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Uncertainty Quantification (UQ) is vital to safety-critical model-based analyses, but the wide-
spread adoption of sophisticated UQ methods is limited by technical complexity. In this paper, 
we introduce UM-Bridge (the UQ and Modeling Bridge), a high-level abstraction and software 
protocol that facilitates universal interoperability of UQ software with simulation codes. It 
breaks down the technical complexity of advanced UQ applications and enables separation of 
concerns between experts. UM-Bridge democratizes UQ by allowing effective interdisciplinary 
collaboration, accelerating the development of advanced UQ methods, and making it easy to 
perform UQ analyses from prototype to High Performance Computing (HPC) scale.
In addition, we present a library of ready-to-run UQ benchmark problems, all easily accessible 
through UM-Bridge. These benchmarks support UQ methodology research, enabling reproducible 
performance comparisons. We demonstrate UM-Bridge with several scientific applications, 
harnessing HPC resources even using UQ codes not designed with HPC support.
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Fig. 1. UM-Bridge connecting UQ and numerical models through a universal interface.

1. Introduction

The quantification of uncertainties is crucial for safety-critical applications where an understanding of the associated risks is in-
tegral to a broader analysis, such as in engineering design, clinical trials, weather and extreme event forecasting, environmental risk 
assessment, and infectious disease control, to name but a few. Such risk analyses are typically model-driven since they involve ex-
trapolating complex processes into the future. Accurate quantitative information on uncertainties in predictions underlying decisions 
can lead to deeper insight into the problem and, consequently, better decisions.

The last couple of decades have seen remarkable growth in the use of UQ, including uncertainty propagation and Bayesian inference 
[1]. This is partly due to efficient and robust techniques such as Latin hypercube, quasi-Monte Carlo, ADVI, HMC, and NUTS [2–4], 
and partly due to flexible, open-source implementations of those algorithms, e.g. SciPy stats [5], Stan [6], PyMC [7], and Pyro [8].

The success of these software packages can be attributed to the high level of abstraction with which they allow a user to define 
their statistical model. The subtle details of the underlying algorithms are not exposed to the user, who can simply specify their 
statistical model using high-level representations of the relevant components (prior, likelihood, observation model, etc.) and solve 
it using existing general-purpose algorithms. This arrangement is a form of separation of concerns: The algorithm developer does not 
require detailed knowledge of the domain expert’s application and vice versa.

Notwithstanding those successes, advanced statistical inference tools are not yet employed extensively in conjunction with com-
putationally demanding models. Such models appear, for example, in engineering design, in geophysics, or in medical imaging. We 
believe that this is in part due to a chicken-and-egg problem: UQ has not been demonstrated to be useful in those areas, but demon-
stration requires advanced knowledge of both application and UQ techniques that few research groups have. By developing the first 
generic interface between UQ and application, our contribution addresses both of these issues.

We rely on an existing and largely universal theoretical vocabulary for the interaction between models and UQ: The application 
model (or data-generating process) is represented as a forward operator 𝐹 (𝜃), which is a map from parameter space to data space. In 
forward UQ, the parameter 𝜃 is uncertain, and we want to infer the probability distribution of the outputs 𝐹 (𝜃); in inverse problems, 
we specify a likelihood model for the observed data based on 𝐹 (𝜃) and aim to infer the probability distribution of 𝜃. Many UQ 
algorithms exploit knowledge of derivatives of the forward map to increase computational efficiency; as a consequence, application 
models needs to be able to expose the computation of gradients (Jacobians) or Hessians of 𝐹 , provided they are available within a 
particular application. This short list of shared components – evaluating 𝐹 (𝜃) and, perhaps, derivatives – can be understood as a form 
of weak coupling between the statistical and the application model: Only a small part of the machinery inside the application model 
needs to be exposed to the statistical model, while the application model does not need to see the statistical model at all. This simple 
fact implies that it is – in theory – relatively straightforward to apply a wide variety of UQ methods to arbitrary application models.

Despite that, in practice, the software packages mentioned above are typically only used to solve problems with relatively simple 
data-generating processes, such as basic numerical integration or hierarchical Bayesian regression. This dichotomy can at least in part 
be attributed to the high technical complexity of combining advanced software packages for statistical inference with state-of-the-art 
implementations of sophisticated application models. The technical complexity arises since there is no equally universal counterpart 
to the mathematical interface in software, and becomes particularly challenging in HPC applications.

To address these issues, we introduce UM-Bridge (Fig. 1): The first universal link between any UQ package and any forward 
model, breaking down complex software stacks into manageable components. Conceptually, we introduce a high-level abstraction 
that enables separation of concerns between the statistical and physical modeling domains. On a practical level, language-specific 
integrations make UM-Bridge models appear as native entities (classes, function calls etc.) in the respective programming language or 
even as native model classes in specific UQ packages. Additionally, model agnostic load balancers provide easy access to parallellism.

Our unified interface allows linking arbitrary tools and makes it easy to swap out components on either side, reducing user lock-in. 
UM-Bridge further offers portable models through optional containerization, which offers a high degree of separation of concerns 
between UQ and model experts. In order to strengthen rigorous performance comparisons in UQ, we present what we believe to 
be the first library of UQ benchmark problems, developed by the authors of this paper and provided as part of an open-source 
software repository. UM-Bridge support makes the benchmarks available to virtually any UQ software and ensures portability and 
2

reproducibility via containerization. We describe these UQ benchmarks in detail in Appendix A.
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In addition, UM-Bridge offers a universal approach to scale-up UQ applications on parallel compute clusters that is fully model 
agnostic. In a black-box fashion, UM-Bridge allows for HPC-scale computations with UQ codes that had never been intended for 
that purpose. In Section 5, we describe in detail the workflow for three complex UQ applications, where UQ software is successfully 
coupled with HPC codes.

Thus, by separating concerns of UQ, model and HPC experts, UM-Bridge democratizes UQ. It paves the way to its widespread adop-
tion and to scientific innovation across a wide range of application fields, provides transparent scalability and facilitates reproducible 
benchmarking.

2. UM-Bridge – a new paradigm for UQ software integration

The aim of UM-Bridge is to establish a new paradigm for UQ software integration, enabling the analysis of previously intractable 
problems, development of better methods, and streamlining the workflow for every stakeholder. At its core, UM-Bridge links arbitrary 
UQ and model applications through a network protocol, which leads to an entire range of new opportunities for UQ. Stakeholders 
include applied scientists and engineers who employ UQ methodologies to interrogate challenging problems, developers of novel 
UQ methods who require objective and reproducible benchmarks to validate their methods, and application modelers who wish to 
integrate their model into a UQ workflow. Here, we outline the benefits of the UM-Bridge paradigm to the various stakeholders.

• Benefits for scientists and engineers. While UQ techniques are critical for making trustworthy predictions, particularly in 
safety-critical contexts, rigorous UQ is often held back by perceived complexity and cost of setting up a UQ workflow. UM-
Bridge contributes to the establishment of “UQ-as-a-Service” by providing an environment to quantify uncertainties through a 
streamlined interface for all stages of the UQ workflow. This allows researchers with varying levels of expertise to engage in the 
rigorous analysis of uncertainties.

• Benefits for UQ method developers. The development of efficient algorithms for UQ requires access to objective and challenging 
problems that can be used to adequately benchmark the algorithms in question. UM-Bridge enables UQ method developers to 
separate the development of UQ methods, such as the design of experiments, surrogate model construction, and uncertainty 
propagation, from the model or application being studied. Each UM-Bridge model and benchmark can be accessed from any UQ 
platform through the respective UM-Bridge integration, promoting flexibility in UQ workflows and enabling method developers 
to easily test their methods on new problems.

• Benefits for model code developers. The coupling of UQ software with an application model currently requires intricate 
knowledge of both software packages. The UM-Bridge model interaction interface (Section 3.1) allows for application modelers
to simply equip their model with UM-Bridge support and otherwise focus on the performance of the application model itself. They 
can thus create performant models that are both fully compatible with virtually any UQ software and easy to share, enabling 
effective collaboration with their UQ counterparts.

In the following, we outline some of the mechanisms by which UM-Bridge accelerates development and simplifies adoption of 
advanced UQ methods, contributing to the democratization of UQ.

2.1. Making tools accessible

UM-Bridge makes advanced UQ tools accessible to a wide range of applications by providing a unified and language-agnostic 
interface. This is especially important since each community has specific requirements and therefore tends to use specific languages 
and software packages. For example, efficient numerical solvers for partial differential equation (PDE) models are often limited by 
computational performance and consequently need fine-grained control over memory operations, sometimes use low-level hardware 
features, and often interact with many other software libraries providing specialized algorithms (see, for example, [19]); they are 
therefore often implemented in lower-level languages like C++ or Fortran. On the other hand, UQ methods themselves are often far 
less compute-intensive, are relatively self-contained, and so allow for fast development in high-level languages like Python or Matlab. 
The UM-Bridge interface allows these communities to continue using their preferred tools, while still being able to collaborate.

Native integrations for various languages and UQ packages (see Table 1) implement the UM-Bridge network protocol both for 
client side (e.g. UQ software) and server side (numerical models). Many UQ packages such as PyMC [7] or QMCPy [14] have a specific 
model interface, which the respective integrations implement. UM-Bridge thus acts as a cross-language and cross-platform translation 
layer.

More generally, any language supporting HTTP communication can implement UM-Bridge support. Models that are written in 
unsupported languages or that cannot be embedded in a higher-level code may still reap most benefits of UM-Bridge when called from 
a simple UM-Bridge wrapper. As an example that demonstrates how previously incompatible applications are now readily available 
to high-level UQ tools, in Section 5.1 we seamlessly apply a Matlab UQ code to a Fortran-based model of a ship hull [20], as shown 
in Fig. 2 (left).

2.2. Separating concerns

Building UQ applications requires expertise in both UQ and numerical modeling. In addition to a theoretical understanding, it 
also calls for experience with software packages in both domains. It is often time-consuming or outright infeasible to achieve such 
3

an overarching expertise within the constraints of a project.
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Fig. 2. Fortran code for modeling the pressure distribution and the wave elevation generated by a vessel. UM-Bridge support is achieved through a simple wrapper, 
enabling parallelized UQ from, e.g., Matlab (left figure). FE model of a carbon fiber composite aerospace component implemented in a complex PDE solver in C++. 
Through UM-Bridge and containerization, a UQ expert could solve uncertainty propagation without technical knowledge of the model code (center & right figures). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1

Currently available UM-Bridge integrations. Ticks indicate support for UM-Bridge clients 
(UQ algorithms) and UM-Bridge servers (models) in the respective language or UQ package.

Language Client Server

Python ✓ ✓

C++ ✓ ✓

Matlab ✓ ✗

R ✓ ✗

Julia ✓ ✓

UQ package Client Server

CUQIpy [9,10] ✓ ✓

emcee [11] ✓ ✗

MUQ [12] ✓ ✓

PyApprox [13] ✓ ✗

PyMC [7] ✓ ✗

QMCPy [14] ✓ ✗

SGMK [15] ✓ ✗

tinyDA [16] ✓ ✗

TT-Toolbox [17] ✓ ✗

UQPy [18] ✓ ✗

Since UM-Bridge makes the mathematical model available through a universal software interface, it now becomes possible to 
properly separate concerns between the model and UQ experts. The model expert can focus on implementing the map 𝐹 and (if 
available) its derivatives, while the UQ expert can focus on UQ aspects. This is especially important when applying state-of-the-art 
UQ methods to complex models.

In addition, since the UM-Bridge interface is network-based, it becomes straightforward to containerize models in UQ workflows. 
This allows sharing models among collaborators and running them on any machine or cluster without per-machine installation effort. 
The model expert may now pass their implementation of the model as a ready-to-use container to the UQ expert, which further 
contributes to separation of concerns.

A further benefit of containerization is reproducibility of the model outputs. Besides being integral to the scientific method, it 
is helpful for developing UQ applications across teams. Model container images can be published alongside the scientific results, 
enabling the exact reproducibility of scientific work. We exploit this feature in the benchmark library below.

Illustrating separation of concerns, in application Section 5.2 a simulation expert developed an advanced modeling application 
in C++, containerized it, and shared it with a UQ expert, see Fig. 2 (right). The UQ expert was able to quantify the parametric 
uncertainty using a high-level UQ package written in Python, without further integration work or any deeper technical knowledge 
of the model implementation.

2.3. Providing transparent scalability

A major roadblock to UQ on large-scale models is the need for HPC capability. To achieve that, both the underlying model and 
the UQ method need support for parallelization in theory and implementation. Additionally, the parallelization techniques involved 
have to be compatible and tightly linked.

In practice, many UQ packages do support parallelization in some capacity but are often limited to a single machine or a specific 
way of setting up a parallel simulation. On the other hand, many PDE solvers are able to use HPC resources, typically through Message 
Passing Interface (MPI). However, they often come with specific assumptions about the nature of the machine they are running on. As 
part of UM-Bridge, we introduce an architecture that separates parallelization of UQ and model: A cluster-side load balancer accepts 
parallel model evaluation requests from the UQ code, without making any assumptions on what parallelization technique the UQ 
code is employing. It then distributes those requests among independent instances of the model, each of which may now also employ 
any parallelization strategy.

With such an architecture, even thread-parallel UQ codes can offload costly numerical simulation runs to a (potentially remote) 
cluster. Many existing UQ codes do not require any modification to scale up via UM-Bridge, and neither do typical models. Both 
4

cloud-clusters and HPC systems are supported.
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We illustrate these concepts with the application in Section 5.3. It shows how an existing UQ code can transparently offload costly 
model evaluations to a remote cluster of 2800 processor cores, running 100 instances of a sophisticated, parallel tsunami model.

2.4. Facilitating reproducible benchmarking

The current lack of available and reproducible UQ benchmarks is severely limiting quantitative comparisons of competing UQ 
methods. The few existing initiatives are typically limited to a single programming language (e.g., [13]). Support for more languages 
then requires reimplementation (e.g., [21]), but this is clearly not viable for complex models.

