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Electrostatic Imaging 
 

Abstract. 
Integral equations describe a new approach to the problem of Electrostatic Imaging (EI). These equations are derived 
and discussed in the scope of Potential Theory from Maxwell’s equations in quasi-static approximation. They establish 
an analytical link, in closed form, between the boundary-measured observables and the proper electrical quantities 
inside the given finite volume. This is the novelty of this work. Such integral equations act as a sound mathematical 
framework overcoming and unifying the many different approaches based on the numerical solution of the differential 
Dirichlet’s problem and the related various approximations and improvements.  Therefore, they allow a self-consistent 
analysis (i.e. an analysis without any ad hoc hypothesis) about various factors affecting any electrostatic imaging 
technique.  For instance, they allow a direct discussion about the role of electrode shapes; they take into account (self-
consistently) the effects of inclusions in the given volume; they permit a direct evaluation of the theoretical space-
resolving power; they help to assess the reliability of any inversion method applied to recovered experimental data, etc.  
Up to now, present numerical methods, although widely used, usually prevent from such a conceptually simple and self-
consistent approach, and are generally long far from real experimental systems.  This report describes how the relevant 
integral equations are obtained, discusses their scope, outlines the topics which require further investigation for facing 
the main experimental difficulties in order to definitely assess the reliability of the method. 

Keywords: Electrical Impedance Tomography, Electrostatic Tomography, Electrical Imaging, Electric Tomography, 
Capacitance Tomography, Electric Sensors, Electrical 3d-Visualization. 

 

1. Introduction 
The astounding amount of works available in literature ( ) 1 assesses the present interest about the so-called Electrostatic 
Imaging (EI). Just for giving an idea of the attention paid to this method, e. g. in biophysics, a query about Electric 
Tomography in PubMed ( )2  of NCBI gave 3718 results at the time when this note was written. This non-invasive 
imaging technique is very attractive not only in health diagnostics. Enjoying both an effective applicability to any 
electrically reactive system and a dramatic instrumental simplicity with respect to more conventional imaging 
apparatuses, it is potentially useful in many different fields: volume imaging, proximity sensors, process and flow 
controls, geophysics, superconductivity, bioelectricity, material analysis, etc. 

The variety of names indicating what is substantially the same method is a proof about its wide circulation. Just for 
giving some examples, instead of EI we often find: ERT, Electrical Resistivity Tomography, or ET, Electrical 
Tomography, or EIT, Electrical Impedance Tomography, or EST, Electrostatic Tomography, or ECT, Electrical 
Capacitance Tomography, etc… 

Data interpretation in EI is more difficult than in other non-electric tomographic diagnostics, since the ‘response’ of the 
system under observation is global.  This means that the boundary-measured values of the observables describing the 
response of the system are related neither to any emission volume nor to any given propagation direction. Therefore, 
e.g., the precious tool of Radon’s transform is useless. 

The early theoretical efforts (in ERT, for geophysical research ( )3 ) seem to be the works of R. E. Langer [1] and L.B. 
Slichter [2] about a layered medium. First basics for the relevant mathematical inverse problem are attributed to a work 
of A. P. Calderon “appeared only in the form of a crudely typed conference proceedings” in 1980 [3, 4].  Today, it is 
impossible to cite some works concerned with different numerical methods without badly disregarding the many other 
excellent papers proposed during the last years: the author apologizes for this. Nevertheless, a rather comprehensive 
effort appears in [5] and in the references therein. 

Experimental papers show the same rich situation: from the early works about the so-called “antivision technology”, 
through the realm of EFS, Electric Field Sensing, there is an impressive amount of contributions.  Once more 
apologizing for the suggested arbitrary choice, notable works are in [6, 7]. Just because one is facing such an 
uncontrollable amount of papers, the author is fully aware that any further proposed remark about EI could result 
outdated or even definitely obsolete. In spite of this, in the author’s opinion, most of the examined theoretical and 
experimental efforts performed up to now in EI do not rely on a physically reliable picture useful for a sound foundation 
of the proposed results.    The problem refers to the present state-of-the-art which, roughly speaking, shows an 
unsatisfactory two-faced scenario.   

