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The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is
particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of
this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect
of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet
oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field
directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by
strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights
into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.
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The spin-orbit interaction (SOI) allows electrical
manipulation of individual spins and has therefore become
a key ingredient for the realization of fully electrically
controlled spin qubits [1,2]. For electrons in Si it is rather
weak and synthetically boosted by means of micromagnets
[3,4]. For holes, on the other hand, it is an intrinsic property
which allows to perform electron dipole spin resonance
(EDSR) measurements [1,2,5–9]. In Ge it is particularly
strong leading to Rabi frequencies beyond 100 MHz
[7,10,11]. SOI for holes can be linear or cubic in the wave
vector k, with nanowire qubits favoring the former type
while planar qubits the latter [12–14]. The SOI is not only
important for single spin but also for singlet-triplet qubits as
it causes an intrinsic mixing between the heavy hole (HH)
and light hole (LH) bands and thereby locally affects the g
factors of the individual spins allowing to drive S − T0

oscillations [15]. In combination with an extrinsic Rashba
type SOI caused by the structural inversion asymmetry
induced by the heterostructure, it also mixes the S and

T− states contributing therefore to a measurable avoided
crossing ΔST−

.
Here, we investigate this avoided crossing for a double

quantum dot (DQD) Ge hole spin system and gain insight
into the interplay between SOI and the g-factor anisotropy
and their consequences on qubit dynamics.
A scanning electron microscope (SEM) image of the

device under consideration is depicted in Fig. 1(a) and
further details can be found in Ref. [15]. A two-dimensional
hole gas is embedded in a Ge=SiGe heterostructure and
additional TiPd top gates confine a DQD and a charge sensor
(CS). For qubit state selective read out we rely on Pauli spin
blockade (PSB) combined with Ohmic reflectometry [16].
Fast detuning pulses are applied to gates LB and RB through
an arbitrary waveform generator (AWG) with a pulse-rise
time of τrise ≈ 2 ns. Throughout this work we apply a small
magnetic field in a plane perpendicular to the axis connect-
ing the two dots (DQD axis), B ¼ ½B cosðθÞ; 0; B sinðθÞ�,
where θ describes the tilt angle from the in-plane direction.
We tune the DQD to a charge transition between an effective
ð2; 0Þ ↔ ð1; 1Þ state, with (nL, nR), where nL (nR) denotes
the effective hole number in the left (right) QD [Fig. 1(c)].
The tunnel coupling between the dots is described by tC
while the energy detuning between the Sð2; 0Þ and Sð1; 1Þ
state is parametrized by ϵ. Each QD is characterized by an
out-of-plane and an in-plane g factor, g⊥ and gk, respectively.
However, the dynamics of singlet-triplet qubits is only
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sensitive to differences in, or the average of, the Zeeman
energies of the dots, and hence we define g� ¼ gL � gR as
the g-factor difference and sum. The energy spectrum of the
system (the complete Hamiltonian Htot is derived in the
Supplemental Material [17] Sec. VI) is depicted in Fig. 1(b)
as a function of ϵ. At ϵ ¼ ϵ� the S and T− states anticross.
We start by mapping out ΔST−

as a function of magnetic
field angle by varying the magnetic field strength B and ϵ
[24]. We initialize the system deep in (2,0) in a singlet state
[point I in Fig. 1(c)], then pulse quickly to (1,1) where the
spins are separated (Sep). Mixing between S and T− is
induced when ϵ ≈ ϵ�. In the end we measure the spin state
inside the PSB triangle (M). The resulting triplet return
probability depends both on the size of the avoided crossing
and the separation time τS. We apply a rapid pulse of
duration τS ¼ 65 ns and varying ϵ [inset of Fig. 1(d)].
Figures 1(d),1(e), and 1(f) depict the phase response of the

charge sensor in the measurement point as a function of ϵ
and B for θ ¼ 90°, 60°, and 10°, respectively. A high phase
signal corresponds to a larger triplet return probability. In
the out-of-plane direction we observe the expected funnel
shape of the S − T− anticrossing [24]. At 60° we similarly
observe a typical funnel shape, however, we notice the line
to be fainter, which indicates a smaller ΔST−

. The picture
drastically changes towards the in-plane direction where
the S − T− avoided crossing develops interference fringes
with a pattern resembling a butterfly; 2 components can be
attributed to S − T− oscillations at low detuning and S − T0

oscillations becoming more prominent at high detuning.
The angular anisotropy of the funnel pattern, further
exemplified in the Supplemental Material [17], Fig. S5,
is the main focus of this work and requires knowledge of
the full Hamiltonian and therefore an understanding of the
interplay between the g-factor anisotropy and the spin-flip
element tSO.
In order to extract the g-factor anisotropy we rely on

singlet-triplet oscillations. After initialization in Sð2; 0Þ,
appropriate pulses to (1,1) induce either S − T0 or S − T−
oscillations. The probability to maintain the initial eigen-
state of the system after a sweep with ramp time τR is given
by the Landau-Zener formula PLZ ¼ exp½−ð2πΔ2

ST−
=ℏvÞ�

[25,26], where ℏ is the reduced Planck constant, v ¼
jdE=dtj ¼ jdJðϵÞ=dϵjϵ¼ϵ� ðΔϵ=τRÞ is the velocity calcu-
lated at ϵ ¼ ϵ� and JðϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ2=4Þ þ 2t2C

p
− ðϵ=2Þ is the

exchange energy [Fig. 1(b)] [15]. If v satisfies the diabatic
condition (PLZ ≈ 1) S − T0 oscillations with a frequency
f ¼ ð1=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ ðg−μBBÞ2

p
will be favored. With PLZ < 1

the S − T0 oscillations are suppressed and the qubit is
initialized in a superposition of S and T−. After a time τS
the system is pulsed back to the measurement point where
another nondiabatic passage will cause an interference
between the two states [27]. The accumulated phase
difference is then given by ϕ ¼ 2πfS−T−