A universal interface like UM-Bridge can address this problem. Thus, we have collected a large number of benchmark problems 
(described in more detail in Section 4 below), with the goal of being:

• Representative: The benchmarks are a curated collection, aiming to cover all properties of models relevant to UQ. That includes 
different choices of parameter dimension, smoothness of model output, model run time etc. Testing methods across several 
benchmarks in our collection can be used to demonstrate their behavior on problems ranging from simple artificial tests all the 
way to realistic large-scale simulations.

• Easy to use: All benchmark problems are implemented with UM-Bridge support and have easily accessible documentation. They 
can readily be used to benchmark any UQ package or prototype code.

• Reproducible: Containerization ensures that benchmark problems are fully defined in portable software, avoiding potential 
ambiguities in definition or implementation details.

The library aims to establish a neutral foundation enabling subsequent studies. We intentionally do not include benchmark results 
of competing methods, since specific metrics may depend strongly on the goals of such a comparison, and results will change as future 
methods are developed.

Appendix A gives detailed documentation of all currently available models and benchmark problems. We intend for this library 
to be a growing collection and encourage future contributions to it. This collection can also serve related areas, like optimization, 
and an example in this direction can be found in Appendix A.4.

3. UM-Bridge architecture and usage

UQ problems typically revolve around a deterministic model, which is operationalized as a forward operator 𝐹 ∶ ℝ𝑛 → ℝ𝑚. The 
forward operator takes a parameter vector 𝜃 of dimensions 𝑛 (containing uncertain forcing terms and/or coefficients in the model) 
to some model output, a vector of dimension 𝑚.

Uncertainty propagation problems are then defined by considering 𝜃 as a random vector following some distribution 𝜋(𝜃). The goal 
is to find properties of the distribution of 𝐹 (𝜃), such as moments, quantiles, the probability density function (PDF) or the cumulative 
distribution function.

On the other hand, Bayesian inference defines the probability of a parameter 𝜃 given observed data 𝑦 in terms of a prior distribution 
𝜋prior and a likelihood function 𝐿:

𝜋posterior(𝜃|𝑦) ∝ 𝜋prior(𝜃)𝐿(𝑦|𝜃).
The first factor on the right represents prior information about the parameter distribution we seek, while the likelihood 𝐿(𝑦|𝜃)
provides a measure of distance between model prediction 𝐹 (𝜃) and data 𝑦. The goal is then to characterize 𝜋posterior, for example 
through sampling or by estimating its moments.

These concepts constitute the typical theoretical context of UQ methods to which UM-Bridge lends itself. In the following, we 
explore how UM-Bridge implements these concepts.

3.1. UM-Bridge architecture

Many forward UQ methods (e.g. many Monte Carlo (MC) samplers, or stochastic collocation [22]) only require model evaluations 
{𝐹 (𝜃𝑖)} at a finite number of points 𝜃1, … , 𝜃𝑁 . Other methods may additionally need derivatives of 𝐹 at 𝜃𝑖. Similarly, inversion 
problems are often solved by pointwise evaluations of 𝜋𝑝𝑜𝑠𝑡, for which different methods can be employed (Metropolis-Hastings 
MCMC [23], Hamiltonian MCMC [3], NUTS [4], etc.). Again, these approaches require only forward model evaluations 𝐹 (𝜃𝑖) and, in 
some cases, derivatives at a finite number of points 𝜃1, … , 𝜃𝑁 .

In general, across most UQ algorithms, the model is typically assumed to provide (some of) the following pointwise mathematical 
operations:

• Model evaluation 𝐹 (𝜃),
• Gradient 𝑣⊤𝐽𝐹 (𝜃),
• Jacobian action 𝐽𝐹 (𝜃)𝑣,
5

• Hessian action.
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Fig. 3. Monolithic coupling of UQ and model software in a single application (left); UM-Bridge providing a universal interface between UQ and model applications 
(right). UM-Bridge integrations (“UM”) handle network communication behind the scenes. Optionally, models may be containerized.

Any UQ method whose requirements are limited to this list could therefore – in principle – be applied to any model supporting 
the appropriate operations.

The key idea behind UM-Bridge is to implement the above mathematical interface in an equally universal software interface: We 
treat UQ algorithm and numerical model as stand-alone applications, linked only through an Hypertext Transfer Protocol (HTTP) 
based network protocol (see Fig. 3, [24]). In contrast to a monolithic approach, this microservice-inspired architecture enables linking 
across arbitrary languages and software packages, as well as separating concerns. It should be noted that multilevel, multi-index or 
multi-fidelity methods (e.g. [25–34]) such as the one in Section 5.3 operate on an entire hierarchy of models. Less accurate but 
cheaper-to-compute models are used to accelerate the UQ method, leading to considerable gains in efficiency both in forward and 
inverse UQ problems. While this necessitates multiple models, each individual model still fits in the framework described above.

3.2. The UM-Bridge protocol

At its core, the UM-Bridge protocol is built on HTTP and JSON for compatibility with many programming languages and easy im-
plementation. All operations a model may provide are considered optional. For example, models may be implemented with gradients 
or not, and UQ clients can query and adapt to that. Importantly, this means that the protocol can be extended in the future without 
breaking compatibility.

UM-Bridge treats model inputs and outputs as lists of vectors, which is inspired the proven internal model interface in MUQ [12]. 
This enables automatic differentiation with respect to certain components of the input, even when chaining multiple models.

In all the aforementioned integrations of UM-Bridge (see Table 1), the protocol is implemented behind the scenes, making UM-
Bridge models available either as simple function calls or fully integrated in the respective software package’s model structure.

3.3. Basic examples

Let us illustrate how UM-Bridge works in practice with some simple examples. While intentionally basic, the same approach 
underlies the applications in Section 5.

3.3.1. Clients - Interacting with models

First, we need a running model server, providing a forward operator 𝐹 . This could be a simulation code with UM-Bridge support 
running directly on your system, a custom one as in Section 3.3.2, or a containerized model. For example, we could download and 
run the containerized tsunami model from the benchmark library (see Appendix A.1.3) via docker:

docker run -it -p 4242:4242 \

linusseelinger/model-exahype-tsunami

Once running, any UM-Bridge client can request evaluations of 𝐹 from that model server. This could be any supported UQ package 
or a custom code in any supported language (see Table 1). For example, we can call the model from Python via the umbridge Python 
module:

url = "http://localhost:4242"

model = umbridge.HTTPModel(url, "forward")

print(model([[0.0, 10.0]]))

All that is needed is the URL of the model server (here http://localhost:4242), the name of the requested model 𝐹 (here 
forward) and a parameter 𝜃 to evaluate 𝐹 at. The actual evaluation is then a call to the model with a given parameter 𝜃 = (0, 10), 
which returns 𝐹 (𝜃). Optionally, arbitrary model-specific configuration options can be passed, for example to set the discretization 
level of a multifidelity model:

print(model([[0.0, 10.0]], {"level": 0}))

Similar calls allow access to gradient, Jacobian action and Hessian action, as long as the model implements these operations.
Clients written in other languages follow a similar pattern. For example, code equivalent to the above would look like this in C++:

std::string url = "http://localhost:4242";

umbridge::HTTPModel model(url, "forward");

std::vector<std::vector<double>> outputs

= model.Evaluate({{0.0, 10.0}});
6
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3.3.2. Servers - Defining models

Defining a model conversely requires implementing the model map 𝐹 , which could be anything from simple arithmetic all the 
way to advanced numerical simulations. In addition, model name as well as input and output dimensions are specified. The following 
minimal example in Python implements the multiplication of a single input value by two:

class TestModel(umbridge.Model):

def __init__(self):

super().__init__("forward")

def get_input_sizes(self, config):

return [1] # Input dimensions

def get_output_sizes(self, config):

return [1] # Output dimensions

def __call__(self, parameters, config):

output = parameters[0][0] * 2

return [[output]]

def supports_evaluate(self):

return True

umbridge.serve_models([TestModel()], 4242)

The code sets supports_evaluate to indicate to UM-Bridge that model evaluations are supported. Likewise, gradients, Jacobian-
or Hessian-action could be implemented and marked as supported.

The final line instructs UM-Bridge to make the model available to clients, acting as a server. UM-Bridge servers written in other 
languages follow the same principle.

3.3.3. Containers - Making models portable

UM-Bridge models ranging from simple test problems all the way to advanced simulation codes can be containerized for portability, 
and possibly be published in public repositories. Such a container can then be launched on any local machine or remote cluster without 
installation effort, and users can readily interact with it as in Section 3.3.1.

Defining such a container comes down to instructions for installing dependencies, compiling if needed, and finally running the 
desired UM-Bridge server code. For example, a docker container wrapping the example server above can be defined in the following 
simple Dockerfile:

FROM ubuntu:latest

COPY minimal-server.py /

RUN apt update && \

DEBIAN_FRONTEND="noninteractive" apt install -y python3-pip && \

pip install umbridge

CMD python3 minimal-server.py

Once built, docker run can launch an instance of the container as above in Section 3.3.1.
Some legacy tools are built for one-shot simulation runs controlled by an input file, and may be too rigid to be called from a 

UM-Bridge server code like the one in Section 3.3.2. In such cases, a UM-Bridge server can act as a small wrapper application that, 
on every evaluation request, creates an input file, launches the model software, and then evaluates the code’s output files. Such file 
based interfaces can be error-prone when set up individually, but are reproducible and portable when containerized.

3.4. Scaling up on clusters

We enable scaling up UQ applications by providing universal configurations for cloud clusters and tooling for HPC systems. Fig. 4
illustrates how their key component, a cluster-side load balancer, takes concurrent evaluation requests from a UQ client and distributes 
them across many independent model instances.

As the client-side interface is entirely identical, a UQ software is completely oblivious to the model being executed on a cluster 
instead of the local machine. However, the UQ software may now send multiple concurrent evaluation requests to the cluster. Since 
the model evaluation is typically costly compared to the UQ algorithm itself, a UQ package spawning hundreds of threads on a laptop 
offloading work to a large cluster is perfectly viable. Likewise, since every model instance only receives sequential model evaluations 
via UM-Bridge, no modification to the model is needed compared to running on a single machine. In addition, containerized models 
7

can be run on cloud or HPC systems without additional setup cost as long as the HPC systems support containers.
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Fig. 4. UM-Bridge provides a general-purpose Kubernetes setup for scaling up UQ applications. It runs many parallel instances of containerized models and distributes 
concurrent requests from a UQ client among them. Any UM-Bridge supporting UQ or model code readily works with this setup.

Since the UQ software is not involved in distributing evaluations across the cluster, parallelism within many existing UQ packages 
works out of the box with this setup. For example, the Sparse Grids Matlab Kit (SGMK), MUQ, QMCPy, and PyMC have all been tested 
successfully across a number of different models. Some of these applications are discussed in Section 5.

Note that, due to the flexibility of the interface, more complex architectures are easy to construct. For example, as in Section 5.3, a 
multilevel UQ code may at the same time be pointed to a fast surrogate model running on the same workstation and a remote cluster 
for full-scale model runs, accommodating for heterogeneous resource demand across levels

3.4.1. UM-Bridge on kubernetes clusters

One implementation of this architecture is based on kubernetes for cloud systems. The reasoning behind using kubernetes is that 
(i) existing model containers can be run without modification, (ii) the entire setup can be specified in configuration files and is easily 
reproducible, and (iii) it can be run on systems ranging from single servers to large-scale clusters and is available on many public 
cloud systems.

Even though they do not offer the same level of support for containers, UM-Bridge also supports HPC systems managed by SLURM 
or PBS (Section 3.4.2), which may be interesting for low network latency. Further, UM-Bridge cloud support could be implemented 
for Docker swarm or Nomad. We prioritized Kubernetes over these due to good parallel scaling and deep integration with public 
cloud providers.

We employ HAProxy as a Kubernetes load balancer. HAProxy was originally intended for web services processing large numbers of 
requests per backend container. However, we set it up such that only a single evaluation request is ever sent to a model server at once, 
since we assume running multiple numerical model evaluations concurrently on a single model instance would lead to performance 
degradation.

Kubernetes can be fully controlled through configuration files. The UM-Bridge kubernetes setup can therefore be applied on any 
kubernetes cluster by cloning the UM-Bridge Git repository and executing

kubectl apply -f FILENAME

on the provided configuration files. This procedure is described in more detail in the UM-Bridge documentation, and takes only a few 
minutes.

The only changes needed for a custom application are docker image name, number of instances (replicas) and resource require-
ments in the provided model.yaml configuration. Below is an example of an adapted model configuration, namely the one used in 
the sparse grids application in Section 5.1:

apiVersion: apps/v1

kind: Deployment

metadata:

name: model-deployment

spec:

replicas: 48

template:

metadata:

labels:

app: model

spec:

containers:

- name: model

image: linusseelinger/model-l2-sea:latest

env:

- name: OMP_NUM_THREADS

value: "1"

resources:

requests:

cpu: 1

memory: 1Gi

limits:

cpu: 1

memory: 1Gi
8
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Fig. 5. Synthetic weak scaling test of the kubernetes setup on Google Kubernetes Engine (GKE) for various numbers of parallel model instances, requesting a constant 
number of evaluations per model instance.

In addition, we provide a kubernetes setup that allows for MPI parallelism across containers and therefore across compute nodes. 
It requires the model container to inherit from the mpi-operator base image, but behaves the same in any other regard.

Section 5.3 demonstrates the UM-Bridge kubernetes setup on 2,800 processor cores running 100 parallel model instances. We 
further performed synthetic weak scaling tests running up to 𝑁 = 512 instances of the L2-Sea model (see Appendix A.1.2), configured 
to use 1 processor core each and taking around 2.5 s per evaluation. We then requested 20 ⋅𝑁 model evaluations from the cluster. 
As Fig. 5 shows, we did not observe a significant bottleneck, indicating that this setup could be scaled further. In addition, the model 
itself could be parallelized. With a model parallelized across 100 cores, we expect similar results to the 512 instance test while fully 
utilizing a 51,200 core cluster.

3.4.2. UM-Bridge on HPC systems

UM-Bridge also includes support for SLURM or PBS based HPC systems. In this case, a custom component takes UM-Bridge 
evaluation requests from the client and translates those into jobs managed by HyperQueue [35]. HyperQueue then acts as the load 
balancer, spawning model instances as HPC scheduler jobs and passing evaluation requests to them as needed.