 
1 A non-advanced (i.e. non correctly assessed) web query could result in about 1 million answers. 
2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed
3 http://en.wikipedia.org/wiki/Electrical_resistivity_tomography

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed
http://en.wikipedia.org/wiki/Electrical_resistivity_tomography


 

Indeed, a first class of works attempts to solve the inverse problem by sophisticated numerical procedures where the 
values of the relevant material functions inside the given volume are iteratively adapted in order to reproduce the 
experimental data within the required accuracy.  In other words, the inversion problem is solved by an iterative 
procedure that attempts to solve the forward one. 

Such efforts usually disregard the possible existence of sharp conductive boundaries between the media inside the 
volume into consideration and are often based on an exceedingly ease use of Maxwell’s equations and of constitutive 
relations. When the presence of sharp conductive boundaries is taken into account, the used techniques are generally not 
self-consistent [8, 9, and 10]. 

On the other side of the scenario, the “almost-purely experimental side”, there are many efforts which try to deduce the 
space distribution of matter by means of various lumped-circuit models simulating capacitive couplings, induction or 
potential coefficients, more or less arbitrary current paths, etc.  Also this procedure is not fully satisfactory and these 
experimental works are often engaged in a desperate challenge for explaining a relatively multifaceted reality by 
inadequate theoretical tools.   

Other contributions [11, 12] do not substantially change the situation depicted above. 

The aim of this note is not to claim a further solution of the inverse problem. The author has a different and more 
modest goal: he searches for a mathematical formulation of EI clearly assessing the link between the measured values 
and the relevant quantities inside the volume we are dealing with.    This approach starts from Maxwell equations and, 
self-consistently, develops a mathematical picture in the usual language of integral equations. Although this language 
today is not so trendy in the realm of electrical imaging, the author believes that it is very suitable for discussing more 
meaningfully about the difficulties in real measurements. 

For instance, the space resolving-power, the existence of macroscopic spurious capacitive couplings, the importance of 
the electrode shapes, etc., cannot be easily discussed in the scope of NtD or DtN maps. 

On the contrary, integral equations describing the response of the system under investigation allow an easier evaluation 
of the overall feasibility of the method. Indeed, they can take into account and discuss directly and self-consistently the 
various figures of merit that characterize the reliability of the chosen experimental lay out (e.g. the space resolving 
power, the sensitivity, the presence of macroscopic competitive couplings, etc.). 

This work arose as the first necessary step towards the full feasibility analysis about EI imaging in reacting systems of 
very different nature, where instrumental simplicity is mandatory (e.g. process tracking in reactors or the imaging of the 
combustion field in solid rocket propulsion, etc.). Therefore, the maximum of generality is required, when possible.   
Therefore, in the following, we search for integral relations linking self-consistently the boundary-measured 
observables to the proper electrical quantities of the medium inside a given finite volume. To do so, we start from 
Maxwell’s equations in the scope of potential theory, with the minimum of hypotheses. 

The goal of this work is to derive integral equations governing electrostatic imaging in order to assess: 

− ‘how and which’ observables have to be measured at the boundary;  

− ‘how’ these observables are self-consistently linked to the relevant quantities of the electrically reactive 
medium inside the volume;  

A further goal is to discuss the scope of the obtained equations and to sketch the future work. 

In the following, section 2 is concerned with the integral formulation of the electrostatic problem for EI.   The third 
section points out some remarks about the theoretical relations obtained, and discusses their usefulness in real 
situations.   In section 4, some appliance considerations are discussed to some extent, while section 5 briefly 
summarizes the conclusions and sketches a few guidelines for future work. 
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2. Integral formulation 
In order to deal with a rather general situation, let us consider in space a compact volume ideally enclosed by the 
surface S  ; into this volume there is an unknown medium, of course electrically reactive, the nature of which needs not 
to be specified. This means that the medium inside V can be “composed” by solid and/or liquid and/or gaseous phases, 
either neutral or ionized, as well as dielectric or conductive. Of course, the possible presence of metallic bodies and of 
sharp boundaries is not disregarded.   Our goal, roughly speaking, is to get some information about what’s happening  
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Fig. 1  
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inside .  For this aim, let us now firstly consider the simply connected piece of generic (but electrically reactive) 

material with volume V  and surface S  inside = , see Fig. 1. 