τS ≈ ðτS=ℏÞjJ −
1
2
gþμBBj [28] [Fig. 1(b)]. As the oscillation frequency of

the S − T0 (S − T−) qubit depends on g− (gþ) [Fig. 1(b)]
we can extract the individual g factors without the need for
EDSR. We fix the magnetic field at jBj ¼ 2 mT and
observe the oscillations vs τS while rotating B. We use a
fast pulse (τR ¼ τrise ¼ 2 ns) in Fig. 2(a) and a ramped
pulse with ramp time τR ¼ 100 ns in Fig. 2(c). In both
cases we pulse to ϵ ¼ 4 meV for a duration τS. From the
fast Fourier transform (FFT) in Figs. 2(b) and 2(d) we
extract the oscillation frequency fS−T0

(orange dots) and
fS−T−

(pink dots). We notice that for θ ∈ ½−25°;þ25°� in
both FFT plots the S − T− frequency is visible, suggesting
that a large coupling term inducing S − T− oscillations is
present at these magnetic field directions, in line with the
observations in Fig. 1(f). Moreover, in Fig. 2(d) the FFT
power vanishes for θ ≈ 60° indicating that the ramp time τR
induces a completely diabatic passage over the avoided
crossing. This is in line with Fig. 1(e) where we observed a

(a)

(b)

(c) (f)

(e)

(d)

FIG. 1. (a) SEM image of the device. (b) The energy level
diagram as a function of detuning highlights the relevant energy
splittings between S and T0 (orange) and S and T− (pink). At
ϵ ¼ ϵ�, S and T− anticross with a splitting 2ΔST−

. Initialization (I)
in a singlet Sð2; 0Þ occurs at negative ϵ. The spins are separated
(Sep) at positive ϵ. Spin-selective read out happens at the
measurement point (M, white dot). (c) Stability diagram of the
transition of interest. The effective hole number is reported as
“(nL, nR).” The detuning axis as well as I, M, and Sep are
highlighted. The dashed triangle marks the PSB region. (d)–(f)
Reflection phase versus ϵ and magnetic field for θ ¼ 90°, 60°, and
10°, respectively. A high signal corresponds to a larger triplet
return probability. The lower inset in (d) displays the pulse
sequence where only the pulse amplitude ϵ is varied.
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sharper S − T− avoided-crossing characteristic of a smaller
mixing term.
The lines arising in the FFT plots can be fit by the energy

splitting between the three lowest lying states of the system
depicted in Fig. 2(e) with gþ⊥ ¼ 12.00, g−⊥ ¼ 2.04,
gþk ¼ 0.10, g−k ¼ 0.43, and tC ¼ 11.38 μeV. The latter is

extracted from exchange oscillation measurements (see
Supplemental Material [17] Fig. S2).
Interestingly jg−k j > jgþk j while jg−⊥j < jgþ⊥j. This means

that the g factors in the out-of-plane direction have the same

sign while they exhibit opposite signs in the in-plane
direction. To understand this observation we investigate
the effect of the dot geometry on the g factors. As is shown
in Supplemental Material [17] Sec. VIII by using the
semimicroscopic Luttinger-Kohn Hamiltonian as a starting
point, the effects of the intrinsic HH-LH mixing and an
elliptical confinement potential can combine to yield
g-factor renormalizations. While the correction to the
out-of-plane g factor is jδg⊥j < 10−2 for the values con-
sidered and hence negligible, the in-plane g factor can be
altered considerably,

gk ¼ g0k − ξ1
ℏðωx − ωyÞ

ℏðωx þ ωyÞ − ξ2Δ
: ð1Þ

Here, ξ1 ≈ 20.3 and ξ2 ≈ 6.0 are material specific constants,
Δ is the HH-LH splitting, ℏωx;y are the in-plane confine-
ment energies, and g0k ¼ 0.2 for Ge [30]. It can be seen from

Fig. 2(f) that the in-plane g-factor corrections can be
negative in one dot but not in the other for opposite
elliptical confinement.
Electrostatic simulations of the DQD potentials arising

from the applied gate voltages [29], not accounting for
random disorder potentials, confirm the differently shaped
dots. In fact, both dots appear elongated with the major axis of
the dots being almost perpendicular to each other [Fig. 2(g)
shows the calculated hole density nh and Supplemental
Material [17] Sec. IX gives details about the simulation].
We now turn to extract tSO by analyzing ΔST−

in more
detail. We perform Landau-Zener sweeps at jBj ¼ 20 mT
and extract ΔST−

from PLZ [Fig. 3(b)] and repeat this for
different θ. We vary τR during the first passage over the
avoided crossing, creating a superposition of S and T−, and
keep the return sweep diabatic in order to maintain this
superposition [Fig. 3(a) and inset of Fig. 3(b)]. The
extracted ΔST−

is reported for different θ in Fig. 3(c). In
general, ΔST−

may depend on effects influencing the hole
spins such as the g-factor differences in the two dots, the
SOI and possible effective magnetic field gradients caused
by the hyperfine interaction [31]. While the hyperfine
interaction can result in a strong out-of-plane hyperfine
component δbZ for HH states due to a special Ising-type
form [32], the inhomogeneous dephasing times extracted
for B⊥ of ≈700 ns at 1 mT in Ref. [15] give an upper limit
for the hyperfine component δbZ < 2 neV, suggesting that
the effects of the nuclear spin bath may safely be neglected.
In planar HH DQD systems the SOI can be parametrized

by a real in-plane spin-orbit vector tSO ¼ ðtx; ty; 0Þ. Such
in-plane spin-flip tunneling terms stem from the cubic
Rashba SOI [33], while this type of SOI does not induce
out-of-plane terms tz. In a basis in which the total
Hamiltonian is diagonal in the absence of the SOI and
g-factor differences, the S − T− splitting has the form [34]