Models may be local installations of the simulation software or containerized versions. While typical HPC systems lack Docker 
support, apptainer [36] is increasingly available, where the same abstraction of parallelization effort as in the kubernetes case is 
achieved, both regarding model and UQ.

4. UQ benchmark library

An important part of the work we present herein is a sizable library of UQ benchmark problems. This collection is a collaboration 
with more than 15 contributors (coauthors of this paper) from more than 10 international institutions. Each benchmark is implemented 
as a UM-Bridge-supporting software and provided as a ready-to-run container. We offer three types: “Models” implement a numerical 
(forward) model of a physical phenomenon. Many expose a number of configuration options for a high level of control of the details 
of the model to be solved. “Inference problems” in turn define a specific inverse UQ problem, usually in terms of a Bayesian posterior. 
“Propagation benchmarks” define a very specific forward UQ problem to be solved for the model they implement, and are much more 
restricted in order to ensure comparable and reproducible results.

Each model or benchmark is accompanied by a markdown file that documents how to run the published containers, input and 
output dimensions, configuration options, and a mathematical description of the map (or a reference to an existing publication). A 
documentation website presents the entire library in an accessible way, drawing from these markdown files behind the scenes. The 
Docker containers [37] for our benchmarks are built automatically in a CI system, ensuring validity through automated testing.

Appendix A.1 contains detailed descriptions of all models, Appendix A.2 describes inference benchmarks and Appendix A.3 de-
scribes propagation problems. Tables 2, 3, and 4 provide brief summaries.

4.1. Models

The models in our library range from simple analytic functions to complex numerical simulations (see Table 2). In contrast to the 
propagation benchmarks, models intentionally offer configuration options, allowing users to explore model variations and to adapt 
them to their needs. For example, the tsunami model can be set to operate on three different refinement levels. When developing 
algorithms, operating on fast approximate model levels may be more suitable for quick test runs.

Mathematically, following Section 3.1, we consider a model to be a function 𝐹 ∶ℝ𝑛 →ℝ𝑚 taking a parameter vector 𝜃 to a model 
output 𝐹 (𝜃). Some models additionally offer derivatives, for example in terms of Hessian actions.

4.2. Bayesian inference benchmarks

Inference benchmarks define a (potentially not normalized) probability density function 𝜋 ∶ℝ𝑛 → ℝ whose properties are to be 
estimated. They are therefore restricted to a one-dimensional output. For numerical stability, our definition of the interface requires 
9

implementations to provide the logarithm of 𝜋. See Table 3 for a list of inference problems that are currently part of the library.
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Table 2

List of models.

Models
Name Short description

Euler-Bernoulli beam Deformation of an Euler-Bernoulli beam with a spatially variable stiffness 
parameter.

L2-Sea Total resistance estimation of the DTMB 5415 destroyer-type vessel at model scale 
by potential flow.

Tsunami Propagation of the 2011 Tohoku tsunami modeled by solving the shallow water 
equations.

Composite material Elastic deformation of L-shaped composite with random wrinkles.
Tritium desorption Microscopic transport of tritium through fusion reactor materials using 

Foster-McNabb equations.
Agent-based disease 
transmission

Transmission of disease in a heterogeneous population using EMOD, a stochastic 
agent based disease transmission model.

Membrane model Deformation of a membrane for a fixed right-hand side given the stiffness values 
on an 8 × 8 grid that makes up the membrane.

Cookies problem Simplified thermal problem with uncertain conductivity coefficient in 8 circular 
regions (“cookies”), while it is known (and constant) elsewhere (“oven”).

Table 3

List of inference benchmarks.

Inference benchmarks
Name Short description

Analytic densities Infers the PDF of various analytic functions.
Membrane model Infer the PDF of stiffness values of a membrane from measured deformation data.
Tritium diffusion 
posterior

Compute the posterior density of the input parameters given by experimental data.

Disease transmission 
model

Agent-based model of disease transmission in an entirely susceptible population 
with correlation between disease acquisition and transmission. The aim is to infer 
the disease parameters that result in 40% of the population infected at the end of 
the outbreak.

Deconvolution problem Infer the posterior distribution for a 1D deconvolution problem with Gaussian 
likelihood and four different prior distributions, configurable via a parameter.

Computed tomography Compute a posterior distribution for a 2D X-ray CT image reconstruction problem, 
with a Gaussian noise distribution.

Inverse heat equation Evaluate the posterior distribution for a 1D inverse heat equation with Gaussian 
likelihood and Karhunen-Loève parameterization of the uncertain coefficient.

Beam inference Bayesian inverse problem for characterizing the stiffness in an Euler-Bernoulli 
beam given observations of the beam displacement with a prescribed load.

Tsunami Source Infer parameters describing the initial displacements leading to the tsunami from 
the data of two available buoys located near the Japanese coast.

Poisson Estimate a spatially varying diffusion coefficient in an elliptic PDE given limited 
noisy observations of the PDE solution.

p-Poisson Estimate a two dimensional flux boundary condition for a nonlinear 𝑝-Poisson PDE 
in a three dimensional domain.

Some of the benchmarks define a Bayesian inference problem based on a model and fixed data 𝑦,

𝜋posterior(𝜃) ∝ 𝜋prior(𝜃)𝐿(𝑦|𝜃),
where the likelihood 𝐿(𝑦|𝜃) relates observed data to model output, and is itself based on the forward model 𝐹 ∶ℝ𝑛 →ℝ𝑚 defined by 
the benchmark. 𝜋prior denotes the prior probability distribution. Some UQ tools specialized in Bayesian inference may require access 
to the individual factors of Bayes’ formula above, and possibly the model output itself. For this reason, our interface also defines 
functions to query those components individually.

4.3. Uncertainty propagation benchmarks

We construct benchmark problems like the models above but intentionally restrict them to the minimum necessary options in 
order to ensure reproducibility. Some benchmarks in the implementation are in fact more restrictive versions of the model codes 
above.

The goal of uncertainty propagation is to determine the effect of uncertainties in model parameters on model outputs. The pa-
rameter 𝜃 is specified to be a random variable with a distribution documented in the markdown file. The solution of a propagation 
benchmark is then an approximation to the distribution of 𝐹 (𝜃), or an estimate of some derived quantity like 𝔼[𝐺(𝐹 (𝜃))] where 𝐺 is 
10

an “output functional”. Table 4 shows the currently available propagation benchmarks.



Journal of Computational Physics 521 (2025) 113542L. Seelinger, A. Reinarz, M.B. Lykkegaard et al.

Table 4

List of propagation benchmarks.

Propagation benchmarks
Name Short description

Euler-Bernoulli beam Modeling the effect of uncertain material parameters on the displacement 
of an Euler-Bernoulli beam with a prescribed load.

Genz Multi-dimensional functions for testing quadrature and surrogate methods.
L2-Sea UQ Forward UQ of the total resistance in calm water conditional to operational 

and geometrical uncertain parameters.
Cookies problem Forward UQ of average temperature in a corner of the “oven”.

Table 5

List of optimization benchmarks.

Optimization benchmarks
Name Short description

L2-Sea OPT Constraint deterministic global optimization problem for the total resistance reduction in calm water at fixed speed.

4.4. Optimization benchmarks

UM-Bridge’s interface is fundamentally agnostic to what algorithms do with what the interface provides. This makes it possible to 
also use UM-Bridge for other fields like black-box optimization. We have included an initial example of an optimization benchmark 
in Table 5 and Appendix A.4.

5. Applications

The following sections present some applications of uncertainty quantification to real-world problems that utilize UM-Bridge and 
demonstrate at the same time aspects of the work presented in the main part of the paper. Specifically, Section 5.1 demonstrates 
programming language independence by connecting an existing Matlab UQ code to a number of model instances written in Fortran. 
Section 5.2 demonstrates parallel runs of a highly complex numerical solver in a UQ application, greatly benefiting from portable 
models and separation of concerns between model and UQ experts. Finally, Section 5.3 demonstrates a complex UQ application 
combining fast model approximations running on a workstation and transparently offloaded model runs on a cloud cluster of 2,800 
processor cores. Models and UQ problems used in Section 5.1 and Section 5.3 are available as part of the benchmark library.

5.1. Accelerating a naval engineering application

5.1.1. Problem description

In this section we focus on a forward UQ application in the context of naval engineering, which we publish as part of the benchmark 
library (see Appendix A.1.2 for more details). The goal is to compute the PDF of the resistance 𝑅 to advancement of a boat, i.e., 
the naval equivalent of the drag force for airplanes. The boat is advancing in calm water, under uncertain Froude number Fr (a 
dimensionless number proportional to the navigation speed) and draft T (immersed portion of the hull, directly proportional to the 
payload). That is, the set of uncertain inputs is 𝜃 = (Fr, T), which are modeled as follows: Froude is a unimodal triangular random 
variable with support over [Fra, Frb] = [0.25, 0.41], i.e.,

𝜋Fr(𝑡) =
2

(Frb − Fra)2
(
Frb − 𝑡

)
, (1)

while draft is a beta random variable with support over [Ta, Tb] = [−6.776, −5.544] and shape parameters 𝛼 = 10, 𝛽 = 10, i.e.,

𝜋T (𝑡) =
Γ(𝛼 + 𝛽 + 2)

Γ(𝛼 + 1)Γ(𝛽 + 1)
×… (2)

(Tb −Ta)𝛼+𝛽+1(𝑡− Ta)𝛼(Tb −𝑡)𝛽 .

The computation of 𝑅 for fixed Fr, T , – i.e., the evaluation of the response function 𝑅 =𝑅(𝜃) – is performed by the L2-Sea model 
[20] which is written in Fortran and is available as a container from the UM-Bridge benchmark library, having being wrapped in an 
UM-Bridge Python server.

In order to showcase the ease of parallelizing an existing application by using UM-Bridge, we will show the required command 
and code snippets in this section. This model can be run locally via the following docker command:

docker run -it -p 4242:4242 linusseelinger/model-l2-sea

5.1.2. UQ workflow
11

To compute the probability density function of 𝑅 we proceed in two steps:
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Fig. 6. Results for the UQ workflow on the L2-Sea model for three sparse-grid levels 𝑤 (one row for each 𝑤). 𝑤 controls the number of evaluation points in a sparse 
grid. Left column: Sparse grids covering the space of possible values of 𝜃 = [Fr, T]. Center column: Sparse-grid surrogate models and their evaluations at the random 
sample points used for computing the PDF of 𝑅. Right column: Resulting PDF of 𝑅 for all 𝑤 up to the current one.

1. We create a surrogate model for the response function 𝑅 =𝑅(𝜃), i.e., an approximation of the actual function based on a limited 
number of (judiciously chosen) evaluations of 𝑅 =𝑅(𝜃).

2. We generate a large sample of values 𝜃𝑖 = (Fr𝑖, T 𝑖) according to their PDF. We then evaluate the surrogate model for each 
element of the sample (which is considerably cheaper than evaluating the full model 𝑅(𝜃), but yields only approximate results), 
and then use the corresponding values 𝑅𝑖 to compute an approximation of the PDF of 𝑅 by a standard kernel density method 
[38] (specifically, in this application we use Gaussian kernels and automatic selection of bandwidth, [39]).

To build the surrogate model, we use the sparse-grids method, and in particular the implementation provided by SGMK. This 
method requires sampling the space of feasible values of 𝜃 = (Fr, T) with a structured non-Cartesian strategy, depending on the PDF 
of the two uncertain parameters, see the left column of Fig. 6. The surrogate model is constructed as a sum of certain interpolating 
polynomials, each based on a subset of samples. The surrogate models are reported in the center column Fig. 6. The overshoots in 
the corners of the domain happen in regions of the parameter space of zero probability; neither full model evaluations nor samples 
to approximate the PDF of 𝑅 are placed there.

SGMK provides ready-to-use functions to generate sparse grids according to several types of random variables (uniform, normal, 
exponential, beta, gamma, triangular); once the grid is created, it is a simple matter of looping through its points and calling the 
L2-Sea solver for each one using the point coordinates as values for the inputs 𝜃. In SGMK this is as easy as the following snippet:

uri = ‘http://104.199.68.148’;
12

model = HTTPModel(uri,‘benchmark_UQ’);
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fid = 3;

config = struct(’fidelity’,fid);

R = @(theta) model.evaluate(theta(:)’,config);

Fr_a=0.25; Fr_b=0.41;

knots_Fr = @(n) knots_triangular_leja(n,Fr_a,Fr_b);

lev2knots_Fr = @lev2knots_lin;

T_a=-6.776; T_b=-5.544; alpha=10; beta=10;

knots_T = @(n) knots_beta_leja(n,alpha,beta,T_a,T_b,’sym_line’,’on_file’);

lev2knots_T = @lev2knots_2step;

N=2; w=5;

S = create_sparse_grid(N,w,{knots_Fr,knots_T},{lev2knots_Fr,lev2knots_T});

Sr = reduce_sparse_grid(S);

R_values = evaluate_on_sparse_grid(f,Sr,...);

Once we have obtained a characterization of the surrogate model in the form of R_values, we generate a random sample of 
values of 𝜃𝑖 = (Fr𝑖, T 𝑖) according to their PDF by rejection sampling [40], and evaluate the surrogate model on such values with a 
straightforward call to a SGMK function:

surr_evals=interpolate_on_sparse_grid(S,Sr,R_values,random_sample);

These evaluations are shown as black dots in the center column of Fig. 6. These surrogate model evaluations are used as input to the
ksdensity estimator provided by Matlab to compute an approximation of the PDF of 𝑅.

Results are reported in the right column of Fig. 6, and as expected, the estimated PDF stabilizes as we add more points to the 
sparse grid and the surrogate model becomes more reliable. The three rows are obtained repeating the snippets above three times, 
increasing the so-called sparse grid level w, which is an integer value that controls how many points are to be used in the sparse grid 
procedure, specifically 𝑤 = 5, 10, 15, corresponding to 36, 121, 256 points. Note that the three sparse grids produced are nested, i.e., 
they are a sub-set of one another, so that in total only 256 calls to L2-Sea are needed. SGMK is able to take advantage of this and only 
evaluate at the new sparse-grid points in each grid level.