This piece of material is assumed as the representative of any region, body or phase, etc., contained in the volume V  . 
One possible starting point toward the integral formulation is the well-known Green’s second identity, obtained by 

applying the divergence theorem to the auxiliary vector fields 
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4 For the sake of simplicity, from now on time dependence will be understood.  
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0
jwhere V  is the internal part ( )5  (the ‘interior’) of j . V

In (1) dx’ is the volume element, =  is the vector surface-element. The local unit vector n̂ , which is 

perpendicular to the closed surface , is directed outward with respect to .   Moreover, 

'
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is supposed to be continuous on , and the subscript “0” remind us that its value is calculated on the inner side of jS . jS
From the mathematical point of view, the singular integrals appearing in (1) cause no problems if properly treated.   The 
single-layer term is continuous everywhere.  The volume-integral converges even if its polarity is not weak, and it is 
continuous everywhere.   The second term in the l.h.s. of (1), a ‘double layer’ term, converges if the surface fulfils 
Liapounov’s conditions, but it is mandatory to remind us its behaviour when j→ xx ∈~  along the normal to the 
surface: 
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From the inner side (+ sign) or from the outer side (- sign), respectively. 
So, the double layer term is continuous in  and on S ; it is also continuous outside V  and on j ; but it suffers a 

discontinuity of 4πϕ(x) when crossing S  at the point x, from the inner side to the outer side of the surface [13].      In 

conclusion, (1) is meaningful also for  and we can attribute  G

0V 0 S

j
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Relation (1) is all what is necessary to discuss mathematically about electrostatic imaging; from now on, physics will 
give full details in order to assess definitely the real problem. 

Let us consider the ‘quasi-static approximation’ in Maxwell’s equations for the fields.    Just for avoiding 
misunderstandings, the term used in electrodynamics is ‘longitudinal approximation’, where reference is made to the 
fact that the macroscopic electric field E and the macroscopic magnetic induction B have a negligible ‘transverse’ (i. e. 
radiative) component.           (Roughly speaking, this means that, although 0t

 

∂ ≠∂ , the minimum wavelength λ 
considered, e. g. that of the scalar potential, is much greater than the maximum characteristic length a of the system 
under consideration: (a/λ) << 1). 

In this approximation, the equations governing the vector and the scalar potentials are amenable to those governing the 

static situation: indeed, if 0BE ≈
∂
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1
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 in the regions considered. 

By taking also into account that , where ρ is the volume density of any kind of charge (i.e. bound or 
conduction charge), we substitute for E and ρ in equation (1) and differentiate term by term with respect to time. 
Equation (1) becomes: 
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t)Where  is the surface current-density of any kind (i. e. ,(xJ t)(t),( c ,xJxJ =  conduction current for conductive 
regions, and  polarisation current for dielectric regions), we take advantage by assuming the suitable 
definition for the displacement vector D: 

t)(t),( p ,xJxJ =
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By means of relation (4), properly written by each region shown in Fig.1, we obtain the integral relation linking self-
consistently the boundary-measured observables on S  to the proper electrical quantities of the medium inside 

the whole finite volume . 

To this aim, it is enough that we repeat the whole reasoning above for an equation similar to (4) describing the potential 
ϕk in the region  also shown in fig. 1.  
We get: 
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Let us now define the function Φ obtained by summing up (4) and (4a): 
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In (5)  (small and italic) is the surface portion shared by  and  ; kjkS s )kindicates the surface S(V  except 
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In other words, (5) is valid for any , where and for any x on , so we can use  

instead of the various , and D and J without any index. 
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Equation (5a) can easily be extended to the general case depicted in Fig. 1.  It is enough to observe that 0  , the surface 
enclosing the four volumes , ,  and  plays the role of S  , when the proper cancelling of the double-
layer and of the electric displacement contributions on the opposite sides of all the surfaces encircling each volume has 
been taken into account.      Therefore, we obtain the analogous of (5a), where we have rearranged terms for the sake of 
clarity: 
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For , where  and . 
 