(a) (b)

(c)

(e)

(g)

(d)

(f)

FIG. 2. (a) and (c) Oscillation amplitude of the singlet state in
the measurement point as a function of separation time and
magnetic field angle at B ¼ 2 mT for τR ¼ 2 and τR ¼ 100 ns,
respectively. (b) and (d) FFT of (a) and (c) revealing the
oscillation frequency anisotropy. The orange and pink dotted
lines are fit to our model. We find a small offset of 100 μT in the
perpendicular field which leads to a small asymmetry in the FFT
plots. The insets show the pulse shape where the system is swept
to ϵ ¼ 4 meV. (e) The energy dispersion of the eigenstates ofHtot
at ϵ ¼ 4 meV as a function of θ reproduce the frequencies seen in
(b),(d) with the orange (pink) arrow highlighting the visible
transition. (f) Effect of the confinement on the in-plane g factors
for a quantum well width of 20 nm according to Eq. (1). On top,
we schematically show possible dot geometries in real space. (g)
DQD potential obtained with an electrostatic simulation analo-
gous to that presented in Ref. [29]. Using the gate voltages from
the experiment we can infer the approximate dot shapes which
shows an almost opposite elongation for the two QDs. The color
scale represents the hole density (nh).
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ΔST−
¼

����ΔSO sin

�
Ω
2

�
þ ΔEZ cos

�
Ω
2

�����; ð2Þ

where the spin-orbit splitting ΔSO and the Zeeman splitting
ΔEZ due to anisotropic site-dependent g tensors read

ΔSO ¼ ty þ itx
gþ⊥ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgþk cos θÞ2 þ ðgþ⊥ sin θÞ2
q ; ð3Þ

ΔEZ ¼ μBB

4
ffiffiffi
2

p
ðg−k gþ⊥ − gþk g

−⊥Þ sinð2θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþk cos θÞ2 þ ðgþ⊥ sin θÞ2

q ; ð4Þ

and Ω ¼ arctanð2 ffiffiffi
2

p
tC=ϵ�Þ is the mixing angle at the

anticrossing. The analytical result (2) agrees well with
the numerical results obtained by exact diagonalization of
the system Hamiltonian for all θ except in a narrow region
around θ ¼ 0 [jθj≲ 2°, inset of Fig. 3(c)]. We attribute
these deviations to the small in-plane Zeeman energies
which violate the assumption of an isolated two-level
system made when deriving (2) (see Supplemental
Material [17] Sec. VI). Because of the opposite sign
g-factor corrections in the dots the Zeeman splitting

ΔEZ can be the dominant contribution to ΔST−
, exceeding

the spin-orbit splitting by one order of magnitude at small
angles. Even when the magnetic field has a large out-of-
plane component, the effect of different g factors can
contribute crucially to ΔST−

[Fig. 3(d)].
The extracted ΔST−

in Fig. 3(c) can be fit by the model
with tx and ty as free parameters and tC, g

þ⊥, g−⊥, gþk , g−k
extracted from previous measurements. Between −25° and
25° the splitting seems to drop to zero as the Landau-Zener
assumptions of diabatic return sweeps are not met and an
extraction of ΔST−

is not accurate. The black dashed line
corresponds to the maximum ΔST−

that allows a diabatic
passage with a rise time of 2 ns of our pulses
(PLZ;max ¼ 0.99 ¼ exp½−ð2πΔ2

ST;max=ℏvÞ�). The model fits
the dark blue data points with tx ¼ 129.0� 18.0 and
ty ¼ −369.8� 13.8 neV, yielding the total spin-flip tun-

neling element tSO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2x þ t2y

q
¼ 392.0 neV.

Having characterized all the elements in the Hamiltonian
from independent measurements we can now reproduce the
funnel measurements in Fig. 1 (Fig. 4). In particular the
sharper line at θ ¼ 60° [Fig. 4(b)] as well as the S − T−
oscillations for θ ¼ 10° [Fig. 4(c)] reflect what we observe
in the data. Even with tSO ¼ 0 the in-plane g-factor
difference induces S − T− oscillations [Fig. 4(d)] further
confirming its dominant role in determining the size
of ΔST−

.
In conclusion, we have demonstrated that the g-tensor

anisotropy and, in particular, the in-plane g-factor

(a)

(b)

(c)

(d)

FIG. 3. (a) Energy level diagram of the states involved in the
passage over the avoided crossing [red circle in 1(b)]. The
probability PS to maintain a singlet after a single passage over
the avoided crossing is given by the Landau-Zener formula.
(b) The single LZ passage pulse sequence (inset) leads to a singlet
return probability PS that decays exponentially with the ramp
time τR. A fit to the Landau-Zener transition formula (black
dashed line) allows to extract ΔST−

. (c) ΔST−
as a function of

magnetic field angle. The extracted ΔST−
is fit to Eq. (2) with tx

and ty as fitting parameters (solid blue line). The black dashed
line represents the maximum ΔST−

as a function of θ that can be
reliably measured by a single LZ passage. The light colored data
points are, therefore, excluded from the fit. (inset) Comparison
between the analytical result [solid line, Eq. (2)] and numerical
simulation (squares) for ΔST− around θ ¼ 0. Here, the analytical
expression fails due to the small in-plane Zeeman energies.
(d) Comparison between the two contributions to ΔST−

.