5.1.3. Computational aspects

In order to allow parallel model evaluations, 48 instances of the model were run on c2d-high-cpu nodes of GKE using the 
kubernetes configuration in Section 3.4. For the test case presented here, one evaluation of the L2-Sea model takes about 30-35 s on 
a single physical CPU core. We disable Simultaneous Multithreading (SMT) on GKE to ensure stability in L2-Sea run times.

On the UQ side, SGMK was run on a regular laptop, connecting to the cluster. Due to UM-Bridge, the SGMK Matlab code can 
directly be coupled to the Fortran model code. Further, no modification to SGMK is necessary in order to issue parallel evaluation 
requests: The call R_values = evaluate_on_sparse_grid(f,Sr,...) in SGMK is internally already using Matlab’s parfor in order 
to loop over parameters to be evaluated. By opening a parallel session in Matlab with 48 workers (via the parpool command), the 
very same code executes the requests in parallel, and the cluster transparently distributes requests across model instances.

Using this approach, we obtained a total run time of around 290 seconds instead of the sequentially expected 30 × 256 = 7680
seconds, corresponding to a speedup of more than 26. Three factors affect the speedup: The evaluations are split in three batches, 
none of the batches having cardinality equal to a multiple of the 48 parallel model instances; the CPU-time for evaluating the L2-Sea 
model at different values of 𝜃𝑖 is not identical; and finally a minor overhead in the UQ method itself.

Apart from the limited number of evaluations needed for the specific application, the main limit in scalability we observe here 
is Matlab’s memory consumption: approximately 500 MB allocated per worker, regardless of the actual workload. This could be 
improved by sending batches of requests per worker, but not without modifying the SGMK code.

5.2. Investigating material defects in composite aero-structures

5.2.1. Problem description

In this section we examine the effect of random material defects on structural aerospace components made out of composite 
laminated material. These may span several meters in length, but are still governed by a mechanical response to processes on smaller, 
sub-millimeter length scales. Such a multi-scale material displays an intricate link between meso-scale (ply scale) and macro-scale 
behavior (global geometric features) that cannot be captured with a model describing only the macro-scale response. This link between 
material scales is even stronger as abnormalities or defects, such as wrinkles (out-of-plane fiber waviness) Fig. 7 (c), may occur during 
the fabrication process. To simulate such objects, we use a multi-scale spectral generalized finite element method (MS-GFEM) [41]. 
The approach constructs a coarse approximation space (i.e., a reduced order model) of the full-scale underlying composite problem 
13

by solving local generalized eigenproblems in an A-harmonic subspace.
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Fig. 7. Offline-Online framework and results: Geometric description at macro-scale and displacement field of the pristine (offline) model (a). The domain decomposition 
and the targeted subdomains for a set of defect parameters (b) show the fraction of the domain that needs to be recomputed online. The update of the solution for 
a wrinkle defect (c) shows the local variation of the transverse tensile failure criterion at the defect location. The pairwise relationships of the defect location along 
the curvilinear axis X (model input) (depicted on (a)) and two damage criteria (model output): the transverse compressive and tensile failure criteria are plotted as a 
scatter plots (off-diagonal) and histograms (diagonal) in (d).

By operating on subdomains, this MS-GFEM approach allows for reusing the solutions of local problems in places not affected 
by localized changes (such as a localized defect in an aerospace part). To exploit this structure, we use an offline-online framework 
in which the MS-GFEM is applied to a pristine model offline (see Fig. 7(a)), and only the eigenproblems in subdomains intersecting 
local defects are recomputed online to update the approximation space (see Fig. 7(b)). Online recomputations can be performed by 
a single processor.

For this application, we simulate the behavior of an aerospace component (namely a C-shaped laminated composite spar, see Fig. 7) 
under compression. To model the wrinkling defect, a geometric transformation is applied to the grid as depicted on Fig. 7(c). To assess 
the severity of the defect, we use two damage criteria, representing the ability of the ply to fail in the direction transverse to the fiber
orientation in tension and compression (see Fig. 7(d)). The full-scale model consists of 1.4 million degrees of freedom. The MS-GFEM 
approximation reduces it to 12, 819, which corresponds to a model order reduction factor of around 106. The method is implemented 
in C++ and part of dune-composites, a Distributed and Unified Numerics Environment (DUNE) [42] module.

5.2.2. UQ workflow

We define a forward UQ problem by assuming a random defect parameter with a uniform distribution 𝜃 ∼  ([−20, 171] ×
[150, 270] × [0, 90] × [3.5, 4.5]). The first two components are the position of the defect along the curvilinear axes of the width and 
length of the part, the third is the orientation of the wrinkle, and the fourth is the size of the wrinkle. Position and size values are 
given in mm and the angle in degrees.

To solve the UQ problem, we employ the Quasi-Monte Carlo method implemented in QMCPy [14], drawing 1024 samples from 
QMCPy’s DigitalNetB2 generator. We observed that the main influence on the defect is the position along X (maxima located at 
the corners of the C section) for both criterion, as shown in Fig. 7(d). We consider the material to be capable of initiating failure 
14

mechanisms under load when any criterion reaches 1 (the threshold is represented as a dashed red line in the figure). We observed a 
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different distribution for both criterion with a probability of failure of 20.41% for the tensile criterion and 32.42% for the compressive 
criterion. This is due to the complex interaction between the global geometric feature and the local material behavior (the laminated 
stacking sequence is shown on the right-hand side of Fig. 2). This interaction is not trivial and cannot be anticipated by looking only 
at the pristine output fields. This methodology is ideal and necessary to conduct an efficient parametric study of defects in large 
composite parts.

5.2.3. Computational aspects

We conducted the numerical experiment by running the model container on a 12-core workstation, which was outfitted with a 
simple k3s installation in order to support the kubernetes setup of Section 3.4. QMCPy was run on the same system, with QMCPy’s 
UM-Bridge integration set to 12 parallel evaluations. QMCPy’s UM-Bridge integration then issues parallel requests through Python’s
multiprocessing framework, which the kubernetes setup in turn processes.

Online model evaluations on a single core average at around 57 minutes of run time, with most runs between 30 and 90 minutes. 
The main reason for this variability is that the number of subdomains that need to be recomputed varies depending on defect location. 
We observe a total run time of 81.2 hours for 1024 Quasi-Monte Carlo (QMC) samples on the 12-core workstation.

The preparatory offline run computing the low-dimensional basis on the entire domain was conducted on the Hamilton HPC 
Service of Durham University, UK. On 128 processor cores it took 8 min 04 s. Compared to computing such a full MS-GFEM solution 
each time, the online method contributes a speedup of roughly 18 in addition to the UQ method’s parallelization.

Containerization turned out crucial in this application: The MS-GFEM method is complex to set up and multiple instances running 
on the same system might lead to conflicts, which is alleviated by containerization. In addition, sharing model containers between 
collaborators greatly accelerated development.

5.3. Multilevel Delayed Acceptance for tsunami source inversion

5.3.1. Problem description

We solve a Bayesian inference problem based on a tsunami model, which we make available in the benchmark library (see 
Appendix A.2.9). It models the propagation of the 2011 Tohoku tsunami by solving the shallow water equations with wetting and 
drying. For the numerical solution of the PDE, we apply an ADER-DG method implemented in the ExaHyPE framework [43,44]. 
Details on the model and its discretization can be found in [45], and include a model with a smoothed bathymetry data incorporating 
wetting and drying through the use of a finite volume subcell limiter with polynomial order 2 and a total of 1.7 ⋅ 105 degrees of 
freedom (2187 spatial); and a model using fully resolved bathymetry data and a limited ADER DG scheme of polynomial degree 2
with a total of 1.7 ⋅ 107 degrees of freedom (6561 spatial). Bathymetry data was obtained from GEBCO https://www .gebco .net /data _
and _products /gridded _bathymetry _data/.

5.3.2. UQ workflow

The aim is to obtain information about the parameters describing the initial displacements in bathymetry leading to the tsunami 
from the data of two DART buoys located near the Japanese coast. (The data for DART buoys 21418 and 21419 was obtained from 
NDBC https://www .ndbc .noaa .gov/.) The posterior distribution of model inputs, i.e. the source location of the tsunami, was sampled 
with the Multilevel Delayed Acceptance (MLDA) MCMC algorithm [27,30] using the open-source Python package tinyDA [16]. MLDA 
is a scalable MCMC algorithm, which can broadly be understood as a hybrid of Delayed Acceptance (DA) MCMC [46] and Multilevel 
MCMC [47]. The MLDA algorithm works by recursively applying DA to a model hierarchy of arbitrary depth, see [30].

We used a three-level model hierarchy consisting of the fully resolved model on the finest level, the smoothed model on the 
intermediate level and a Gaussian Process (GP) emulator on the coarsest level. A GP is a probabilistic model which provides both the 
predictive mean and variance, the latter indicating the credibility of the prediction. Both the mean and the variance were leveraged for 
computing the likelihood of the GP prediction as outlined in e.g. [48]. This resulted in a state-dependent tempering of the likelihood 
functional on the coarsest level, which was informed by the predictive uncertainty of the GP.

The GP emulator was trained on 1024 low-discrepancy samples of the model response from the smoothed model. The GP emulator 
employed a constant mean function, a Matérn- 52 covariance function with Automatic Relevance Determination (ARD) and a noise-free 
Gaussian likelihood. The GP hyperparameters were optimized using Type-II Maximum Likelihood Estimation [49].

5.3.3. Computational aspects

The model was run using the kubernetes setup of Section 3.4 on GKE with 100 c2d-highcpu-56 nodes running 100 instances 
of the model container. In total, 2800 physical CPU cores were used. Each model instance was run on one c2d-highcpu-56 node 
exploiting the Intel TBB parallelization capabilities of ExaHyPE [43].

Parallelization of the UQ method was achieved through 100 independent MLDA samplers. tinyDA allows running multiple samplers 
by internally making use of Ray [50], a Python library for distributed computing. The UQ software was run on a workstation, 
connecting to the cluster via tinyDA’s UM-Bridge integration. Gaussian process evaluations were conducted directly on the workstation 
due to their low computational cost, while model evaluations were offloaded to the cluster.

Overall run time was 2 h 20 min, with very effective use of the cluster as indicated by its CPU utilization in Fig. 8. For parameter 
(0, 0), the smoothed model takes 1m1s to evaluate, while the fully resolved model takes 15m4s. We computed a total of 800 evaluations 
of the fully resolved model and 1400 of the smoothed model. Disregarding the additional inexpensive GP evaluations, we obtain a 
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parallel speedup of 96.38, giving a close to perfect speedup for 100 MLDA chains.

https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.ndbc.noaa.gov/
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Fig. 8. CPU usage on GKE kubernetes cluster during MLDA run for the tsunami model. Intermittent drops are caused by runs of the intermediate model, which require 
fewer resources.

Table 6

Exemplar list of UQ software, describing which type of connection between UQ and model is supported (multiplicity): one particular UQ 
package to one model (one-to-one), one particular UQ package to 𝑀 different models (one-to-many), or 𝑁 UQ codes to 𝑀 models (many-to 
many). Further, the table describes whether the model can be implemented in arbitrary languages (model language agnostic), how the interface 
is realized, e.g. via reading/writing files or in software (technology) and which forms of HPC support the package provides (scalability).

Package Link Scalability

Multiplicity Model language 
agnostic

Technology

hIPPYlib-MUQ [51] one-to-one No C++, Python Single node
MUQ [12] one-to-many No C++, Python HPC (MPI)
PyMC [7], QMCPy [14] one-to-many No Python Single node
Dakota [52] one-to-many Yes C++, Files HPC (SLURM)
lagun [53] one-to-many Yes Files HPC (SLURM)
UQLab [54] one-to-many Yes Matlab, files HPC (SLURM)
UM-Bridge [24] many-to-many Yes C++, Julia, Matlab, Python, R HPC (SLURM, PBS), Kubernetes

6. Discussion

UM-Bridge fills a major gap in the UQ software ecosystem: There is currently no common platform linking arbitrary UQ algorithms 
and model software, let alone general-purpose cloud and HPC support or language-independent benchmarks.

In practice, most publications that couple advanced UQ methods and complex models do so in one of two ways: Either they 
directly embed the model in the UQ code, which requires compatible programming languages and entails unwieldy software stacks. 
Or, the UQ component passes parameters to the modeling component via some kind of input file, executes the model software, and 
then processes the outcomes.

Both approaches do not lend themselves to containerized models, and the parallelization infrastructure for HPC support remains 
up to each individual UQ code. Since the interfaces are incompatible across UQ packages, they lead to user lock-in: It is impractical 
for models to implement interfaces to multiple UQ packages and it is often difficult to translate data and data structures between pro-
gramming languages. All of this further precludes systematic comparisons between UQ methods, which are often only demonstrated 
on trivial test cases (say a superposition of Gaussians) and a single complex model that is inaccessible to the broader community.

UM-Bridge addresses those problems by providing a uniform and language-independent set of interfaces. As a consequence, it is 
able to couple 𝑁 UQ codes and 𝑀 model applications using only 𝑁 +𝑀 implementations of the coupled interface, rather than the 
𝑁 ⋅𝑀 modifications otherwise necessary. In addition, UM-Bridge provides generic parallelization platforms that serve any UQ code 
and any model, and it addresses the issue of different languages and complex, perhaps conflicting dependencies, build systems, or 
parallelization schemes. Table 6 gives an overview of how commonly used UQ packages realize the interface between UQ and model 
and how that compares to UM-Bridge.

In building UM-Bridge, we were inspired by projects in other domains that aim at coupling with modeling software. For example, 
the Functional Mockup Interface (FMI) [55], prominent in commercial codes like ANSYS and Matlab, standardizes this process 
by encapsulating models as Functional Mockup Units (FMUs), promoting interoperability between different simulation tools. As 
another example, preCICE (Precise Code Interaction Coupling Environment) [56] facilitates multi-physics simulations by coupling 
grid interfaces between different specialized simulation codes through the preCICE interface.