Equation (6) is the integral relation we had to search for. 

It is a Fredholm’s integral equation of the first kind, with antisymmetric kernel, for the unknown function J.  

The r. h. s., in principle, is a known function: we can calculate it if we know both the surface distribution for the 

potential Φ on S0 and the surface distribution of the vector 
t∂

∂D

0S∈x

 through S0.  

Therefore, for any , we have self-consistently linked the results of boundary measurements to the integral of the 

space distribution of 3
' xxJ −

⋅' 0V

0

' xx −
 inside the given volume . 

The boundary measurements must be performed by a discrete set of electrodes placed on the surface S . (In principle, 

an electrode is a perfect conductor sharing points with 0V ). Then, on the outer side of the electrode surface, 

c4
t

JD
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, where is the conduction current through the electrode. This is a measurable quantity. 

 In practice, as we shall see later, experimental efforts based on equation (6) will suffer several approximations and 
errors.      For instance, approximations will arise when V will be partitioned in order to solve equation (6) in the form 
of a linear system.  Again, the finite dimensions of the electrodes will introduce further approximations.   Moreover, 
competitive macroscopic capacitive couplings (see paragraph 4.4) could mask the measurements, etc.  

In spite of this, equation (6) is self-consistent, i.e. without ad hoc hypotheses, and we can directly estimate the influence 
of any approximation assumed in order to perform the measure. 



 

 
3. Remarks 
 
3.1. Scope 
It is not quite useless to emphasize the condition required for obtaining (6).  Just because the problem is time dependent, 

the definition of the displacement vector D shows its suitability by the basic property 0
t
=

∂
∂
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D
.  This not only made 

conveniently handy the required mathematical reasoning, but also teaches us that in static regime, 0t =∂∂ , we can 

obtain an integral relation of the form (8) only if we know a priori that 0=⋅∇ D  everywhere in  when substituting 
the electric field.  
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where P is the polarization vector.  Then for the displacement D in  we set D = E+4πP, which is the usual ‘static’ 
definition for the displacement vector which enjoys the property 
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absent. 
In this case, equation (6) becomes: 
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Here, the quantities to be measured on , i.e. at the electrodes, are the potential distribution and the surface 
distribution of free-charge (i.e. conduction charge) density.  

0t
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On the contrary, in the static situation when ∂ ∂ = , suppose that be a conductor and a dielectric. Then 

 in ,  due to the presence of conduction charge unbalance on the surface of the conductor.   Therefore, in 
static conditions, a single-layer term appears in the r.h.s. of (7): 
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Where  is the free-charge surface-density on the conductor.  This single layer term depends from both the detailed 
form of the m-surface and the surface-charge density distribution on it. The net result is that with this extra term 
equation (7) becomes useless.  Therefore, a trivial but important conclusion is that if a region V  can contain 
macroscopic conductive bodies (or conductive clusters, or conductive regions with sharp boundaries, etc.) equation (7) 
cannot be obtained in static conditions. 

It also trivially clear that in this situation, where the shape and the position of the metal fragment (e.g. our m-body of 
Fig. 1) is unknown, the solving of the forward problem is an almost desperate business. 

 
3.2. Pyroelectricity, f.e.m. sources, scrape-off region 
An important point about (6) requires a definite assessment and it is concerned with the possible presence of f.e.m. 
sources inside the volume under consideration. 

The crucial question is the following: can equation (6) describe this occurrence in an exhaustive and adequate manner? 

Note that this question is particularly important in many reactive systems: for instance in biophysics, or in systems 
where the so-called pyroelectric phenomena are possible.  From a general point of view, also the problem of a proper 
description for phenomena occurring in any scrape-off region at the inner boundary of  is of crucial importance. 

All these points require further and careful investigations. 



 

 

3.3. Space limitations 
Referring to the term on the l.h.s. of equation (6) or (7), it is worth observing that, for any , our “probing arm” 

has the form 
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.  Therefore, the probing of large volumes is difficult. 

