:‘) Available online at www.sciencedirect.com

H H [H t thod
ScienceDirect °"'?.:'a';'..'.'!2 thods

mechanics and
engineering

&

O AR e
ELSEVIER Comput. Methods Appl. Mech. Engrg. 400 (2022) 115465

www.elsevier.com/locate/cma

Weighted quadrature for hierarchical B-splines

Carlotta Giannelli*, Tadej Kandu¢®, Massimiliano Martinelli**, Giancarlo Sangalli~,
Mattia Tani*

2 Dipartimento di Matematica e Informatica “U. Dini”, Universita degli Studi di Firenze, Italy
b Faculty of Mathematics and Physics and Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
¢ Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” — CNR, Pavia, Italy
4 Dipartimento di Matematica “F. Casorati”, Universita degli Studi di Pavia, Italy

Received 19 October 2021; received in revised form 23 July 2022; accepted 23 July 2022
Available online xxxx

Abstract

We present weighted quadrature for hierarchical B-splines to address the fast formation of system matrices arising from
adaptive isogeometric Galerkin methods with suitably graded hierarchical meshes. By exploiting a local tensor product structure,
we extend the construction of weighted rules from the tensor product to the hierarchical spline setting. The proposed algorithm
has a computational cost proportional to the number of degrees of freedom and advantageous properties with increasing spline
degree. To illustrate the performance of the method and confirm the theoretical estimates, a selection of 2D and 3D numerical
tests is provided.
© 2022 Elsevier B.V. All rights reserved.

Keywords: Weighted quadrature; Isogeometric analysis; Hierarchical B-splines

1. Introduction

Local and adaptive mesh refinement methods in isogeometric analysis have gained a notable attention in the last
years and their mathematical theory has recently been established, see [1] and references therein. One of the more
prominent tool in this context is provided by hierarchical B-spline construction [2—4]. The attractive advantage of
the hierarchical spline model comes from a good balance between sound theoretical foundations, flexibility, and ease
of implementation. A local refinement step is governed by simple conditions that activate/deactivate basis functions
from hierarchically nested sequence of spline spaces. The use of the hierarchical approach in isogeometric analysis
was originally proposed in [2] and subsequently investigated in different directions, which range from the theory
of adaptive methods [5-7] to engineering applications, see e.g., [8—10] and references therein.

The efficient formation of matrices in isogeometric Galerkin methods is a topic of active research. In this paper
we focus on the weighted quadrature (WQ) approach, introduced in [11]. Other recent results and methods in this
area are integration by interpolation and look-up [12,13], multiscale quadrature [14], sum-factorization [15,16],

* Corresponding author.
E-mail addresses: carlotta.giannelli@unifi.it (C. Giannelli), tadej.kanduc @fmf.uni-1j.si (T. Kandu¢), martinelli@imati.cnr.it
(M. Martinelli), giancarlo.sangalli@unipv.it (G. Sangalli), mattia.tani @imati.cnr.it (M. Tani).

https://doi.org/10.1016/j.cma.2022.115465
0045-7825/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.115465
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.115465&domain=pdf
mailto:carlotta.giannelli@unifi.it
mailto:tadej.kanduc@fmf.uni-lj.si
mailto:martinelli@imati.cnr.it
mailto:giancarlo.sangalli@unipv.it
mailto:mattia.tani@imati.cnr.it
https://doi.org/10.1016/j.cma.2022.115465

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

the surrogate matrix method [17], reduced integration for FEM and immersed methods [18] and at supercon-
vergent points [19], quadrature schemes for shell elements [20] and, beyond quadrature, the use of low-rank
approximation [21] or GPUs [22].

The aim of WQ is to reduce the number of quadrature points that are needed to accurately compute integrals
involving products of B-spline basis functions. In combination with sum-factorization and other implementational
techniques, it reduces significantly the cost of formation of isogeometric matrices. The idea of WQ is that the test
function plays the role of weight function in the integration, and therefore the quadrature weights depends on the test
function. The advantage of this construction is that the number of exactness conditions to be imposed is less than
for Gaussian quadrature, generalized Gaussian quadrature [23-26] or reduced quadrature [27-29]. Therefore, WQ
requires less quadrature points and its number mildly depends on the spline degree. The extension of the weighted
quadrature scheme to accurately integrate the elements of the stiffness matrix in linear elasticity was presented
in [30].