In the end, a UQ project’s success hinges on whether its benefits can be demonstrated using practical examples of relevance to 
the community. To this end, we have built the UM-Bridge benchmarks library that provides a ready made set of benchmarks that 
can be used to test the performance of new methods, and which can be used as a reference for comparison with existing methods. In 
other areas such as numerical linear algebra [57], geophysics [58–60], HPC [61], model order reduction [62], etc., such benchmark 
collections are widely used. To the best of our knowledge no such collection currently exists for UQ.

Beyond its initial focus on UQ, the protocol can adapt to the needs of other fields through extensions. Ongoing work, e.g., adds an 
optional “fast path” through shared memory whenever client and server run on the same machine, enabling transfer of large amounts 
16

of data like entire random fields.
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Limitations Algorithms requiring information beyond the current UM-Bridge interface can not be integrated. Also, for large data 
transfers or extremely fast models, the network overhead may become significant. Both limitations are somewhat mitigated by support 
for future protocol extensions. At the time of writing, smooth handling of model code crashes is planned but not yet supported.

7. Outlook

We aim to establish UM-Bridge across the UQ community, serving as a catalyst for highly efficient UQ methods applied to chal-
lenging problems, and acting as a link between UQ and applications as well as between academia and industry. With growing 
computational resources and the advance of science, we expect growing complexity in UQ applications, making the need for separa-
tion of concerns and advanced UQ tools even more prominent.
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Appendix A. Benchmark library

This appendix documents all models and benchmark problems currently part of the UM-Bridge benchmark library, using the three 
categories defined in Section 4.

A.1. Models

In this section we describe the models contained in the benchmark library, these implement a numerical (forward) model of a 
physical phenomenon. Each model is accompanied by a markdown file that documents how to run the published container, input 
and output dimensions, configuration options, and a mathematical description of the map (or a reference to an existing publication).

A.1.1. Euler-Bernoulli beam

This model describes the deformation of a beam with a spatially variable stiffness parameter. Let 𝑢(𝑥) denote the vertical deflection 
of the beam and 𝑓 (𝑥) denote the vertical force acting on the beam at point 𝑥 (positive for upwards, negative for downwards). We 
assume that the displacement can be well approximated using Euler-Bernoulli beam theory and thus satisfies the fourth-order PDE

𝜕2

𝜕𝑥2

[
𝑟𝐸(𝑥) 𝜕

2𝑢

𝜕𝑥2

]
= 𝑓 (𝑥), (A.1)

where 𝐸(𝑥) is an effective stiffness and 𝑟 is the beam radius. For a beam of length 𝐿, the cantilever boundary conditions take the 
form

𝑢(𝑥 = 0) = 0, 𝜕𝑢

𝜕𝑥

||||𝑥=0 = 0

and

𝜕2𝑢

𝜕𝑥2

||||𝑥=𝐿 = 0, 𝜕3𝑢

𝜕𝑥3

||||𝑥=𝐿 = 0.

This PDE is solved with a finite difference method and the beam stiffness is defined at each of the (typically 𝑁 = 31) nodes in the 
discretization. The displacement of the beam is also returned at these 𝑁 points. The beam radius is set to 𝑟 = 0.1 and the value of 
𝑓 (𝑥) is fixed.

This model takes in 𝐸(𝑥) at 𝑁 finite difference nodes and returns the value of 𝑢(𝑥) at those nodes.

A.1.2. L2-Sea model

This model describes the calm-water resistance 𝑅 of a destroyer-type vessel by potential flow. Specifically, the vessel under 
investigation is the DTMB 5415 (at model scale), which is a widely used benchmark for towing tank experiments [63], CFD studies 
[64], and hull-form optimization [65], considering both deterministic [66] and stochastic [67] formulations.

A potential flow solver is used to evaluate the hydrodynamic loads, based on the Laplace equation

∇2𝜙 = 0 (A.2)

where 𝜙 is the velocity scalar potential, from which the velocity is computed through 𝐮 = ∇𝜙. 𝜙 is computed numerically through 
the Dawson linearization [68] of the potential flow equations, using the boundary element method [69] (see Fig. 2). Finally, the 
total resistance 𝑅 is estimated as the sum of the wave and the frictional resistance: The wave resistance component is estimated by 
integrating the pressure distribution over the hull surface, obtained using Bernoulli’s theorem

𝑝

𝜌
+ (∇𝜙)2

2
− 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡; (A.3)

the frictional resistance component is estimated using a flat-plate approximation based on the local Reynolds number [70].
The steady equilibrium involving two degrees of freedom (sinkage and trim) is computed iteratively through the coupling between 

the hydrodynamic loads and the rigid-body equation of motion.
The model takes as inputs 16 parameters, i.e., 𝜃 ∈ℝ16: the Froude number Fr, the ship draft T (we have already introduced these 

quantities in Section 5.1), and 𝑁 = 14 shape modification parameters 𝐬 = [𝑠1, … , 𝑠14] that change the shape of the hull of the vessel, 
i.e., 𝜃 = (Fr, T, 𝐬). More specifically, the shape of the hull is described by a function 𝐠, depending on the Cartesian coordinates 𝝃 and 
on the shape parameters 𝐬 as follows:
18

𝐠(𝝃, 𝐬) = 𝐠0(𝝃) + 𝜸(𝝃, 𝐬) (A.4)
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where 𝐠0 is the original geometry and 𝜸 is a shape modification vector obtained by a physics-informed design-space dimensionality 
reduction [71]

𝜸(𝝃, 𝐬) =
𝑁∑
𝑘=1

𝑠𝑘𝝍𝑘(𝝃)

with 𝝍 a set of orthonormal functions. Note that the shape parameters and the associated shape modifications are organized in a 
hierarchical order, meaning that the first parameters produce larger design modifications than the last ones [67].

We now discuss bounds for the parameters collected in 𝜃. Concerning Fr, although in principle it can be any number between 0 
(excluded) and the maximum velocity of the ship (corresponding to Fr = 0.41, in practice the mesh is suitable for values in the range 
[0.25, 0.41]. T must be negative (otherwise the ship would be above water), but not too much (or the ship would be completely under 
water); for meshing reasons again, the suitable range for T is [−6.776, −5.544]. Finally, the shape modification parameters 𝑠𝑖 must 
be chosen in the range [-1,1].

Moreover, three configuration parameters can be set to control the behavior for this model: fidelity is an integer value that 
controls the mesh refinement, ranging from to 1 (highest resolution, default) to 7 (lowest resolution), with a refinement ratio of 
20.25, see [20] for more details; sinkoff is a character that can be set to ‘y’ (default) / ‘n’ to respectively disable/enable sinkage 
secondary movements (up/down translation on the vertical axis); similarly, trimoff can be set to ‘y’ (default) / ‘n’ to respectively 
disable/enable trim secondary movement (up/down rotation about its transverse axis, i.e. bow to stern).

The model returns the total resistance 𝑅 as well as 4 geometrical quantities (related to the beam, draft, and sonar dome dimensions) 
whose value changes when playing with the shape parameters 𝐬; we postpone their definition to Appendix A.4.1.

A.1.3. Tsunami model

This model describes the propagation of the 2011 Tohoku tsunami by solving the shallow water equations, see also Section 5.3. 
For the numerical solution of the PDE, we apply an ADER-DG method implemented in the ExaHyPE framework [43].

This benchmark creates a sequence of three models:

1. In the first model the bathymetry is approximated only by a depth average over the entire domain and the discretization is a DG 
discretization of order 2.

2. In the second model the bathymetry is smoothed using a Gaussian filter and the DG discretization is supplemented with a finite 
volume subcell limiter allowing for wetting and drying.

3. In the third model the full bathymetry data is used and the same DG discretization is used as in the second model.

The model takes two inputs giving the location of the displacement initiating the tsunami. The model outputs four values giving 
the maximal wave heights and time at two buoys located off the coast.

A.1.4. Composite material

This benchmark implements the 3D anisotropic linear elasticity equations for a composite part with randomized wrinkle. The 
maximum deflection of the part is estimated by embedding a wrinkle into a high fidelity finite element (FE) simulation using the high 
performance toolbox dune-composites [72]. A simplified model for a 3D bending test was used. The curved composite parts were 
modeled with shortened limbs of length 10 mm. A unit moment was applied to the end of one limb using a multi-point constraint, 
with homogeneous Dirichlet conditions applied at the end of the opposite limb. This gives the same stress field towards the apex of 
the curved section as a full 3D bending test. The analysis assumes standard anisotropic 3D linear elasticity and further details on the 
numerical model and discretization can be found in [72].

The wrinkle defect is defined by a deformation field 𝑊 ∶ Ω → ℝ3 mapping a composite component from a pristine state to the 
defected state.

The wrinkles are defined by the wrinkle functions

𝑊 (𝑥, 𝜉) = 𝑔1(𝑥1)𝑔3(𝑥3)
𝑁𝑤∑
𝑖=1

𝑎𝑖𝑓𝑖(𝑥1, 𝜆),

where 𝑔𝑖(𝑥𝑖) are decay functions, 𝑓𝑖(𝑥1, 𝜆) are the first 𝑁𝑤 Karhunen–Loève (KL) modes parameterized by the length scale 𝜆 and 𝑎𝑖
the amplitudes. The wrinkles are prismatic in 𝑥2 , i.e., the wrinkle function is assumed to have no 𝑥2 dependency. For more details 
on the wrinkle representation see [73].

The amplitude modes and the length scale can be taken as random variables, so that the stochastic vector is defined by 𝜃 =
[𝑎1, 𝑎2, … , 𝑎𝑁𝑤

, 𝜆]𝑇 .
The model outputs a single scalar value, the maximum deflection of the composite part under an applied pressure of 50 Atmo-

spheres.

A.1.5. Tritium desorption

In this model, we consider macroscopic tritium transport processes through fusion materials using the Foster-McNabb equations, 
as described in [74,75] using the Achlys [76] software package, which is built on top of the FE library MOOSE [77]. Specifically, the 
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following equations are solved:
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𝜕𝐶𝑚

𝜕𝑡
=∇ ⋅

(
𝐷 (𝑇 )∇𝐶𝑚

)
−
∑
𝑖

𝜕𝐶𝑡,𝑖

𝜕𝑡
+ 𝑆ext,

𝜕𝐶𝑡,𝑖

𝜕𝑡
= 𝜈𝑚 (𝑇 )𝐶𝑚

(
𝑛𝑖 −𝐶𝑡,𝑖

)
− 𝜈𝑖 (𝑇 )𝐶𝑡,𝑖,

𝜌𝑚𝐶𝑝
𝜕𝑇

𝜕𝑡
=∇ ⋅ (𝑘∇𝑇 ) .

Here, 𝐶𝑚 represents the mobile concentration of Hydrogen Isotopes (HI), 𝐶𝑡,𝑖 represents the trapped concentration of HI at the 𝑖th 
trap and 𝑇 is the temperature of the material. Furthermore, the evolution of the extrinsic trap density 𝑛3 is modeled as described in 
[75], taking into account additional trapping sites that are created as the material is damaged during implantation.

The simulation encompasses three distinct phases, namely an implantation phase, where the material is exposed to a particle 
source, a resting phase, and a desorption phase, where the material is heated and the desorption rate is computed.

The input parameters of the forward model consist of the detrapping energy of the HI traps, 𝐸1, 𝐸2, and 𝐸3, and the densities 
of the intrinsic traps, 𝑛1 and 𝑛2. All other model parameters are kept fixed. The output of the model is the desorption rate in atomic 
fraction as a function of the temperature 𝑇 ∈ [300, 800] during the desorption phase, discretized on a grid of 500 interpolation points. 
This model supports the evaluation of the forward map.

A.1.6. Agent-based disease transmission model

This model simulates the transmission of disease in a heterogeneous population using EMOD [78], a stochastic agent based disease 
transmission model.

Our simulation consists of 100,000 individuals who are susceptible to a disease that is introduced into the population with a 
probabilistic rate of 1 infection per day for the first 5 days. This disease has a latent period that follows a Gaussian distribution with 
mean 3 days and standard deviation of 0.8 days. The infectious period 𝑃 is assumed to also follow a Gaussian distribution with a mean 
of 8 days and a standard deviation of 0.8. The infectivity of the disease (𝐼𝑡 ; how likely it is for an infectious individual to infect another) 
is assumed to follow a log-normal distribution and is determined by the simulation’s 𝑅0 and its variance: 𝜇𝐼𝑡 = log

(
𝑅0
𝜇𝑃

)
− 0.5𝜎2

𝐼𝑡

where 𝜎𝐼𝑡 = log
(

𝜎2
𝑅0

2𝑅2
0
+ 0.5

)
.

The likelihood of an individual to acquire and then transmit the disease is correlated. There is no waning immunity. The benchmark 
is fitting to an attack fraction of 0.40 with a standard deviation of 0.025. There are bounds on 𝑅0 > 0; the variance of 𝑅0 > 0; and 
the correlation between acquisition and transmission must lie between 0 and 1 (inclusive).

The input parameters are the reproductive number, its logarithmic standard deviation, and correlation between acquisition and 
transmission. Optional configuration parameters are a flag to fix the simulation random seed, the number of infected individuals 
introduced into the simulation for the first 5 days, and the epsilon parameter utilized by scipy.optimize.approx_fprime (used to 
estimate the gradient). The simulation terminates when there are no longer any infected individuals (minimum run time of 50 days) 
and returns daily timeseries ‘New Infections’, ‘Infected’, ‘Infectious Population’, ‘Susceptible Population’, ‘Symptomatic Population’, 
‘Recovered Population’, and ‘Exposed Population’.

A.1.7. The membrane model

The “membrane model” describes the vertical deformation of a membrane for a fixed right hand side, as a function of the mem-
brane’s stiffness properties. This forward model is described in great detail in [21] as a building block for a Bayesian inverse problem.

More specifically, the model considers the vertical deflection 𝑢(𝐱) of a membrane given the spatially variable stiffness coefficient 
𝑎(𝐱) for a known force 𝑓 (𝐱) = 10. The model uses a specific, prescribed discretization of the following partial differential equation to 
obtain 𝑢(𝐱):

−∇ ⋅ [𝑎(𝐱)∇𝑢(𝐱)] = 𝑓 (𝐱),

augmented by zero boundary conditions. The forward model considers as inputs 64 values that define 𝑎(𝐱) on an 8 ×8 subdivision of 
the domain, computes the discretized deformation 𝑢(𝐱), and then computes an output vector of size 169 by evaluating the deflection 
𝑢(𝐱) on a 13 × 13 grid of points.