 
3.4. Another integral relation 
In quasi-static approximation, we can ask what kind of information we get by measuring only the surface distribution of 

the vector  
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To make an example, from (8) it is clear that measuring the surface distribution of the currents collected by several 
electrodes on S  offers some (approximated) information about t∂∂D 0V

0
 inside  . 

∇ ⋅ =Of course, in static condition the same equation holds only if  D 0

0V

cJJ = 0c =J

 in V , see point 3.1. 
In passing, it is worth observing that when we have to take into account only conductive materials, the situation is just 
the opposite with respect to the general case. In fact, an equation similar to (8) arises in steady-current regimes when the 
media completely filling  are conductors, even if they have different conductivities.  In this case, the sole current is 
conductive  and  everywhere, since ⋅∇ 0t

 9

∂ ∂ = .   By applying the divergence theorem to the vector 

xx −'
J '

c  we again obtain an equation of the form (8) with  in the place of cJ t∂∂D . 

  
3.5. Further remarks 
Without boring the reader, many other similar considerations are possible according to the foreseen particular situation. 
But it also clear that only quasi-static approximation enjoys the maximum of generality in facing unpredictable events 
such as failures, breakings, cracks, inclusions, etc. 
As a final and trivial remark, relation (4) can be obtained also by applying the divergence theorem to the sole auxiliary 
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 is substituted and rearranged in the 

resulting relation.      Otherwise, the choice of Green’s second identity could be more familiar, being the usual way to 
demonstrate the solution of Dirichlet’s inner problem by means of the Green’s function. 
 
 
4. Appliance considerations 
 
4.1. Basic relations 
We refer to equations (6) and (8) as to the basic relations for electrostatic imaging.  
For commodity, we rewrite them here, by using their Fourier-transformed versions (note that Fourier-transformed 
quantities are in italic): 
 

∫∫
−

−
⋅−=

−

−
⋅

00 S
3

V
3 '

'')(2π'
'
'

ωi
4π

xx
xxdsxdx

xx
xx 'ΦΦ'J ∫ −

⋅
+

0S '
'

xx
ds 'D

   (9a) 

=
−

−
⋅∫ '

'
'

0V
3

' dx
xx
xxD ∫ −

⋅

0S

'

'
'

xx
ds D

     (9b) 



 

 

 10

0

JJ ωχ+

Where , and the r.h.s. contain measurable quantities. S∈x

An obvious remark: we need two equations because the space distribution of J  alone is not enough for obtaining 
information about the space distribution of matter inside .     In fact, 0V E)(J σ=+ ipc

6, where )(x= σ  

and  are the electric conductivity and the electric susceptibility functions, respectively.  So we need also )(xχ

EJD +=
ωi
π4

 to say something about the space distribution of σ  and/or χ .  The same reasoning applies to the static 

case, if relations of the form (9a) and (9b) are allowed (see point 3.1). 

 
4.2. Discretization 
As said before for equation (6), relations (9a) and (9b), are Fredholm’s integral equations of the first kind with 
antisymmetric kernel in a 3-dimensional domain.  I disregard here the formidable task related to the problem of the 
existence, uniqueness and stability of the solution, which, to the author’s knowledge, is again waiting for a definite 
assessment, by mathematicians [14].    

In spite of this, it is spontaneous to ask ourselves if it is possible to extract some information about what is happening 
inside  by partitioning the given volume .  Of course, at this point, any careful attention must be paid to 
the questions related to Hadamard’s criteria about ill-posed problems, to the use of ill-conditioned matrices, to the 
(otherwise unavoidable) discontinuous sampling of boundary data, etc. 