(a) (b)

(c) (d)

FIG. 4. Simulations of the funnel plots with the master equation
approach using qutip. (a)–(c) Funnel for θ ¼ 90°, 60°, and 10°,
respectively, showing the S − T− avoided crossing as an in-
creased triplet return probability. The simulations take the model
Hamiltonian with the experimentally extracted parameters as
input and perform the time-evolution calculation returning the
combined triplet return probability (PTþ þ PT−

þ PT0
). The

simulations reproduce the experimental data observed in Fig. 1.
(d) A simulation with tSO ¼ 0 but with all the other values of the
model as in (c) again reveals the butterfly shape of the S − T−
avoided crossing.
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difference can lead to a considerable contribution toΔST−
in

the in-plane direction. However, Landau-Zener sweeps and
singlet-triplet oscillations measured in different magnetic
field directions allowed us to distinguish the Zeeman
induced coupling from the spin-orbit induced coupling
and, thereby, infer the magnitude and orientation of tSO. We
reconstructed the experimental data in our simulations
confirming the validity of our theoretical model. This
understanding of the interplay between tSO and the in
plane g-factor difference opens the possibility to operate
hole singlet-triplet qubits at sweet spots, for example with
orthogonal axis [34]. Our work, therefore, provides impor-
tant insight into the spin-orbit interaction of hole spin
double quantum dot devices and lays the foundation for the
design of future hole spin qubit experiments.
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FIG. S1. The effective hole numbers are labelled “(nL, nR)”. The real hole number is (nL + 2, 2n+nR) since we do not know
the exact number of holes in the right dot. The dashed triangle marks the region in which Pauli spin blockade occurs and the
measurement point (M) is located at the center of it at ε = εM . “I” marks the initialization point. The dispersion relation is
overlaid on top of the “(1,1)” region. The avoided S − T− crossing occurs at ε = ε∗

Supplementary: Dynamics of Hole Singlet-Triplet Qubits with Large g-Factor
Differences

I. STABILITY DIAGRAM, PULSING, TUNNEL COUPLING

The stability diagram around the transition of interest is reported in Fig. S1. The effective hole numbers are
labelled “(nL, nR)” while the real hole number is (nL+ 2, nR+ 2n). The dispersion relation is overlaid and highlights
the 4 states involved in the dynamics of the system. When pulsing we initialize (I) deep in “(2,0)” with a short pulse
knowing that the short relaxation time T1 ensures decay to a singlet. Only for the in-plane field direction this is not
true as is further discussed below.

We extract the tunnel coupling from exchange oscillations. A typical pulse sequence to probe the exchange inter-
action J is depicted in the inset of Fig. S2a. After initialization in S(2, 0) the system is pulsed rapidly to large ε
and left to evolve for a time corresponding to a π/2 rotation around the x-axis of the Bloch-sphere. A subsequent

pulse at lower ε for a time τS increases the exchange interaction J(ε) =
√

ε2

4 + 2t2C −
ε
2 . Therefore, the oscillation

frequency f =
√
J(ε)2 + (g−⊥µBB)2 will reflect the change in J and increase for lower ε. The fit in Fig. S2, therefore,

allows to extract the tunnel coupling. As the coherence time for very low ε tends to 0, all the points at ε < ε∗ are not
considered in the fit. ε∗ is highlighted by the black arrow where the S − T− mixing is prominently visible.

II. SINGLET-TRIPLET DYNAMICS FOR SMALL ANGLES

We probe singlet-triplet oscillations at small angles by rapidly pulsing to large ε and observing the signal of the
returned state. In Fig. S3a the resulting oscillation pattern is displayed for θ = 0◦. The FFT in S3b reveals several
frequency components. The dotted lines are extracted from our model and the corresponding dispersion relation is
depicted in S3c. The colored arrows mark the transitions we actually observe in the FFT plot. The singlet-triplet
oscillation and FFT plots for θ = 5, 10, 20 and 30◦ are further depicted in Fig. S4. We generally find a good agreement
with our theoretical model.
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slightly higher frequencies which we attribute to spectral leakage due to the imperfect initialization [S1]. c) The arrows point
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III. S − T− AVOIDED-CROSSING AS A FUNCTION OF MAGNETIC FIELD DIRECTION

We report the S − T− avoided-crossing for different magnetic field directions in Fig. S5. For the out-of-plane
direction the typical funnel shape can clearly be observed. Towards the in-plane direction the S−T− avoided-crossing
evolves into an oscillation pattern suggesting a large coupling term between S and T−. This anisotropy, which follows
the g-factor anisotropy of confined HH states, indicates a dependence related to the Zeeman terms in Htot. Indeed,
our model can reproduce the plots assuming g−‖ > g+

‖ .

We furthermore report the effective level velocity v = |dJ(ε)
dε |ε=ε∗

∆ε
τR

with ∆ε = 4 meV, τR = 2 ns as a function

of the magnetic field angle θ for a magnetic field strength of 20 mT (Fig. S6). Towards the in-plane direction the
velocity is reduced as the Zeeman splitting is lowered due to the g-factor anisotropy. As a result, for small angles, the
shortest possible ramp time does not allow a diabatic passage over the avoided crossing as pointed out in Fig. ??b.
Incidentally, this is a favorable property for single spin qubits where fast initialization in the |↓↓〉 state is required.
Indeed, for θ = 0 the ground state in (1,1) can be initialized with fidelity F = 1 − PLZ ≈ 1 at a ramp time of 20 ns
(Fig. S6).
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FIG. S5. S − T− avoided-crossing funnel for different angles for τS = 250 ns. Clearly the funnel is well defined for out-of-
plane fields and evolves into an oscillation pattern for in-plane fields. This suggests a dependence stemming from the g-factor
anisotropy of HH states. In fact, our model fits the experimentally observed funnel shapes with g+⊥ = 12, g−⊥ = 2.05, g+‖ = 0.1,

g−‖ = 0.43. Moreover, the spin-orbit vector pointing along θ = 60◦ gives rise to an asymmetry between the sharpness of

the funnel at +60◦ and −60◦, also confirmed by single Landau-Zener sweeps. The bottom right plot shows the S − T−
avoided-crossing at 20 mT for positive angles. This is used to calibrate the pulse amplitude necessary to overcome the S − T−
avoided-crossing (ε > ε∗) in the single Landau-Zener sweeps (see Fig. 3b of the main text).
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FIG. S7. Relaxation time of the |T0〉 state as a function of magnetic field strength and angle. In contrast to the decay of the
T− state the relaxation of the T0 state is proportional to κ/∆E2

