical ALC assertion, using ρ, as follows. In the following,
we assume that c ∈ [0, 1] and ./∈ {≥, >,≤, <}.

σ(µα) =

{
a:ρ(C, ./ c) if µα = 〈a:C ./ c〉
(a, b):ρ(R, ./ c) if µα = 〈(a, b):R ./ c〉 .

We extend σ to a set of µassertions A point-wise, i.e. σ(A) = {σ(µα)|µα ∈ A}.
The mapping ρ encodes the idea we have previously presented in a simplified

example and is inductively defined on the structure of concepts and roles. For roles,
we have simply

ρ(R, ./ c) = R./c .

So, for instance the µassertion 〈(a, b):R ≥ c〉 is mapped into theALC assertion (a, b):R≥c.
Concerning concepts, we have the following inductive definitions: for >
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ρ(>, ./ c) =



> if ./ c = ≥ c
> if ./ c = > c, c < 1
⊥ if ./ c = > 1
> if ./ c = ≤ 1
⊥ if ./ c = ≤ c, c < 1
⊥ if ./ c = < c .

For ⊥,

ρ(⊥, ./ c) =



> if ./ c = ≥ 0
⊥ if ./ c = ≥ c, c > 0
⊥ if ./ c = > c
> if ./ c = ≤ c
> if ./ c = < c, c > 0
⊥ if ./ c = < 0 .

For concept name A,

ρ(A, ./ c) = A./c .

For concept conjunction C uD,

ρ(C uD, ./ c) =

{
ρ(C, ./ c) u ρ(D, ./ c) if ./∈ {≥, >}
ρ(C, ./ c) t ρ(D, ./ c) if ./∈ {≤, <} .

For concept disjunction C tD,

ρ(C tD, ./ c) =

{
ρ(C, ./ c) t ρ(D, ./ c) if ./∈ {≥, >}
ρ(C, ./ c) u ρ(D, ./ c) if ./∈ {≤, <} .

For concept negation ¬C,

ρ(¬C, ./ c) = ρ(C,¬./ 1− c) .

where ¬ ≥=≤, ¬ <=>, ¬ ≤=≥ and ¬ <=>. For instance, the µassertion 〈a:¬C ≥ c〉
is mapped into the ALC assertion a:C≤1−c.

For existential quantification ∃R.C,

ρ(∃R.C, ./ c) =

{
∃ρ(R, ./ c).ρ(C, ./ c) if ./∈ {≥, >}
∀ρ(R,−./ c).ρ(C, ./ c) if ./∈ {≤, <} .

where − ≤=> and − <=≥. For instance, the µassertion 〈a:∃R.C ≥ c〉 is mapped into
the ALC assertion a:∃R≥c.C≥c, while 〈a:∃R.C ≤ c〉 is mapped into a:∀R>c.C≤c.

Finally, for universal quantification ∀R.C,

ρ(∀R.C, ./ c) =

{
∀ρ(R, +./ 1− c).ρ(C, ./ c) if ./∈ {≥, >}
∃ρ(R,¬./ 1− c).ρ(C, ./ c) if ./∈ {≤, <} .

where + ≥=> and + >=≥. For instance, the µassertion 〈a:∀R.C ≥ 0.7〉 in Example 2
is mapped into the ALC assertion a:∀R>0.3.C≥0.7, while 〈a:∀R.C ≤ c〉 is mapped into
a:∃R≥1−c.C≤c.

It is easily verified that for a set of µassertions A, |σ(A)| is linearly bounded by
|A|.
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We conclude with the reduction of a terminological axiom τ in a terminology T
of a µKB µK = 〈T ,A〉 into a ALC terminology, κ(µK, τ). Note that a terminological
axiom in µALC is reduced into a set of ALC terminological axioms. As for σ, we
extend κ to a terminology T point-wise, i.e. κ(µK, T ) = ∪τ∈T κ(µK, τ). κ(µK, τ) is
defined as follows.

For a concept specialization C v D,

κ(C v D) =
⋃

c∈NµK,./∈{≥,>}{ρ(C, ./ c) v ρ(D, ./ c)}⋃
c∈NµK,./∈{≤,<}{ρ(D, ./ c) v ρ(C, ./ c)} .

For instance, by relying on the µKB µK in Example 2, it can be verified that κ(µK, T )
contains the ALC terminological axioms (e.g. for c = 0.3) A≥0.3 v ∀R>0.7.B≤0.7 and
∃R≥0.7.B≥0.7 v A≤0.3.