)S(VS 00 = 0V

The l.h.s. in equation (9a), or in equation (9b), is of the form: ∫
−V

3 '
'

dx
xx

η −
⋅

'xx

V

, where η  indicates either J or D and 

is the relevant volume.     Let us make a partition of the volume V0 in M connected volumes Vm.    For any Vm, we 
set mm ηηη δ+= , where the volume average is mη .         By disregarding the fluctuation, the integral above can be 
approximated by: 
 

∫ −V
3'xx

−
⋅ 'dx'xx'η ≈ ∑ −

⋅
M

''' dxxxη∫
= −1m V

3
m 'xx

 ≈ ∑ −
⋅
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'' dxxxη ∫

= −1m V
3m

m 'xx
= ∑ ⋅

M '
mdsη ∫

= −1m S
m

m
'xx

 

   
Now, suppose that there are n electrodes on S0 (by definition, an electrode is a perfect conductor sharing points with 

0V k

n

R0 SSS = U

0
0V S

) so that , where S
1k=

R is the “remaining” part of  S0,  (i.e. the portion of S0 free from electrodes), and Sk 

is the surface of the k-th electrode facing .    Let us consider any point j∈x :  since any electrode is equipotential, 
the double layer on the r.h.s. of (9a) can be approximated by: 

)(Ω''')(Ω''' k

n

k3k

n

k3 xxxdsxxxds ∑∫∑∫ −≈
−

⋅−
−

−
⋅− ΦΦΦΦ

jS

 
'' 1kS1kS R0

xxxx == −
−=

∈Where Ωk(x) is the solid angle subtended by the kth-electrode at the point x  . Note that the whole contribution of SR 
is brutally disregarded. Moreover, it is worth observing that for flat electrodes, the electrode k = j contributes nothing. 
With the same mind, we can approximate the single layer in the r.h.s. of (9a) as: 
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Where is the (Fourier-transformed) current density on Sk entering  from the kth electrode.  Since 

experimentally we deal with currents, for  we are forced to write: )(
S

( k
k

k
k x⊥⊥ δ+= jιj k

                 

)x , where ι  is the 

                                         
6 In the scope of Linear Response Theory: i.e. for linear media. 



 

current leaving the kth electrode towards ,  (i.e.0V
k

k
S
ι

 is the surface-average of the current density) and is the 

fluctuation.       Once more, we brutally disregard this fluctuation, as well as the whole contribution of S

k⊥jδ

R. 
In conclusion, a rough discretized version of (9a) is: 
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−
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1k S

k

k
'

da''
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j
   (10) 

 
where j  , and j: 1→ n.  S∈x
A similar relation can be written for equation (9b). 

Relation (10) is a linear system for the 3M unknowns zm,ym,xm, JJJ ,, , m: 1→M, which needs 3M ‘observation points’ 

 with known potential and current density values.   Of course, for a given partition of ,  the observation 
points must be carefully chosen in order that the determinant of the characteristic 3M×3M matrix is different from zero. 

0S∈x V0

( )=
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Usually, the ‘jth -observation point’ is on the jth-electrode, so that  Φ jΦjx

0

m

0V

, and  j: 1→3M = n.  In spite of this, it is 
worth noting that the required number of observation points, strictly speaking, is not related to the number of electrodes 
facing the partitioned V . This originates from the fact that different observation points can be set on the same 
electrode, if it is large enough, so that potential and current values remain the same, but geometric quantities can vary 
significantly.  Of course, it is also trivially clear that observation points ill located are unsuitable. For instance, 
observation points located according to a non-uniform surface distribution, or located on a jth electrode far from either a 
given V  or a given kth electrode (k ≠ j) can cause serious errors. (See remark 3.2). 

At the end of this paragraph, it is important to remark that relation (10) is only a coarse-grained approximation of the 
integral equation (9a). 

Indeed, the whole contribution of SR, when dealing with both potential and surface current density values, is 
disregarded.  

Let’s now consider the approximation about the term containing the potential value.  

If the vessel containing is a conductor, its potential can be assumed as the reference value, and no approximation 
arises from disregarding the SR contribution. Nevertheless, in this case, a serious problem arises from the strong 
capacity coupling of any electrode with the vessel itself, see section 4.4.   

On the contrary, if the outer vessel is a dielectric, it cannot be assumed equipotential, and disregarding the contribution 
of SR is completely arbitrary. The distribution of the potential on the surface SR must be evaluated, e.g. by some 
interpolation. Moreover, in this case, there is a strong capacity coupling between the electrodes: this competitive effect 
must be taken into account. 