In this paper we extend WQ to hierarchical B-splines with maximum regularity. Since the construction of
the hierarchical basis is simply based on a suitable selection of standard B-splines at different levels of details,
we can define hierarchical WQ as a linear combination of standard WQ on different tensor product levels. The
proposed algorithm has a computational cost proportional to the number of degrees of freedom and advantageous
properties with increasing spline degree. After discussing in detail the case of the mass matrix, we briefly explain
the quadrature formulas for second order operators. To illustrate the performance of the method and confirm the
theoretical estimates, a selection of 2D and 3D numerical tests for L2-projection and linear elasticity is provided.
Note that other types of matrices and PDE problems could conceptually be dealt in a similarly way, see [11].
Although we focus only on spline spaces with maximum regularity, this is not a restriction of WQ, see [30] for a
detailed analysis on this case.

The structure of the paper is as follows. Preliminaries on hierarchical B-splines and weighted quadrature are
recalled in Section 2. The WQ and its use in the matrix formation for hierarchical B-splines is then presented in
Section 3, while the computational cost is studied in Section 4. Section 5 illustrates the numerical experiments and,
finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Hierarchical B-splines

We consider a nested sequence of L + 1 multivariate tensor product spline spaces V¢, for £ = 0,..., L, of
fixed degree p in any coordinate direction defined on a bounded closed hyper-rectangle £2 C R¢. By focusing on
dyadic mesh refinement, we assume the spline spaces is defined on a sequence of suitably refined knot vectors so
that V¢ ¢ V! for £ = 0,..., L — 1. It should be noted however that the hierarchical B-spline model can be
considered also in connection with more general (non-uniform) mesh refinement rules, where each mesh element
is subdivided in an arbitrary number of children elements. Moreover, not only i-refinement but also p-refinement
can be combined with the construction of the spline hierarchy as long as the spaces remain nested between each
pair (£, £ + 1) of consecutive levels, for £ =0, ..., L — 1. The considered choice in the paper is dyadic (uniform)
refinement and fixed spline degree at all levels, which is the standard setting for adaptive isogeometric methods,
based on hierarchical B-splines, and a suitable compromise between accuracy and efficiency for related application
algorithms. Note that the design and development of fast assembly and efficient numerical integration rules tailored
on hierarchical B-spline constructions are key ingredients for the subsequent development of more flexible adaptive
approximation schemes.

In direction k of the domain 2, the level ¢ basis B consists of Ny univariate B-splines b ; .

Be={brs © ix=1.2,....Ng }.

The multivariate spline space V¢ on {2 can be defined as the span of the tensor product B-spline basis functions b},

d
B' = {bf =]]bt, : bt < B}
k=1

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

0 .
79

00:

I;l_{

/\/\/\/\\\““ ’”\””I

/\/\/ VoYY VY
\
A\/\’\ Y /\/\/\)‘/\/\\

02

Fig. 1. An example of an univariate hierarchical space. Mesh cells and B-splines for levels 0,1,2 are depicted in top, middle and bottom
plot, respectively. The hierarchical space is determined by domains £2¢, its basis functions in Ig_t are marked and labeled in each plot.

with respect to the index set
L . . e . d . . l _
IB._{I._(zl,...,ld)eN .lflkaBk,k_l,...,d}.

We denote the rectilinear mesh grid of level £ by M¢. To localize the refinement regions at different hierarchical
levels, we also consider a nested sequence of closed subsets of 2° := {2 given by

>0 > o =g

The hierarchical mesh M collects the grid elements M € M®, which are not included in any refined region 2™ of
higher level m > ¢,

M={MeM' : Mc Q' Mg ¢=0,..,L}.
We define the hierarchical B-spline basis [2] with respect to the hierarchical mesh M as
HM)={bjeB" 1 ieT;, £=0,...,L},
where
I;, = {i € Iy : supp(b}) C 02°, supp(b}) ¢ 2“F'}.