The detailed description in [21] allows the implementation of this model in a number of programming languages. Indeed, [21]
provides links to a C++ implementation based on the deal.II library [79] that is used for the containers described herein, as well as 
Matlab and Python implementations.

A.1.8. The cookies problem

This model implements the so-called “cookies problem” [80–82], i.e., a simplified thermal equation in which the conductivity 
coefficient is uncertain in 8 circular subdomains (“the cookies”), whereas it is known (and constant) in the remaining of the domain 
(“the oven”), see Fig. A.9. More specifically, the temperature solves the stationary thermal equation

−∇ ⋅ [𝑎(𝐱, 𝜃)∇𝑢(𝐱, 𝜃)] = 𝑓 (𝐱),
20

with homogeneous Dirichlet boundary conditions and forcing term defined as
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Fig. A.9. Computational domain for the cookies problem, Appendix A.1.8.

Table A.7

Centers of subdomains for the cookies problem, Appendix A.1.8.

Cookie 1 2 3 4 5 6 7 8

𝑥 0.2 0.5 0.8 0.2 0.8 0.2 0.5 0.8
𝑦 0.2 0.2 0.2 0.5 0.5 0.8 0.8 0.8

𝑓 (𝐱) =
{

100 if 𝐱 ∈ 𝐹

0 otherwise

where 𝐹 is the square [0.4, 0.6]2 in the center of the domain, again see Fig. A.9. The 8 subdomains with uncertain diffusion coefficient 
(the cookies) are circles with radius 0.13 and center coordinates reported in Table A.7. The uncertain diffusion coefficient is defined 
as

𝑎 = 𝑎0 +
8∑

𝑛=1
𝜃𝑛𝜒𝑛(𝐱) (A.5)

where 𝑎0 = 1, 𝜃𝑛 > −1 and

𝜒𝑛(𝐱) =
{

1 inside the n-th cookie

0 otherwise.

The output of the model is the integral of the solution over 𝐹 , i.e.

Ψ(𝜃) = ∫
𝐹

𝑢(𝐱, 𝜃)𝑑𝐱. (A.6)

The PDE is solved by a classical finite element method with standard Lagrangian polynomial bases on quadrilateral elements of degree 
𝑝 (tunable by the user, default 𝑝 = 1). The mesh is composed of 𝑁𝑒𝑙 ×𝑁𝑒𝑙 elements, with 𝑁𝑒𝑙 = 100 × 𝑘 where 𝑘 is an integer value 
(“fidelity”) that can be set by the user (default 𝑘 = 4). The solver is provided by a legacy version of the software FEniCs [83,84], 
via the Python interface. Further model configurations allow: changing the value of 𝑎0 , adding an advection term to the equation, 
changing the quadrature rule used to build the finite element matrix, or changing the solver of the linear system - see the UM-Bridge 
documentation for further details. Furthermore, the model provides a time-dependent version of the equation,

𝜕𝑢(𝐱, 𝑡, 𝜃)
𝜕𝑡

−∇ ⋅ [𝑎(𝐱, 𝜃)∇𝑢(𝐱, 𝑡, 𝜃)] = 𝑓 (𝐱),

with initial condition 𝑢(𝐱, 𝑡, 𝜃) = 0. The output of the model is the integral of the solution over 𝐹 at final time 𝑇 (default 𝑇 = 10). All 
configuration options carry to the parabolic variant of the test case. The time-stepping is adaptive with local error control, specifically 
an implementation of the TR-AB2 scheme, see, e.g., [85].

A.2. Inference benchmarks

In this section we describe the inference benchmarks contained in the benchmark library, these implement a specific inverse UQ 
21

problem, usually in terms of a Bayesian posterior.
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Fig. A.10. Samples drawn from the distribution defined through the PDF 𝜋 for the analytic banana, donut, funnel and Gaussian mixture respectively.

Table A.8

Configuration parameters the for Analytic Banana benchmark.

Name Type Default Description

a double 2.0 Transformation parameter
b double 0.2 Transformation parameter
scale double 1.0 Scaling factor applied to the 

underlying normal 
distribution’s variance

A.2.1. Analytic functions

The benchmarks in this series of four benchmarks consist of an analytically defined PDF 𝜋 ∶ ℝ2 → ℝ resembling the shape of a 
banana, donut, funnel, and a Gaussian mixture, see Fig. A.10. They are based on transformed normal distributions; the variance may 
be adjusted for all benchmarks.

Analytic banana benchmark We begin with a normally distributed random variable

𝑍 ∼
((

0
4

)
, scale

(
1.0 0.5
0.5 1.0

))
,

and denote its PDF by 𝑓𝑍 .
In order to reshape the normal distribution, define a transformation 𝑇 ∶ℝ2 →ℝ2

𝑇 (𝜃) ∶=
(

𝜃1∕𝑎
𝑎𝜃2 + 𝑎𝑏(𝜃21 + 𝑎2)

)
.

Finally, the benchmark PDF is defined as

𝜋(𝜃) ∶= 𝑓𝑍 (𝑇 (𝜃)).

The parameters 𝑎, 𝑏, and ‘scale’ that appear in the formulas above are configurable, see Table A.8. This benchmark supports only 
evaluation of the forward map, but not its derivatives.

Analytic donut benchmark The PDF 𝜋 is defined as

𝜋(𝜃) ∶= −(‖𝜃‖− 𝑟)2

𝜎2
,

where 𝑟 = 2.6 and 𝜎2 = 0.033. This benchmark supports the ‘Evaluate’, ‘Gradient’, and ‘ApplyJacobian’ operations.

Analytic funnel benchmark First, define a helper function

𝑓 (𝜃,𝑚, 𝑠) ∶= −1
2
log(2𝜋) − log(𝑠) − 1

2
((𝜃 −𝑚)∕𝑠)2,

where here 𝜋 = 3.141 …. The logarithm of the output PDF is then defined as

log(𝜋(𝜃)) ∶= 𝑓 (𝜃1,0,3) + 𝑓

(
𝜃2,0, exp

(1
2
𝜃1

))
.

This benchmark supports the ‘Evaluate’, ‘Gradient’, and ‘ApplyJacobian’ operations.

Analytic Gaussian mixture benchmark Let

𝑋1 ∼
((

−1.5
−1.5

)
,0.8𝐼

)
,((

1.5
) )
22

𝑋2 ∼ 1.5 ,0.8𝐼 ,
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Table A.9

Prior distributions for the Tritium desorption model.

Parameter Prior distribution

𝐸1  (0.7,1.0)
𝐸2  (0.9,1.3)
𝐸3  (1.1,1.75)
𝑛1  (5 ⋅ 10−4,5 ⋅ 10−3)
𝑛2  (10−4,10−3)

𝑋3 ∼
((

−2
2

)
,0.5𝐼

)
.

Denote by 𝑓𝑋1
, 𝑓𝑋2

, 𝑓𝑋3
the corresponding PDFs. The PDF 𝜋 is then defined as

𝜋(𝜃) ∶=
3∑

𝑖=1
𝑓𝑋𝑖

(𝜃).

This benchmark supports the ‘Evaluate’, ‘Gradient’, and ‘ApplyJacobian’ operations.

A.2.2. Membrane inverse benchmark

This benchmark for Bayesian inversion is, like the forward model in Section A.1.7, described in substantial detail in [21]. In short, 
whereas the forward model maps the 64 coefficients 𝜃 ∈ ℝ64 that describe 𝑎(𝐱) = 𝑎𝜃(𝐱) to a vector of measurements of 𝑢(𝐱) at 139
distinct locations, denoted by 𝑧𝜃 ∈ ℝ139, the inverse problem consists of inferring 𝜃 from a specific set of measurements 𝑧̂. To this 
end, we define the probability that a given set of coefficients 𝜃 is correct as

𝜋(𝜃|𝑧̂) =𝐿(𝑧̂|𝜃)𝜋pr(𝜃), (A.7)

where the likelihood 𝐿 and prior probability are defined as

𝐿(𝑧|𝜃) = exp
(
−‖𝑧− 𝑧𝜃‖2

2𝜎2

)
(A.8)

=
168∏
𝑘=0

exp

(
−
(𝑧𝑘 − 𝑧𝜃

𝑘
)2

2𝜎2

)
, (A.9)

𝜋pr(𝜃) =
63∏
𝑖=0

exp

(
−
(ln(𝜃𝑖) − ln(1))2

2𝜎2pr

)
, (A.10)

with 𝜎 = 0.05, 𝜎pr = 2, and the values of 𝑧̂ as tabulated in [21]. The benchmark only supports evaluation of the forward map.
The description of the benchmark in [21] also contains very detailed statistics for mean and covariance matrix of the posterior 

distribution for these 64 values, along with estimates for the accuracy for these mean values. As a consequence, any inference scheme 
using the implementation of this benchmark provided through the containers described in Sections 3.1 can compare their results with 
those provided in [21]; this includes the workload-accuracy trade-off of inference algorithms for this benchmark.

A.2.3. Bayesian calibration of tritium desorption

This benchmark performs Bayesian model calibration of the tritium desorption model outlined in Section A.1.5. The benchmark 
defines a probability density 𝜋 ∶ℝ5 →ℝ where the inputs 𝜃 are 𝐸1, 𝐸2, 𝐸3 (the detrapping energies used in the model description), 
and 𝑛1, 𝑛2 (the density of intrinsic traps).

The prior distributions over model parameters are all assumed to be uniform as shown in Table A.9. This prior distribution is 
then conditioned on the experimental data of [86], where the desorption rate of HI was measured for a tungsten lattice, to yield the 
posterior distribution 𝜋(𝜃|𝑑). More formally, the (unnormalized) posterior distribution of parameters 𝜃 given data 𝑑 = {𝜙𝑖}

𝑁𝑑−1
𝑖=0 with 

𝑁𝑑 = 14 measurements of the desorption rate 𝜙 is computed using Bayes Theorem 𝜋(𝜃|𝑑) ∝ (𝑑|𝜃)𝜋pr(𝜃). The measurement errors 𝜀
are assumed to follow a Gaussian distribution, so that

(𝑑|𝜃) ∝ exp

(
− 1
2𝜎2

𝜀

13∑
𝑖=0

(𝑖(𝜃) − 𝑑𝑖)2
)
,

with 𝜎𝜀 = 1017. Fig. A.11 shows 𝑁 = 1000 posterior samples of the Tritium desorption curve along with the experimental data from 
[86].

A.2.4. Agent-based disease transmission benchmark

This benchmark uses EMOD [78], a stochastic agent-based disease transmission model, to look at how the reproductive number, 
23

𝑅0, and the correlation between an individual’s acquisition and transmission correlation can affect the ultimate attack fraction and 
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Fig. A.11. Posterior samples (𝑁 = 1000) of the Tritium desortion rate (black curves) and the experimental data from [86] (red dots). Both are plotted against the 
temperature 𝑇 .

Table A.10

Configuration parameters for the disease model benchmark.

Config Type Default Description

refresh_seed int (bool) 1 Change random number seed
daily_import
_pressure

double 1.0 Average daily importations 
for the first 5 simulated days

log_level string ERROR Level of logging
epsilon list [0.001, 

0.001, 
0.001]

Increment used in scipy 
optimize approx_fprime to 
estimate the gradient

timing of the outbreak peak. This correlation can greatly affect the size and timing of the outbreak for a fixed reproductive number. 
The model underlying this benchmark is described in Section A.1.6.

The benchmark computes a probability distribution 𝜋 ∶ℝ3 →ℝ from three inputs that correspond to 𝑅0, the variance of 𝑅0, and 
the correlation between acquisition and transmission. The benchmark is fitting to an attack fraction of 0.40 with a standard deviation 
of 0.05 and an outbreak peak at 175 days from the start of the simulation with standard deviation of 10 days. The benchmark has 
additional configuration parameters, described in Table A.10. The benchmark only supports evaluation of the forward map.

One of the challenges of this benchmark is that the computation of 𝜋(𝜃) is not deterministic because it evaluates a stochastic 
model whose outputs (even for a fixed 𝜃) depends on random numbers: Even for the same parameters the total number of infections 
will differ between simulations. Furthermore, it is not guaranteed that there will always be an outbreak: sometimes there are not 
enough initial infections to cause an outbreak. This challenge can be decreased by increasing the number of initial infections via the
daily_import_pressures configuration parameter (e.g., from 1 infection per day to 10 infections per day for the first 5 days).

A.2.5. 1D deconvolution benchmark

This benchmark is based on a 1D deconvolution test problem from the library CUQIpy1 [10,9]. It defines a posterior distribution 
𝜋 ∶ ℝ128 → ℝ with a Gaussian likelihood and four different choices of prior distributions with configurable parameters. Supported 
features of this benchmark are: ‘Evaluate’ and ‘Gradient’.

The 1D periodic deconvolution problem is defined by the inverse problem

𝐛 =𝐀𝐱 + 𝐞,

where 𝐛 is an 𝑚-dimensional random vector representing the observed data, 𝐀 is an 𝑚 × 𝑛 matrix representing the convolution 
operator, 𝐱 is an 𝑛-dimensional random vector representing the unknown signal we would like to recover, and 𝐞 is an 𝑚-dimensional 
random vector representing the noise. The posterior distribution over 𝐱 given 𝐛 is defined as

𝜋(𝐱 ∣ 𝐛) ∝𝐿(𝐛 ∣ 𝐱)𝜋pr(𝐱),

where 𝐿(𝐛|𝐱) is a likelihood function and 𝜋pr(𝐱) is a prior distribution. The noise is assumed to be Gaussian with a known noise level, 
and thus the likelihood is defined via
24

1 https://cuqi -dtu .github .io /CUQIpy/.

https://cuqi-dtu.github.io/CUQIpy/
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Fig. A.12. Sample mean and 95% credibility intervals of the posteriors defined for the deconvolution 1D benchmark.