Even less justifiable is the disregarding of the surface current density distribution on SR: also, in this case a suitable and 
careful interpolation is required in order to avoid that the “current tapping” procedure is meaningless. 

 
4.3. Lumped parameters  
Sometimes, instead of (10), and similar relations mentioned above, reference is made to different operative schemes 
based on macroscopic parameters involved by a more or less well-defined “capacitance” or “capacitive-coupling” 
coefficients.  Anyway, disregarding here a proper and rigorous treatment, one could note that relation (10) can be 
written in a form amenable to “lumped” quantities by surface averaging any term over the surface of the given j-
electrode.    Indeed, by taking into account that any electrode is equipotential, we obtain: 
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Where: 
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jSj
jk, da)(

S
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jk, '
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SS
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xx
; 

 
Relation (11) shows no advantages with respect to (10); on the contrary, it generates a real disadvantage by linking the 
number of volumes partitioning  and the number of electrodes facing . In fact, (11) requires 3M electrodes for 
writing down a linear system equivalent to that arising from (10). 

0V 0V

 
4.4. Competitive capacitive  couplings 
A trivial but very important note: generally speaking, in the case of a conductive vessel surrounding V , the various  
cannot be measured directly, since there is at least an unavoidable spurious capacitive coupling C

0 kι
k which originates 

from the pass-through from the electrode facing V  to the outside region beyond the vessel thickness.  Note that when 
the electrodes are embedded in the vessel the competitive coupling has its maximum.   

0
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Fig. 2 
 

For instance, an equivalent circuit for a given k-electrode is sketched in fig. 2.  Zk indicates the generic impedance 
loading the kth electrode, Φek is a known potential value and ΦR is the (reference) potential of the vessel.   Similar 
reasoning, with proper differences taken into account, is applicable to the case of dielectric vessels, where the main 
macroscopic spurious coupling is the intra-electrode one. 

The presence of such dangerous capacitive couplings, to the author’s knowledge, is usually disregarded in both 
numerical works and experimental layouts, in spite of the fact that they represent a serious limitation to the applicability 
of EI, especially in the case of conductive vessels, unless a proper experimental lay out is planned. 

At this point, it’s also worth observing that these parasitic couplings are relevant to the macroscopic electric circuit, and 
have nothing to do with the naïf modelling of “contact interactions” at the electrode surfaces, e.g. see paragraph 2.2  in 
[15] (“Modelling the electrodes”).  

Moreover, just referring to [15], if we had to consider the general case of a reacting media, the problem of the scrape-
off region is really difficult, and its modelling is a very hard business, well beyond the scope of any simple “contact 
impedance” approximation.  
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5. Conclusions and future work 
Integral equations (6) and (8) are basic relations for electric imaging.  
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They act in the scope of quasi-static approximation and connect rigorously the results of proper boundary-
measurements to the space distributions of the total current density J (or of the displacement vector D) inside the given 
volume V .   Disregarding here the important remark already mentioned in 3.2., they are self-consistent and rather 
general; for instance, they require no ad-hoc hypotheses, approximations, or iterative procedures to simulate the effect 
of inclusions in the given volume. 

In spite of these advantages, it is advisable to point here some topics that require more investigation and work. 

For the sake of brevity, from now on, let us refer to equation (6) (and/or to its Fourier-transform (9a)) only, since (6) 
and (8) are of the same type. 

5.1. Existence and uniqueness of solution 
First of all, there is the question about existence and uniqueness of solution for equation (6).  To the author’s 
knowledge, this question remains open.  It is important to note that here reference is made to the general 3-D situation, 
disregarding any simplifying assumption, e.g. the assumption about the convexity of the related domain, which some 
thirty years ago allowed the fruitful discussion e.g. described by Smirnov [16].   It is worth observing that, in principle, 
the topic of existence and of uniqueness of solution for the inversion problem is twofold: from one hand it is mandatory 
to assess the existence and the uniqueness of the solution for equation (6) (or for equation (9a), which is the Fourier-
transform of (6)); from the other hand, what is the link of this solution with the ‘solution’ offered by the system (10) 
resulting from discretization?  