Z (dashed lines) wiht κ a proportionality constant. T1 generally
decreases for larger magnetic fields. Only for θ = 30◦ the relaxation time maximizes at 2 mT. This occurs because for lower
magnetic fields the presence of the S − T− avoided crossing lowers the T0 return probability as a diabatic passage can not be
achieved with the finite rise time of our AWG. For angles θ < 30◦ no diabatic passage can be achieved. Therefore we cannot
extract T1 of the T0 state.

IV. DECAY OF T0 STATE

The relaxation time of the T0 state does not depend on the SOI (Eq. S15)and, therefore, displays a different
anisotropy than the relaxation for the T− state. To probe this, we perform diabatic pulses and fit the decay of the

return signal to Φrefl(τM = 0) exp
(
− τMT1

)
. As shown in Fig. S7 the relaxation time follows ≈ 1

g−⊥µBB sin θ

2
and is

generally < 10 µs making read-out at large fields challenging. Therefore, shelved read-out [S2] could be harvested
where the read-out distinguishes between S and T−. At θ = 60◦ the relaxation of the T− state is maximised offering
a sweet spot for shelved read-out.
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V. INITIALIZATION AND SPECTRAL LEAKAGE

The fast Fourier transform plots in Fig. S3 and Fig. S4 display additional frequency components not predicted
by our model which are especially evident at θ = 5◦ and 10◦ and can be attributed to improper initialization of
the singlet state prior to a pulse. In [S1] a similar system is analyzed and a general formula for the singlet return
probability PS of non-properly initialized state (a superposition of S and T−) is extracted as

PS = P ′SP + [1− P ′S ](1− P ), (S1)

where P is the return probability with correct singlet initialization and

P ′S =
P exp

(
− τMT1

)
− 1

(2P − 1) exp
(
− τMT1

)
− 1

. (S2)

Here, τM is the measurement time and T1 is the relaxation time of the T− state in the read-out point. It is clear that
for τM � T1 we find PS = P . However, when τM ≈ T1 the singlet return probability deviates significantly from P .
In Fig. S8a we show a line trace of Fig. S4 at θ = 5◦ and B = 8.5 mT. We clearly see that the oscillations are not
sinusoidal. Fig. S8b displays the FFT of the line trace and 3 distinct peaks can be observed. However, more peaks
are present but buried in the background. Fig. S8c shows a simulation of the time evolution of the state. The red
trace assumes perfect initialization whereas the blue trace depicts the corrected singlet return probability according
to Eq. S1 and S2 with τM ≈ T1. The blue trace indeed resembles what we measure. Furthermore, we inspect the
FFT of the simulated data and find that indeed for the improperly initialized curve we observe additional frequency
components. In the red trace we find only the frequency components corresponding to the transitions highlighted in
Fig. S3 of the main text. The FFT plot extracted from the simulation of the properly initialized state is depicted as
a function of magnetic field in Fig. S8e. On the other hand, the improperly initialized simulated FFT is plotted in
Fig. S8f. Here, several additional lines are clearly visible and follow what we measure in Fig. S4b albeit with altered
Fourier amplitudes.

VI. THE MODEL

We consider a tunnel coupled double quantum dot in the presence of an external magnetic field and the spin-orbit
interaction (SOI). For the small magnetic fields considered in this work, B . 20 mT, we may neglect orbital effects
arising from the canonical momentum and model the system by the Hamiltonian

Htot = Horb +HZ +HSO, (S3)

where HZ is the Zeeman Hamiltonian and HSO describes the SOI. The orbital part Horb reads

Horb = ε|S20〉〈S20|+
√

2tC (|S11〉〈S20|+ |S20〉〈S11|) , (S4)

where |S20〉 is the singlet with double occupancy in the left dot which is detuned by an amount ε from the (1, 1)
configuration, tC is the tunnel element in the one-particle picture, and |S11〉 is the singlet with one hole in each dot.
Diagonalizing (S4) yields the hybridized singlet states

|SE〉 = cos

(
Ω

2

)
|S20〉+ sin

(
Ω

2

)
|S11〉, (S5a)

|SG〉 = cos

(
Ω

2

)
|S11〉 − sin

(
Ω

2

)
|S20〉, (S5b)

where Ω = arctan
(
2
√

2tC/ε
)

is the orbital mixing angle and the corresponding energies are E(SE/G) = ε/2 ±√
ε2/4 + 2t2C . In the following we consider a regime where the excited singlet is far detuned and may be neglected.

Defining |S〉 ≡ |SG〉, we may focus on the four dimensional space spanned by the states |S〉, |T+〉, |T0〉 and |T−〉,
where |T0,±〉 denote the triplet states in the (1,1) configuration.
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For a magnetic field of magnitude B and angle θ as measured from the plane defined by the heterostructure, the
Zeeman Hamiltonian HZ reads,

HZ =
µBB

2

{
sin θ

[∑
±
±g+
⊥|T±〉〈T±|+ g−⊥ (|S〉〈T0|+ |T0〉〈S|) cos

(
Ω

2

)]

+
cos θ√

2

[∑
±

(
g+
‖ |T0〉〈T±| ∓ g−‖ |S〉〈T±| cos

(
Ω

2

)
+ H.c.