𝐛 ∣ 𝐱 ∼ (𝐀𝐱, 𝜎2𝐈𝑚),

where 𝐈𝑚 is the 𝑚 ×𝑚 identity matrix and 𝜎 = 0.01. The prior can be configured by choosing from the following assumptions about 𝐱:

• ‘Gaussian’: Gaussian (normal) distribution:
𝑥𝑖 ∼ (0, 𝛿),

• ‘GMRF’ Gaussian Markov Random Field:
𝑥𝑖 − 𝑥𝑖−1 ∼ (0, 𝛿),

• ‘LMRF’ Laplace Markov Random Field:
𝑥𝑖 − 𝑥𝑖−1 ∼(0, 𝛿),

• ‘CMRF’ Cauchy Markov Random Field:
𝑥𝑖 − 𝑥𝑖−1 ∼ (0, 𝛿),

where  is the Laplace distribution and  is the Cauchy distribution. The parameter 𝛿 is the prior parameter and is configurable (as 
an additional parameter that can be provided via UM-Bridge; its default is 𝛿 = 0.01.

In Fig. A.12 we show examples of posterior samples obtained for the four different choices of prior. The posterior mean and 95%
credibility intervals are shown. The samples are obtained using the built-in automatic sampler selection in CUQIpy [10,9].

A.2.6. Computed tomography benchmark

This benchmark focuses on 2D image reconstruction in X-ray computed tomography (CT) [87]. In CT, X-rays are passed through 
an object of interest and projection images are recorded at a number of orientations. Materials of different density absorb X-rays by 
different amounts quantified by their linear attenuation coefficients. A linear forward model describes how the 2D linear attenuation 
image of an object results in a set of projections measured, typically known as a sinogram.

The inverse problem of CT takes the same form as in the previous section, with 𝐛 now an 𝑚-dimensional random vector representing 
25

the observed (vectorized) CT sinogram data, 𝐀 is an 𝑚 × 𝑛 matrix representing the CT projection operator or “system matrix”, 𝐱 is 
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Fig. A.13. Left: Exact solution image. Right: noisy CT sinogram data.

an 𝑛-dimensional random vector representing the unknown (vectorized) square image, and 𝐞 is an 𝑚-dimensional random vector 
representing the noise. The underlying true image and the noisy CT sinogram data are shown in Fig. A.13.

The matrix 𝐀 is generated by using the MATLAB package AIR Tools II2 [88]. The forward model matrix corresponds to an image 
of 256 × 256 pixels, hence 𝑛 = 2562, scanned in a parallel-beam geometry with 30 projections taking over 180 degrees with angular 
steps of 6 degrees, each projection consisting of 256 X-ray lines, i.e., 𝑚 = 30 ⋅ 256 = 7680. See the above links for more details.

This benchmark follows the same structure and provides the same features as the 1D Deconvolution benchmark in Appendix A.2.5, 
providing a posterior distribution of 𝐱 given 𝐛. It also employs CUQIpy3 [10,9] to specify the linear forward model representing CT 
and uses the same Gaussian noise model.

The same prior configurations for 𝐱 as in the 1D deconvolution benchmark are available, but in 2D versions where distributions 
stated above are applied to both vertical and horizontal finite differences, 𝑥𝑖,𝑗 − 𝑥𝑖−1,𝑗 and 𝑥𝑖,𝑗 − 𝑥𝑖,𝑗−1 for 𝑥𝑖,𝑗 for 𝑖, 𝑗 = 1, … , 256.

In Fig. A.14 we show examples of posterior samples obtained for the four different choices of prior. The posterior mean and standard 
deviation images are shown. MCMC samples are obtained using the built-in automatic sampler selection provided by CUQIpy.

A.2.7. One dimensional heat Bayesian inverse problem benchmark

This benchmark is built using the library CUQIpy [10,9]. It defines a posterior distribution of a Bayesian inverse problem governed 
by a 1D heat equation, with a Gaussian likelihood and KL parameterization of the uncertain parameters. Specifically, the inputs 
𝐱 ∈ ℝ20 are 20 KL coefficients, and the output is the posterior probability 𝜋(𝐱 ∣ 𝐛) where 𝐛 are given data. Posteriors for two cases 
are available: In the first case, the data is available everywhere in the domain (the interval [0, 1]) with a noise level of 0.1%; in the 
other case, the data is available only on the left half of the domain and with a noise level of 5%. For more details about this Bayesian 
inverse problem, see [9]. The two cases are accessible via UM-Bridge via the names Heat1DSmallNoise and Heat1DLargeNoise, 
respectively. These benchmarks only support evaluation of the forward map.

The underlying inverse problem of this benchmark is to infer an initial temperature profile 𝑔(𝜉) at time 𝜏 = 0 on the unit interval 
𝜉 ∈ [0, 1] from measurements of temperature 𝑢(𝜉, 𝜏) at time 𝜏 = 𝜏max.

We parameterize the discretized initial condition 𝐠 using a truncated KL expansion to impose some regularity and spatial corre-
lation, and reduce the dimension of the discretized unknown parameter from 𝑛 to 𝑛KL, where 𝑛KL ≪𝑛 and 𝑛KL = 20 is the number of 
the truncated KL expansion coefficients. For a given (discretized) expansion basis 𝐚1, ..., 𝐚𝑛, the parameterization of 𝐠 in terms of the 
KL expansion coefficients 𝑥1, ..., 𝑥𝑛 can be written as [9]

𝐠 =
𝑛∑

𝑖=1
𝑥𝑖𝐚𝑖 ≈

𝑛KL∑
𝑖=1

𝑥𝑖𝐚𝑖.

In the Bayesian setting, we consider 𝐱 = [𝑥1, ..., 𝑥𝑛KL
]𝖳 a random vector representing the unknown truncated KL expansion coefficients. 

Consequently, the corresponding 𝐠 is a random vectors as well. We define the inverse problem as

𝐛 =𝐀(𝐱) + 𝐞,

2 https://github .com /jakobsj /AIRToolsII.
26

3 https://cuqi -dtu .github .io /CUQIpy/.

https://github.com/jakobsj/AIRToolsII
https://cuqi-dtu.github.io/CUQIpy/
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Fig. A.14. Top: Posterior mean images for Gaussian, GMRF, LMRF, CMRF priors, with 𝛿 = 0.01, except LMRF where 𝛿 = 0.1. Bottom: Posterior standard deviation 
images for the same cases.

Fig. A.15. The small noise case of the 1d inverse heat benchmark. (a) Noisy data, exact data (solution at 𝜏 = 𝜏max), and exact solution (solution at 𝜏 = 0). Note that 
for the small noise case, noisy and exact data are visually indistinguishable. (b) Samples’ 95% credible interval computed after mapping the samples of KL coefficients 
𝐱 to samples of the corresponding function 𝐠. (c) KL coefficients samples’ 95% credible intervals.

where 𝐛 is an 𝑚-dimensional random vector representing the observed data, measured temperature profile at time 𝜏max = 0.01 in this 
case, and 𝐞 is an 𝑚-dimensional random vector representing the noise. 𝐀 is the forward operator that maps 𝐱 to the exact data 𝐀(𝐱). 
Applying 𝐀 involves solving the heat PDE above for a given realization of 𝐱 and extracting the observations from the space-time 
solution 𝐮.

This benchmark defines a posterior distribution over 𝐱 given 𝐛 as

𝜋(𝐱 ∣ 𝐛) ∝𝐿(𝐛 ∣ 𝐱)𝜋pr(𝐱),

where 𝐿(𝐛|𝐱) is a likelihood function and 𝜋pr(𝐱) is a prior distribution. The noise is assumed to be Gaussian with a known noise level, 
and so the likelihood is defined via

𝐛 ∣ 𝐱 ∼ (𝐀(𝐱), 𝜎2𝐈𝑚),

where 𝐈𝑚 is the 𝑚 ×𝑚 identity matrix and 𝜎 defines the noise level. The prior 𝜋pr(𝐱) on the KL coefficients is assumed to be a standard 
multivariate Gaussian.

Fig. A.15a shows the exact solution (the true initial condition), the exact data 𝐀(𝐱), and a synthetic noisy data 𝐛obs for the small 
noise case. We generate 50, 000 samples of the posterior using the component-wise Metropolis–Hastings (CWMH) sampler [10,9]. We 
show in Fig. A.15b the samples’ 95% credible interval computed after mapping the KL coefficients 𝐱 samples to the corresponding 
27

function 𝐠 samples; and we show the KL coefficients 𝐱 samples 95% credible intervals in Fig. A.15c.
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Fig. A.16. Schematic of the Euler-Bernoulli beam with the material properties 𝑚1,𝑚2 and 𝑚3 .

A.2.8. Beam inference

This benchmark is a Bayesian inverse problem for characterizing the stiffness of an Euler-Bernoulli beam given observations of 
the beam displacement under a prescribed load. The Young’s modulus is piecewise constant over three regions as shown in Fig. A.16. 
Synthetic data is used. A realization of a Gaussian process is used to define the true material properties. Additive noise is added to 
the output of the model to create the synthetic data. The benchmark is then defined by a probability density function 𝜋 ∶ ℝ3 → ℝ
where the three inputs correspond to Young’s modulus on the three regions. The benchmark supports the ‘Evaluate’, ‘Gradient’, 
‘ApplyJacobian’, and ‘ApplyHessian’ operations. The latter three are evaluated using finite differences.

The output probability is defined as usual as the product of a likelihood and a prior:

𝜋(𝑚 ∣ 𝑦) =𝐿(𝑦 ∣𝑚)𝜋pr(𝑚).

In order to define the likelihood, let 𝑁𝑥 denote the number of finite difference nodes used to discretize the Euler-Bernoulli PDE above. 
For this problem, we will have observations of the solution 𝑢(𝑥) at 𝑁𝑦 of the finite difference nodes. Let 𝑢̂ ∈ ℝ𝑁𝑥 denote a vector 
containing the finite difference solution and let 𝑦 ∈ℝ𝑁𝑦 denote the observable random variable, which is the solution 𝑢 at 𝑁𝑦 nodes 
plus some noise 𝜖, i.e.

𝑦 =𝐵𝑢̂+ 𝜖,

where 𝜖 ∼𝑁(0, 𝜎𝑦) and 𝐵 is the finite difference mass matrix. The solution vector is given by

𝑢̂ = [𝐾(𝑚)]−1𝑓,

where 𝐾(𝑚) is the stiffness matrix of the problem.
Combining this with the definition of 𝑦, we have the complete forward model

𝑦 =𝐵[𝐾(𝑚)]−1𝑓 + 𝜖.

The likelihood function then takes the form

𝐿(𝑦|𝑚) =𝑁
(
𝐵[𝐾(𝑚)]−1𝑓, Σ𝑦

)
.

For the prior 𝜋pr(𝑚), we assume each value is an independent normal random variable

𝑚𝑖 ∼𝑁(𝜇𝑖, 𝜎2𝑖 ).

A.2.9. Tsunami source inference

The aim of this benchmark is to obtain the parameters describing the initial displacements leading to the Tohoku tsunami from the 
data of two available buoys located near the Japanese coast. It is based on the model described in Section A.1.3, which also describes 
the different levels available. The likelihood of a set of parameters given the simulation results is computed using a weighted average 
of the maximal wave height and the time at which it is reached. The likelihood is given by a normal distribution with mean given 
by maximum waveheight and the time at which it is reached for the two DART buoys 21418 and 21419 (This data can be obtained 
from NDBC). The covariance matrix shown in Table A.11 depends on the level, but not the probe point.

The prior cuts off all parameters which would lead to an initial displacement which is too close to the domain boundary. Some 
parameters may lead to unstable models, e.g., a parameter which initializes the tsunami on dry land; in this case we treat the parameter 
as unphysical and assign an almost zero likelihood. The description of this benchmark in [45] also contains details on a solution using 
28

parallel MLMCMC implemented in the MUQ library [12].
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Table A.11

Mean and variances for the Tsunami test case.

𝜇 Σ (𝑙 = 0) Σ (𝑙 = 1) Σ (𝑙 = 2)

1.85232 0.15 0.1 0.1
0.6368 0.15 0.1 0.1
30.23 2.5 1.5 0.75
87.98 2.5 1.5 0.75

Fig. A.17. True parameter field (left) and the corresponding state field (right) for the Poisson problem. The locations of the observation points are marked as white 
squares in the right figure.

The inputs of this benchmark are the 𝑥 and 𝑦 coordinates of a proposed tsunami origin; the output is a probability given the arrival 
time and maximum water height at two buoy points of the model compared to measured data provided by NDBC. The benchmark 
only supports evaluation of the forward map.

A.2.10. Coefficient field inversion in a two-dimensional Poisson linear PDE

This is an implementation of the Bayesian inverse problem presented in [51]. The inverse problem estimates a spatially varying 
diffusion coefficient in an elliptic PDE given limited noisy observations of the PDE solution – the benchmark is thus related to the one 
discussed in Section A.2.2, but uses a different parameterization. The coefficient in the equation is discretized with finite elements 
and efficient derivative information is available through the adjoint techniques implemented in hIPPYlib and hIPPYlib-MUQ.

Specifically, the benchmark is based on the following model:

−∇ ⋅
[
exp(𝑚)∇𝑢

]
= 0 in Ω,

𝑢 = 𝑔 on 𝜕Ω𝐷,

exp(𝑚)∇𝑢 ⋅ 𝑛̂ = 0 on 𝜕Ω𝑁.

Here, Ω is the domain, 𝑢(𝑥) is the solution, 𝑔 are prescribed Dirichlet conditions on the boundary 𝜕Ω𝐷 ⊆ 𝜕Ω, and the last equation 
represents homogeneous Neumann conditions on the remainder of the boundary 𝜕Ω𝑁 = 𝜕Ω ⧵ 𝜕Ω𝐷 . The field 𝑚(𝑥) is discretized with 
linear finite elements on a uniform triangular mesh of the unit square Ω = [0, 1]2 with 32 cells in each coordinate direction, and is 
thus described by 1,089 values that form the input to the problem. The state is discretized with quadratic elements.