Referring to this last aspect, and completely disregarding the brutal approximations assumed, we could answer this 
question by saying that ‘any good partition, which is arbitrary, shows a different appearance of the solution for (6), 
provided that this solution exists and is unique.’ 

Another point: the obvious suggestion is that, for a given shape of V , several partitions should be taken into 
consideration for improving the usefulness of relation (10). 

As a last remark, it is useful to remind that, according to the system one is dealing with, the class of potentially 
interesting outcomes is usually forecast by defining the deviations from an assumed ‘standard’ or ‘regular’ situation.  
This helps to suggest the best choices amongst the many potentially useful partitions and electrode layouts. 

 
5.2. Validity of equations and approximations 
A further short discussion is relevant to the difference between integral equation (6) and its discretized and approximate 
form (10).    

Indeed, relation (10) is nothing but a very ‘natural’ (i.e. ‘spontaneous’, “direct”, ecc.) approximation of relation (9a) 
which, disregarding the weak requirements for Fourier transform, stems on fundamental equation (6).  This equation (6) 
is the equation that “must hold”. 

Of course, I do not believe that (6) can be demonstrated to be wrong.    In fact, (6) results from Green’s identities (i.e., 
in essence, from one of the two mathematical proposition7 which, together, fully describe the whole electrostatics: 

( )'
'

xx
xx

−πδ−=
−

∇ 412

                                                         

). To this proposition we must add the continuity properties for vector fields and currents 

stated by Maxwell’s equations in quasi-static approximation.    In passing, let us note that  (9b) is coming from the 
divergence theorem coupled with the same above cited continuities. 

Therefore, whatever method is used to determine the space distribution of matter inside the volume of interest, the 
resulting situation, in principle, must necessarily be compatible with relation (6). 

 
Then the basic question arises: if the picture resulting from experimental data and the inversion method is unavoidably 
affected by errors and approximations, how can we test this picture by means of the supposed exact, but purely 
theoretical, relation (6) ? 

 

 
7 The other proposition is the validity of superposition for electrostatic forces. 



 

 

Indeed, let us assume that (9a) is exact, while the collected data are managed by equation (10) and, obviously, suffer 
experimental approximations. 

Roughly speaking, these approximations are of three kinds: the first type comprises microscopic effects which are 
difficult to forecast and to describe, see paragraph 3.2.  The second kind groups the “familiar” sources of experimental 
error which can be accounted for by the usual procedures, see e.g. the textbook: Philip R. Bevington 1969, Data 
Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, New York. 

Eventually, the third type of errors arise from the macroscopic approximations connected with the denumerable set of 
electrodes, the finite size of their surfaces, the more or less fine meshing of the volume of interest, the spurious capacity 
couplings masking the experimental effects, and from the brutal cuts used to obtain (10). All these macroscopic 
approximations can be evaluated by term by term comparison with the exact (9a), starting from a given, i.e.known, 
situation.  

This means that, when we use (10), we can improve the experimental layout in order to approach a meaningful 
accuracy.  

So, we get the point: relation (10) can act as control formula in the sense discussed above: no matter what method is 
used to determine the space distribution of the “content” inside the volume of interest, the resulting situation, in 
principle, must necessarily fulfil, within the total experimental error, the approximated quasi-static relation (10). 
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A trivial observation: the computation of geometric quantities in (10), although not particularly arduous, can be rather 
lengthy especially for fine-grained partitions, since some care must be used in order to avoid the apparent singularities.     
Otherwise, for a given shape of , i.e. for a definite vessel, and for given shapes and positions of the electrodes and/or 
of the observation points, the computation of double layers, single layers and solid angles is made once for each 
interesting partition, and need not to be repeated. 

Finally, just for the sake of completeness, it is important to remind that, for a given partition of , the positions of the 
observation points must result in Det ≠ 0 for the characteristic 3M×3M matrix of the discrete system.     The required 
recipe is simple: ‘for a given partition, any observation point must ‘see’ any elemental volume  in a manner 
different with respect to the manner of any other observation point.’ 
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