For a role specialization R v R′,

κ(R v R′) =
⋃

c∈NµK,./∈{≥,>}{ρ(R, ./ c) v ρ(R′, ./ c)} .

Note that |κ(µK, T )| contains at most 6|T ||NµK| terminological axioms.
We have now all the ingredients to complete the reduction of a µKB into an

ALC KB. Let µK = 〈T ,A〉 be µKB. The reduction of µK into an ALC KB, denoted
K(µK), is defined as

K(µK) = 〈T (NµK) ∪ κ(µK, T ), σ(A)〉 .

Note that |K(µK)| is O(|µK|2).

Example 4 Consider the µKB of Example 2. We have already shown an excerpt of its
reduction into ALC during this section. Due to space limitations, the whole reduction
of µK cannot be represented in this paper. However, we have seen that µK |= 〈α ≥ 0.5〉,
which means that the µKB µK′ = 〈T ,A∪{〈α < 0.5〉}〉 is not satisfiable. Let us verify
that indeed our reduction is satisfiability preserving, by verifying that K(µK′) is not
satisfiable as well. First, let us note that σ(〈α < 0.5〉) is the assertion

σ(〈α < 0.5〉) = a:A<0.5 u ∀R≥0.5.(B<0.5 t C<0.5) . (9)

We proceed similarly as for Example 2. We show that any model I satisfying K(µK′),
where (9) has been removed, does not satisfy (9). Therefore, there cannot be any
model of K(µK′). Indeed, as A≥0.5 u A<0.5 v⊥ and > v A≥0.5 t A<0.5 occur in
the terminology of K(µK′), we have that either aI is an instance of (A≥0.5)

I or aI

is an instance of (A<0.5)
I . In the former case, I does not satisfy (9). In the latter

case, we note that the terminological axiom ∀R.¬B v A belongs to T and, thus,
ρ(A, < 0.5) v ρ(∀R.¬B, < 0.5), i.e. A<0.5 v ∃R>0.5.B>0.5), belongs to the terminology
of K(µK′). Therefore, as aI is an instance of (A<0.5)

I , aI has an (R>0.5)
I successor d

which is an instance of (B>0.5)
I . But then, as 〈a:∀R.C ≥ 0.7〉 occurs in µK and, thus,

a:∀R>0.3.C≥0.7 occurs in K(µK′), and R>0.5 v R>0.3 is axiom of K(µK′), it follows
that d is also an instance of (C≥0.7)

I . Now, it can easily verified that aI cannot be an
instance of (∀R≥0.5.(B<0.5 t C<0.5))

I as aI has an (R≥0.5)
I successor d ((R>0.5)

I ⊆
(R≥0.5)

I), which is neither an instance of (B<0.5)
I ((B<0.5)

I ∩ (B>0.5)
I = ∅) nor of

(C<0.5)
I ((C<0.5)

I ∩ (C≥0.7)
I = ∅). Therefore, I does not satisfy (9).

The following theorem can be shown, which establishes that our reduction is satisfia-
bility preserving.
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Theorem 1 Let µK be µKB. Then µK is satisfiable iff the ALC KB K(µK) is satis-
fiable.

Theorem 1, together with Equations (5) and (6), gives us also the possibility to reduce
the entailment problem in µALC, to an entailment problem in ALC.

Finally, concerning the BTVB problem, Equation (4) solves straightforwardly the
case for ‘role assertions’. On the other hand, for assertions of the form a:C, we have
to solve the case of the glb only, as from it the lub can derived (see Equation 3).
In [16] it has been shown that glb(µK, a:C) ∈ NµK. Therefore, by a binary search on
NµK, the value of glb(µK, α) can be determined in at most log |NµK| entailment tests
in µALC and, thus, entailment tests in ALC. Therefore, the BTVB problem can be
reduced to ALC as well.

5 CONCLUSION

We have presented a reasoning preserving transformation of µALC into classical ALC,
where general terminological axioms are allowed. This gives us immediately a new
method to reason in µALC by means of already existing DL systems.

Our primary line of future work consists in extending µALC to more expressive
DLs. Another line consists in applying our method to a generalization of µALC in a
lattice-theoretic way, i.e. in place of [0, 1] we allow the use of any arbitrary (complete)
lattice as truth-value set, like in [17].
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