Note that in this paper we consider the support of a function as an open set. The introduced empty set 2°*! ensures
that all B-splines of the finest level L whose support is fully contained in £2* through the index set 1'7{[are activated.
Each basis function bf € H is uniquely identified by its level £ and by the multi-index i € Ifi. Hence we can
define the set of basis identifiers
L
Ty = U{(e,i) DieTi). (1)
£=0
The cardinality of Z,, is denoted by Ny . Hierarchical B-splines are non-negative, linear independent, and allow
localized mesh refinement by suitably selecting basis functions with a varying level of resolution. An univariate
example of a hierarchical basis is depicted in Fig. 1.

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

In order to limit the interaction between B-splines introduced at very different levels of the spline hierarchy,
we consider admissible meshes. A hierarchical mesh M is admissible of class r, with 2 < r < L + 1, if the
hierarchical B-splines taking non-zero values on any element Q € M belong to at most r successive levels. We
refer to [1,5] for more details concerning admissible meshes and their properties, and to [31] for the presentation
of the refinement algorithms which guarantee the construction of hierarchical mesh configurations with different
class of admissibility. Note that the suitably graded meshes generated via these algorithms are characterized by a
different (stronger) version of admissibility, which is easier to obtain via automatically-driven refinement rules.

2.2. WQ for tensor product splines

The goal of WQ is to reduce the number of quadrature points in the computation of Galerkin integrals for smooth
B-spline basis functions. In combination with the sum-factorization and replacement of the element-wise assembly
loop by a direct function-wise calculation of the matrix entries, the cost for the formation of isogeometric Galerkin
matrices goes from O(p3¢N) FLOPS down to O(p?*'N) FLOPS, where p and N denote the spline degree and
number of degrees of freedom, respectively.

Consider B, the level £ tensor product B-spline basis, then we can directly apply the construction of [11] and
introduce for each i € Z%, the following WQ

Q) = Z wf / v(xX)b! (x)dx)
7 [0,11¢
qu
where be e B w "i .q are the quadrature weights and x the quadrature points. For a better distinction between
tensor product and hierarchical objects, we use bars on the top of symbols for quadrature rules, points and weights
in the former case. Note that weights depend on i, that is, on bi , which plays the role of a weight function for the
integration. The rule (2) can be used to approximate the (i, j)-entry of the mass matrix at level ¢, indeed

/ c(X)b'(x)bf (x)dx ~ Q(cb?), 3)
[0,114

where the given function ¢ takes into account the determinant of the Jacobian of the parametrization map. More
generally, any matrix arising in an isogeometric Galerkin method can be formed by suitable WQ, see [11]. The
accuracy of WQ is related to the exactness conditions that the rule satisfies. In the case of (2)—(3), a typical request
is

Qb)) = / ibf-(x)bf(x)dx, b € B". “)
[0,1]

Though not necessary, following [11], the quadrature points if; in (2) do not depend on i. The set of d-variate
quadrature points is defined as the following tensor product

Q=0 x---x QY 5

J4
where Qf = {)E,fy qk};f‘zl is the set of univariate quadrature points in the kth direction and R} is the number of
quadrature points along that direction. In the case of splines of maximum regularity, these points can be selected
as the midpoints and endpoints of the knot spans, with the exception of the first and last knot spans where we
can select p + 1 uniformly distributed points, see [11]. We also introduce the tensor product set of multi-indices,
associated to QF as

={q=(q1,---,q) eN' : 1 <q <R, 1<k<d}.

Even though the quadrature points are defined globally, only those in the support of b are active for i_)f Thus, the
active quadrature points of Qf depend on i. For simpler explanation purposes this is formalized by setting to zero
the weights {w,{q}qeﬂg that correspond to points outside the support of bf (in our implementation, however, only
point indices with non-zero weights are stored in the data structures to be more efficient). The non-zero weights
are computed by imposing the univariate local exactness conditions, leading to linear problems whose solution cost
is not prevailing in the overall matrix formation cost.