)]}
,

(S6)

where g±j = gLj ± gRj . Note that the axes are labelled such that y is the double quantum dot axis, and the magnetic
field is applied in the x-z-plane.

Finally, we consider a SOI parametrized by an in-plane spin-orbit vector, tSO = (tx, ty, 0), where all entries are
real. Such in-plane spin-flip tunneling terms stem from the cubic Rashba SOI [S3], while this type of SOI does not
induce out-of-plane terms tz. Consequently, the spin-orbit Hamiltonian HSO reads,

HSO = sin

(
Ω

2

)∑
±

(tx ± ity)|T±〉〈S|+ H.c., (S7)

An appropriate basis for studying the singlet-triplet anticrossing is given by the eigenstates of the total Hamilto-
nian (S3) for equal g-factors and in the absence of the SOI. Transforming the total Hamiltonian in the presence of
the SOI and g-factor differences into this basis, we find for the singlet-triplet splitting,

∆ST− =

∣∣∣∣∆SO sin

(
Ω

2

)
+ ∆EZ cos

(
Ω

2

)∣∣∣∣ , (S8)

where the spin-orbit splitting ∆SO and the Zeeman splitting ∆EZ are given by

∆SO = ty − itx
g+
⊥ sin θ√

(g+
‖ cos θ)2 + (g+

⊥ sin θ)2
, (S9a)

∆EZ =
µBB

4
√

2

(
g−‖ g

+
⊥ − g

+
‖ g
−
⊥

)
sin(2θ)√

(g+
‖ cos θ)2 + (g+

⊥ sin θ)2
. (S9b)

In Landau-Zener measurements the mixing angle Ω is a function of the detuning at the anticrossing between the
singlet and the low-energy polarized triplet, which is described by the equation

ε

2
−
√
ε2

4
+ 2t2C = −µBB

2
G(θ), (S10)

where G(θ) =
√

(g+
‖ cos θ)2 + (g+

⊥ sin θ)2. Rearranging gives the detuning at which the anticrossing is located,

ε∗ =
8t2C − (µBBG(θ))

2

2µBBG(θ)
, (S11)

and consequently the mixing angle at the anticrossing reads

Ω∗ = Ω(ε∗) = arctan

(
4
√

2tCµBBG(θ)

8t2c − (µBBG(θ))2

)
. (S12)

In Fig. ??d we show a comparison between the analytical result for ∆ST− evaluated at the detuning at the anticrossing
and simulated results obtained by exact numerical diagonalization of the total system Hamiltonian (S3). For the latter,
we obtain the splitting as the minimum difference between the two lowest eigenenergies. We find excellent agreement
for all angles except in a narrow region around θ = 0. The dip predicted by the analytical formula is not present in the
simulations. We attribute this deviation to the small in-plane Zeeman energies ∼ g+

‖ which violate the assumption of

a well separated two-level system. In this case the splitting is not given by the simple expression (S8) which describes
the coupling between the ground state singlet and the low-energy polarized triplet. Instead, the contributions of the
remaining two triplet states must be taken into account near θ = 0, and the coupling is altered.
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VII. SPIN-ORBIT VECTOR, FIELD AND LENGTH

In Eq. (S7) we model the SOI using the spin-orbit vector tSO = (tx, ty, tz) [S4] which contains genuine spin-flip
tunneling terms. In our structure we consider an in-plane spin-orbit vector, but different forms with tz 6= 0 are
possible in other systems. The most general effective form in the basis B defined in Sec. VI is

HSO = sin

(
Ω

2

)(
i
√

2tz|T0〉〈S|+
∑
±

(tx ± ity)|T±〉〈S|+ H.c.

)
. (S13)

Often, however, the SOI is parametrized by a spin-orbit field Md
SO in dot d ∈ {L,R},

HSO =
µB
2

∑
d

Md
SO · σd, (S14)

where σd is a vector containing the Pauli matrices in dot d. A general argument shows that the spin-orbit vector
tSO cannot be mapped to the spin-orbit field MSO. On the one hand, the Hamiltonian in Eq. (S7) is time reversal
invariant while the Zeeman type Hamiltonian (S14) with a real spin-orbit field is not. On the other hand, a complex
spin-orbit field would make (S14) non Hermitian, and hence the two quantities tSO and MSO cannot be related.
Taking the spin-orbit field to be a function of the crystal momenta, Md

SO(k), can restore time reversal symmetry but
is not an appropriate description for the confined hole spin states considered here. Another quantity is based on an
effective approach to first order in the SOI, explicitly taking into account phonons [S5],

Md
SO = 2B×Ωd

SO, (S15)

where B is the applied magnetic field, and ΩSO contains the effect of the SOI in dot d. However, with this definition
one has MSO = 0 at zero magnetic field, in contrast to Eq. (S7) which is independent of the magnetic field. Rather,
a Zeeman term (S14) with a spin-orbit field of the form (S15) complements the spin-flip tunneling terms appearing
in the spin-orbit vector with additional intra-dot processes stemming from higher orbital contributions. These are
expected to be negligible when the orbital energies ~ωx,y are large compared to the spin-orbit parameters (in the
present system we find |tSO| . 500 neV, ~ωx,y ∼ 1 meV).