The prior distribution on the field 𝑚(𝑥) is a Gaussian process defined through a stochastic differential equation. The likelihood 
is formed from observations of 𝑢(𝑥) at 300 points 𝑥𝑖 drawn uniformly over [0.05, 0.95]2, as shown in Fig. A.17. These observations 
are obtained by solving the forward problem on the finest mesh with the true parameter field shown on the left in Fig. A.17 and 
then adding a random Gaussian noise with a relative standard deviation of 0.5% to the resulting state. Model, prior, likelihood, and 
sampling of the posterior, as well as convergence diagnostics are implemented with the hIPPYlib-MUQ4 package, which enables 
efficient calculation of gradients, Jacobian actions, and Hessian actions using adjoint and tangent linear techniques.

Based on these definitions, the benchmarks then return the Laplace approximation of the posterior probability that maps the 
inputs 𝑚 ∈ℝ1089 to ℝ. The benchmark supports the ‘Evaluate’, ‘Gradient’, ‘ApplyJacobian’, and ‘ApplyHessian’ operations.

A.2.11. Coefficient field inversion in a Robin boundary condition for a three-dimensional 𝑝-Poisson nonlinear PDE

This benchmark focuses on a three-dimensional nonlinear Bayesian inverse problem presented in [51]. The inverse problem 
estimates a two-dimensional flux boundary condition on the bottom of a thin three-dimensional domain with nonlinear 𝑝-Poisson 
PDE. Observations of the PDE solution at the top of the domain are used, as shown in Fig. A.18.
29

4 https://hippylib .github .io /muq -hippylib/.

https://hippylib.github.io/muq-hippylib/
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Fig. A.18. Left: True parameter field on the bottom surface. Right: Corresponding state field and 𝑙 = 300 observation points (white square marks) on the top surface.

Table A.12

Properties of the Euler-Bernoulli beam propagation benchmark.

Mapping Dimensions Description

input [3] The value of the beam stiffness in 
each lumped region.

output [31] The resulting beam displacement 
at 31 equidistant grid nodes.

This benchmark then defines a Bayesian posterior density over a spatially-variable boundary condition 𝑚(𝑥) given noisy observa-
tions of the solution of the nonlinear partial differential equation

−∇ ⋅
[|∇𝑢|𝑝−2

𝜖
∇𝑢

]
= 𝑓 in Ω,

𝑢 = 𝑔 on 𝜕Ω𝐷,|∇𝑢|𝑝−2
𝜖

∇𝑢 ⋅ 𝑛̂ =𝑚 on 𝜕Ω𝑁,

where Ω is the domain, 𝑢(𝑥) is the solution and 𝑔 are prescribed Dirichlet conditions on the boundary Ω𝐷 ⊆ 𝜕Ω. In this benchmark 
we set 𝑝 = 3 and 𝑓 = 0. The domain, illustrated in the figure above, is Ω = [0, 1]2 × [0, 0.05].

The output of the benchmark is a probability that maps a discretized version of 𝑚(𝑥) at 233,389 nodes to the product of a 
prior and a likelihood. The prior distribution on the boundary condition 𝑚(𝑥) is a Gaussian process defined through a stochastic 
differential equation; see [51, Section 5.1.2] for details. The likelihood is formed from observations of 𝑢(𝑥) at 300 points 𝑥𝑖 drawn 
uniformly over the top surface of the domain. Gaussian noise with a standard deviation of 0.005 is assumed. Like the benchmark of 
the previous section, model, prior, likelihood, and sampling of the posterior, as well as convergence diagnostics are implemented 
with the hIPPYlib-MUQ package.

This benchmark supports the ‘Evaluate’, ‘Gradient’, ‘ApplyJacobian’, and ‘ApplyHessian’ operations.

A.3. Propagation benchmarks

In this section we describe the propagation benchmarks contained in the benchmark library, these implement a specific forward 
UQ problem.

A.3.1. Euler-Bernoulli beam

This is an uncertainty propagation problem modeling the effect of uncertain material parameters on the displacement of an Euler-
Bernoulli beam with a prescribed load. Refer to Appendix A.2.8 for details.

The inputs and outputs of this model for this propagation benchmark can be found in Table A.12. Supported features of this 
benchmark are the ‘Evaluate’, ‘Gradient’, ‘ApplyJacobian’, and ‘ApplyHessian’ operations. The latter three are evaluated using finite 
differences.

For the prior, we assume the material parameter to be a uniformly distributed random variable

𝑀 ∼𝑈[1,1.05]3 .

The goal is to identify the distribution of the resulting quantity of interest, the deflection of the beam at finite difference node 10 and 
25 of the discretization. Samples from the model output 𝑢̂ are illustrated in Fig. A.19.

A.3.2. Genz integration and surrogate benchmark

This benchmark implements a suite of six families of test functions first proposed in [89] to elucidate the performance of quadrature 
algorithms for computing 𝔼[𝑓 (𝜃)] which can be computed analytically if 𝜃 is an uncertain parameter with specific distribution, and 
30

𝑓 is a specific forward model. It is also useful for benchmarking methods for constructing surrogate models, for example see [90]. 
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Fig. A.19. Samples of the Euler-Bernoulli beam model output 𝐹 (𝑀) with the quantity of interest (solution at nodes 10 and 25) marked with crosses.

The six function families are parameterized by a scalable number 𝑛 ≥ 1 of independent and identically distributed uniform variables 
with non-zero joint density defined on the unit hypercube [0, 1]𝑛.

Specifically, the six families of functions are as follows:

Oscillatory 𝑓 (𝜃) = cos

(
2𝜋𝑤1 +

𝑛∑
𝑖=1

𝑐𝑖𝜃𝑖

)

ProductPeak 𝑓 (𝜃) =
𝑛∏

𝑖=1

(
𝑐−2
𝑖

+ (𝜃𝑖 −𝑤𝑖)2
)−1

CornerPeak 𝑓 (𝜃) =

(
1 +

𝑛∑
𝑖=1

𝑐𝑖𝜃𝑖

)−(𝑛+1)

GaussianPeak 𝑓 (𝜃) = exp

(
−

𝑛∑
𝑖=1

𝑐2
𝑖
(𝜃𝑖 −𝑤𝑖)2

)

𝐶0 − Continuous 𝑓 (𝜃) = exp

(
−

𝑛∑
𝑖=1

𝑐𝑖|𝜃𝑖 −𝑤𝑖|)

Discontinuous 𝑓 (𝜃) =
⎧⎪⎨⎪⎩
0, 𝜃1 >𝑤1 or

𝜃2 >𝑤2
exp

(∑𝑛

𝑖=1 𝑐𝑖𝜃𝑖
)
, otherwise

The relative magnitude of the coefficients 𝑐𝑖 > 0 impacts the difficulty of integrating or approximating these families of functions. 
This benchmark implements various types of decay ofthe coefficients as a function of the index 𝑖. This introduces anisotropy into the 
functions (i.e., it varies each variable’s importance) that can be exploited by adaptive methods. The types of coefficient decay are:

No decay 𝑐𝑖 =
𝑖+ 0.5

𝑛

Quadratic decay 𝑐𝑖 =
1

(𝑖+ 1)2

Quartic decay 𝑐𝑖 =
1

(𝑖+ 1)4

Exponential decay 𝑐𝑖 = exp
(
log(𝑐min)

𝑖+ 1
𝑛

)
Squared-exponential decay 𝑐𝑖 = 10

(
log10(𝑐min)

(𝑖+1)2

𝑛2

)

Here 𝑐min = 5 × 10−6. With the decay formulas above, the final benchmark coefficients are obtained by normalizing such that

𝑐𝑖 = 𝐶
𝑐𝑖∑𝑛

𝑖=1 𝑐𝑖
,

where 𝐶 > 0 is set by the user and defaults to 1.0 if not provided. Generally, increasing the size of coefficients 𝑐𝑖 will make integration 
or constructing surrogate models of these functions more difficult. Finally, while the 0 ≤ 𝑤𝑖 ≤ 1 parameters were varied in [89], they 
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do not affect the difficulty of the integration problem and so we set 𝑤1 =𝑤2 =… =𝑊𝑛 =𝑊 to a user specified constant 𝑊 ∈ℝ.
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Table A.13

Configuration variables for the Genz benchmark.

Config Type Default Description

𝑛 integer 1 Function dimension
𝐶 float 1 Normalizing constant
𝑊 float 0.5 Shift parameter
𝑇 string sqexp coefficient decay type
𝑁 string oscillatory integrand family

With these definitions, each of the six families of functions maps an uncertain parameter 𝜃 ∈ ℝ𝐷 to ℝ. This benchmark only 
supports evaluation of the forward map, with configuration options in Table A.13.

A.3.3. L2-Sea propagation

This benchmark has been presented and discussed in Section 5.1. Here we only specify that the optional configuration parameters 
presented when discussing the model in Section A.1.2 are set in the benchmark as follows: sinkoff=‘y’, trimoff=‘y’. As a reference 
value, we also report an approximation of the expected value of the resistance: more specifically, following the script reported in 
Section 5.1 (note in particular that such example is run with fidelity=3) and setting the sparse grid to 𝑤 = 15, we obtain the sparse 
grid with 256 points shown at the bottom row of Fig. 6, and 𝔼[𝑅] ≈ 51.664730931098383 N.

We also provide a reference value for a second setting, namely assuming that Fr and T are uniformly distributed in their intervals, 
rather than having respectively a triangular and a beta random distribution; we also lower the fidelity config parameter to fidelity=6. 
We then adjust the following lines of the script reported in Section 5.1

fid = 6;

knots_Fr = @(n) knots_leja(n,Fr_a,Fr_b,‘sym_line’);

lev2knots_Fr = @lev2knots_2step;

knots_T = @(n) knots_leja(n,T_a,T_b,‘sym_line’);

lev2knots_T = @lev2knots_2step;

w = 9;

S = create_sparse_grid(N,w,{knots_Fr,knots_T},{@lev2knots_Fr,@lev2knots_T});

and obtain a grid with 181 points that yields 𝔼[𝑅] ≈ 68.398655639653271 N.

A.3.4. The cookies problem

This benchmark runs a forward UQ problem for the elliptic variant of the cookies model described in Appendix A.1.8. The results 
have been obtained using the Sparse Grids Matlab Kit [15] and the Matlab interface to UM-Bridge. More specifically, we assume that 
the uncertain parameters 𝜃𝑛 appearing in the definition of the diffusion coefficient Eq. (A.5) are uniform i.i.d. random variables on 
the range [−0.99, −0.2] and we aim at computing the expected value of the quantity of interest Ψ in Eq. (A.6). The structure of this 
benchmark therefore identical to the test discussed in [80]; however, raw numbers are different since in that work the mesh and PDE 
solver employed were different (standard FEM with piecewise linear basis on a triangular mesh); in particular, for this benchmark, 
we fix the finite element degree at 𝑝 = 1 and the fidelity config parameter to 𝑘 = 4.

As a reference value, the UM-Bridge documentation provides the approximation of the expected value 𝔼[Ψ] computed with 
a standard Smolyak sparse grid, based on Clenshaw–Curtis points for levels 𝑤 = 0, 1, … , 5 (the finest grid having around 15000
collocation points); see e.g. [15] for more details on the sparse grid construction, as well as the benchmark script available on the 
UM-Bridge documentation.

A.4. Optimization benchmarks

UM-Bridge’s interface is sufficiently generic to allow more than just UQ problems to be solved. As a proof of concept we provide 
an example optimization benchmark in this section.

A.4.1. L2-Sea optimization

This optimization benchmark employs the L2-sea model described in Appendix A.1.2, and was developed within the activities of 
the NATO-AVT-331 Research Task Group on “Goal-driven, multifidelity approaches for military vehicle system-level design” [91]. 
The goal is to minimize the resistance 𝑅 of the DTMB 5415 in calm water at fixed speed (i.e. fixed Froude number, namely Fr = 0.28), 
and nominal draft T = −6.16, by suitably modifying the shape of the hull of the vessel. In other words, the first two components of 
the parameters vector 𝜃 are fixed, and we optimize on the 𝑁 = 14 shape parameters, s, only. The optimization problem thus reads

minimize 𝑓 (𝐬)
subject to ℎ𝑖(𝐬) = 0 𝑖 = 1,2

𝑔𝑘(𝐬) ≤ 0 𝑘 = 1,… ,4
−1 ≤ 𝑠𝑖 ≤ 1 𝑖 = 1,… ,𝑁

where the objective function 𝑓 is the total resistance 𝑅, the equality constraints ℎ𝑖 (automatically satisfied by the shape modification 
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method) include (ℎ1) fixed length between perpendiculars of the vessel and (ℎ2) fixed vessel displacement, whereas the inequality 
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constraints 𝑔1, … , 𝑔4 encode geometrical constrains on the modified hull in relation to the original one. In particular, 𝑔1 relates to 
the beam, 𝑔2 to the draft (both allowing ±5% of maximum variation), and 𝑔3, 𝑔4 relate to the minimum cylindrical dimensions to 
contain the sonar in the bow dome, see [66] for details: these are the four additional outputs of the L2-sea model that were hinted at 
the end of Appendix A.1.2.

A reference optimum has been found in [20] with a multi-fidelity method (i.e., the config parameter fidelity is not fixed a-priori 
but chosen adaptively by the optimizer), where an objective improvement of 12.5% is achieved with an NCC = 628. Specifically, 
the minimum of the resistance is at 𝐬 = (−1.000000, −0.906250, −0.781250,−0.242188, 0.533203, −0.906250, 0.128418, 0.812500,
−0.070313, −0.878296,0.422363, 0.031250, 0.365234,−0.175659) and the corresponding value computed at fidelity=1 is 36.3116 N. 
Note that NCC is the normalized computational cost and it is evaluated as the ratio between the CPU time needed for the generic 𝑗-th 
fidelity and the highest-fidelity. To allow comparison between methods, the standard NCC to be used as the cost of function evaluation 
for each fidelity level is {1.00, 0.46, 0.20, 0.11, 0.07, 0.04, 0.03}, from highest to lowest. These results have been obtained by fixing 
the config parameters sinkoff and trimoff to ‘y’.

Data availability

Simulation codes and relevant data for inference problems are published as container images in the online benchmark library.
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