Yet another quantity commonly used in the literature is the spin-orbit length lSO. It is shown in Ref. [S6] that
the spin-conserving and spin-flip tunneling terms in a Ge double quantum dot with cubic Rashba SOI and a locally
harmonic double quantum well potential are given by

tC =
3Nγ

4

(
~ω0 +

d2mω2
0

4

)
,

tSO = λRN(S − γ)
d3m3ω3

0

4
,

(S16)

where ~ω0 is the in-plane confinement energy, m is the in-plane HH mass, d is the interdot distance, S is the overlap
between the left and right dot states, γ = (1 −

√
1− S2)/S, and λR is the effective cubic Rashba coefficient with

units [λR] = energy/momentum3. We neglect the effect of excited orbitals and orbital magnetic contributions which
are expected to be valid simplifications at the confinement energies and low magnetic fields considered in this paper.
Following Ref. [S7], we express the spin-flip tunneling element in terms of the spin-conserving tunneling element,

tSO =
4tC
3

d

lSO
, (S17)

and use this expression as a working definition of the spin-orbit length,

lSO =
1

λR

γ

S − γ
4~ω0 + d2mω2

0

d2m3ω3
0

=
1

λR

1√
1− S2

4~ω0 + d2mω2
0

d2m3ω3
0

. (S18)

Ref. [S7] considers a DQD with a linear SOI, and we find that the spin-orbit length is rather different for systems with
a cubic Rashba SOI. In particular, it depends not only on material parameters via λR but also on the dot geometry
via ω0, d, S and γ.

This dependence on the dot geometry can be understood from the definition of the spin-orbit length as the distance
travelled by a particle before its spin is flipped. Assume for simplicity a particle travelling along x (e.g. the DQD
axis) and an nth order Rashba type SOI of the form

HSO = αn(~kx)nσy, (S19)
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where the real number αn is the coupling strength with units energy/momentumn, kx the crystal momentum along x
and σy a Pauli matrix. We may then work with an effective spin Hamiltonian by averaging over the crystal momentum,

〈HSO〉ψ = αn~n〈knx 〉ψσy, (S20)

where the state ψ is only required to satisfy the condition 〈knx 〉ψ 6= 0 to allow for finite spin flip times. In this case
the time evolution generated by this Hamiltonian in spin space will cause a spin flip in time τ = π/(2αn~n−1〈knx 〉ψ).
The spin-orbit length along x is then defined to be

lSO :=
〈px〉ψ
m

τ =
~〈kx〉ψ
m

τ =
π

2

~2−n

mαn

〈kx〉ψ
〈knx 〉ψ

. (S21)

For n = 1, the final fraction equals one and the spin-orbit length is a well defined quantity which only depends on
material parameters. However, for n > 1 the expectation values must be evaluated given a specific state of the system.
This introduces two problems: Firstly, since the state must be chosen by hand there is a degree of arbitrariness in the
definition of the spin-orbit length. Secondly, given a specific setup, the state chosen for computing the expectation
value will depend on the system geometry, and hence the spin-orbit length loses its character as a geometry independent
quantity as was explicitly shown above for the case of the cubic (n = 3) Rashba SOI. It is therefore necessary to treat
the spin-orbit length with caution for nonlinear SOI as it can possibly no longer be considered a good figure of merit
for material comparison.

VIII. EFFECT OF THE DOT GEOMETRY ON THE g-FACTORS

Heavy-hole (HH) and light-hole (LH) states confined in a germanium heterostructure in the presence of a magnetic
field B are well described by the Hamiltonian

H =
~2

2m0

[(
γ1 +

5

2
γs

)
k2 − 2γs (k · J)

2

]
+ 2µB

(
κB · J + q

3∑
n=1

BnJ
3
n

)
+ V (z) + U(x, y). (S22)

Here, the first term is the Luttinger-Kohn Hamiltonian in spherical approximation featuring the Luttinger parameters
γ1 and γs, the bare electron mass m0 and the spin 3/2 matrices Jn. The second term describes the effect of a magnetic
field in the context of the envelope function approximation, κ and q being constants that depend on system specific
influences such as strain and material composition [S8–S10]. We model the heterostructure by an infinite hard wall
potential V (z) in the out-of-plane direction, and realize the quantum dot in the x-y-plane by an elliptical harmonic
confinement potential,

U(x, y) =
m

2

(
ω2
xx

2 + ω2
yy

2
)
. (S23)

Note that the confinement energies ωx and ωy are defined with respect to the in-plane HH mass m = m0/(γ1 +γs). In
the following we assume small magnetic fields in the mT range and neglect orbtial effects arising from the canonical
momentum. This is valid for in-plane fields Bx,y if ε‖ = ~eBx,y/2m � ∆ = 2γs~2π2/m0d

2, where ∆ is the HH-LH
splitting with the quantum well width d. At d ≈ 20 nm one finds ∆ ≈ 17 meV and hence ε‖ � ∆ for Bx,y . 1 T.
On the other hand, for out-of-plane fields Bz we require ε⊥ = ~eBz/2m � min{~ωx, ~ωy}. For a typical minimal
in-plane confinement energy min{~ωx, ~ωy} ≈ 0.5 meV, we have ε⊥/min{~ωx, ~ωy} < 0.05 at Bz = 20 mT which is
the maximal field applied in this work.

The eigenstates of the Hamiltonian (S22) in the absence of HH-LH mixing and at zero in-plane magnetic field
have the form |Ψh〉|jz〉 (|Ψl〉|jz〉) for jz = ±3/2 (jz = ±1/2), where jz is the magnetic quantum number of the
total angular momentum, and the position states |Ψh/l〉 are a product of simple harmonic oscillator states in x and
y and trigonometric functions satisfying the boundary conditions set by V (z) at ±d/2. We proceed to project the
Hamiltonian (S22) onto the space spanned by the orthonormal orbital ground state basis {|Ψ0

h〉|3/2〉, |Ψ0
l 〉|1/2〉, |Ψ0

l 〉|−
1/2〉, |Ψ0

h〉| − 3/2〉} with

Ψ0
h/l(x, y, z) = ψh/l(x, y)φ(z),

ψh/l(x, y) =

√
mh/l

√
ωxωy

~π
exp

(
−
mh/l

2~
[
ωxx

2 + ωyy
2
])
, φ(z) =

√
2

d
cos
(πz
d

)
Θ

(
d

2
− |z|

)
,

(S24)
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where Θ is the Heaviside step function, mh = m and ml =
√
Mm with in-plane LH mass M = m0/(γ1 − γs). Note

that m < M for in-plane motion. One obtains a 4× 4 matrix (labelled by angular momentum) in which the HH and
LH spaces are separated in energy by the HH-LH splitting ∆ and can mix due to the intrinsic SOI,

〈H〉 =


(
3κ+ 27

4 q
)
µBBz

√
3
(
κ+ 7

4q
)
µ1µBb

∗ −
√

3γsµ2~(ωx − ωy) 3
2qµBb√

3
(
κ+ 7

4q
)
µ1µBb ε+

(
κ+ 1

4q
)
µBBz (5q + 2κ)µBb

∗ −
√

3γsµ2~(ωx − ωy)

−
√

3γsµ2~(ωx − ωy) (5q + 2κ)µBb ε−
(
κ+ 1

4q
)
µBBz

√
3
(
κ+ 7

4q
)
µ1µBb

∗

3
2qµBb

∗ −
√

3γsµ2~(ωx − ωy)
√

3
(
κ+ 7

4q
)
µ1µBb −

(
3κ+ 27

4 q
)
µBBz

 , (S25)

where we introduce the quantities

b = Bx + iBy, ε =
~(ωx + ωy)

2

(√
m

M
− 1

)
+ ∆, µ1 = 〈ψh|ψl〉 =

2(mM)1/4

√
m+

√
M
, µ2 =

m3/2(mM)3/4

m0(m+
√
mM)2

. (S26)

Note that any additional part of the Hamiltonian that is linear in the momentum (e.g. a Rashba type SOI) vanishes
upon projection onto the space spanned by the symmetric ground state wave functions. Assuming the HH-LH splitting
to be the largest relevant energy scale, ∆ � µB |B|, ~ωx, ~ωy, we may perform a Schrieffer-Wolff transformation to
decouple the LH subspace. We find an effective 2× 2 HH Hamiltonian with a Zeeman term (i.e., a term linear in B)
containing the renormalized g-factors

gx = g0
x − ξ1

~(ωx − ωy)

~(ωx + ωy)− ξ2∆
, (S27a)

gy = g0
y + ξ1

~(ωx − ωy)

~(ωx + ωy)− ξ2∆
, (S27b)

gz = g0
z − ξ1

[
~(ωx − ωy)

~(ωx + ωy)− ξ2∆

]2

, (S27c)

where g0
x = g0

y = 3q, g0
z = 6κ+ 27q/2 are the effective zeroth order values and

ξ1 = (12κ+ 21q)

√
γ2

1 − γ2
s

γ1 +
√
γ2

1 − γ2
s

, ξ2 =
2
√
γ1 + γs√

γ1 + γs −
√
γ1 − γs

(S28)

are material specific constants, ξ1 ≈ 20.3 and ξ2 ≈ 6.0 in (bulk) germanium. While gz is always reduced by the
HH-LH mixing, the sign of the correction to gx and gy depends on the relative in-plane confinement strength. In
particular, gx 6= gy due to the broken in-plane symmetry. It is therefore possible that one in-plane g-factor becomes
negative. This effect can be observed even in a perturbative approach because the zeroth order in-plane g-factors in
germanium are small, g0

x = g0
y = 3q ≈ 0.2. In contrast, we find that the correction to the out-of-plane g-factor is

|δgz| . 10−2 for the values considered here and hence negligible. The smallness of the correction to the out-of-plane
g-factor compared to the correction to the in-plane g-factors can be understood as follows: The HH and LH subspaces
are mixed by the effect of elliptical confinement (∼ [ωx − ωy]) and the in-plane magnetic fields, and the corrections
to the matrix elements in the effective HH Hamiltonian are given by a product of these effects. The effective in-plane
g-factor corrections then effectively contain only one of the two small mixing terms (δgx,y ∼ [ωx − ωy]) because
one factor contains the in-plane magnetic field, while the out-of-plane g-factor correction contains two small factors
(δgz ∼ [ωx − ωy]2).

IX. ELECTROSTATIC SIMULATION OF THE QUANTUM DOT SHAPES

The hole density is calculated by adapting an electrostatic model of a GaAs device [S11] to the geometry of the
SiGe device considered in this work. The electrostatic potential in the plane of the 2D hole gas induced by the gate
electrodes is the sum of the potential from each gate weighted by its voltage. The resulting hole density, calculated
using the Thomas-Fermi approximation in 2D, contributes to the total electrostatic potential; so an iterative self-
consistent solution is computed. We consider a spatially uniform potential offset, which is fitted such that the model
produces the experimental hole density when all gate voltages are set to 0V. The value of this potential offset is
−0.307 V. The double quantum dot considered in the experiment has an occupation of (3,2n+1), i.e. 3 holes in the
left dot and an unknown number of holes in the right dot. The gate voltages which form these quantum dots are
used in the model to produce an occupation of (3,4), taking the floor value of the total charge on each dot. A small
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adjustment to the gate voltage strength is required to match the occupation of the left dot which is known from
experiment (a global scale factor of 0.955 is applied). The error in the right dot occupation could be explained by the
lever arm of the right plunger being 20% lower than that of the left plunger, suggesting that different scale factors for
the plunger gates may be appropriate. Such scale factors are beyond the scope of this work, which aims to highlight
the different shapes of the two quantum dots.
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