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

More generally, WQ can be used for any second-order linear operator on a tensor product splines, see [11].
When restricted to splines of level £, the entries of the stiffness matrix associated to such operator have the form

Z / apy (x)0pb; (x)d, b (x)dx + Z/ by (X)b; (x)d,, b (x)dx +
B.y=1 (6)

+ f c(x)bj (x)b';(x)dx, i,jeIs,
[0,11¢
where, similarly as before, the functions ag, , b, and c take into account the geometry mapping and the coefficients

of the operator. For a fixed i € Zj, each of the integrals in the above expression can be approximated independently
using a different weighted quadrature rule, precisely

QP () = Z w”V / dpbi(x)v(x)dx,
qul [0.13¢
@)
Ay =Y @ty / BHCeyu(x)dx,
qeZg [o.13¢

and the rule 9! already introduced for the mass matrix. Note that the index § is associated with derivatives that
appears in the integral measure, while the index y is associated with derivatives for which the rule is exact. Moreover,
the set of quadrature points is the same as for the mass matrix (in particular, we still need just 2¢ points per element
if not close to a boundary of the domain).

A typical choice for the exactness conditions characterizing these rules is

Qf’ﬂ’y(f)ybﬁ):/ 9pb; (x)9,, bi(x)dx,
[0,114 ®

Q77 (@,b%) = / bi(x)d,bl(x)dx, bl e B
[0,11¢

An alternative approach [30] is not considered in this study; it is considered less efficient in our setting since it
depends on more quadrature points, despite relying on fewer number of quadrature rules.

3. WQ and matrix formation for hierarchical B-splines

3.1. Definition of WQ for mass matrix

A weighted quadrature rule, associated to an active basis function b; € H, is denoted by Q!. Its quadrature
points and weights are jointly indexed with respect to an index set that is denoted by IS"). Namely, let

Q) = {x] q}qez(é‘) ©)

be a set of quadrature points and the set of the corresponding weights is {wf’q} . The quadrature rule D,ff

qEIg’i)
applied to an auxiliary function v has the following form

Q)= Y wigv(xfy)~ / ; b(x)v(x)dx. (10)
qezs” (0.1
A distinguishing feature of this structure is that both the set of quadrature points and the set of quadrature weights
depend on the considered test function bf. However, as we will see in the following, Q) can be conveniently
selected as a subset of a global tensor product grid, which is chosen a priori.
Similarly as in the non-hierarchical case discussed in the previous section, the quadrature rules are characterized
by exactness conditions. More specifically, we require that the rules are exact for all functions in the spline space,
or equivalently that

Al = 3wl b (x ,._q)=/[0”d BB (xX)dx, (m, j) € T (11)
IS') ’

5

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

b oo e
bo e e
booeo
booeo
7% @
boeoeo

Q(0,%)

o000
o000
o000
o000

boe oo
bo oo
> oo e

e0000Q@O0O0O0OO
o000 eo0v0000
e0000Q@O0O0OOO
00000000 OCGO

[11

Fig. 2. Example of a hierarchical mesh with three different levels. Three basis functions from B¢, with ¢ = 0, 1,2 are considered. The
supports and quadrature points for these B-splines from spaces B° (red), B! (green) and B2 (blue) are depicted on the hierarchical mesh
(left). The quadrature points for b? € H used in weighted quadrature for hierarchical B-splines are also shown (right). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

For a given pair (¢,i) € Zy we define v(£, i) as the finest hierarchical level whose functions interacts with bf,
ie.,

v(€, i) ==max {m : IbY € H s.t. supp(b) N supp(b}) # 0} . (12)

To make the notation lighter, the argument (¢, i) in v(¢, i) will be sometimes omitted, since the dependence on the
basis identifier will be clear from the context.

Any active basis function 07’ that interacts with bf (including itself) can be written as a linear combination of
basis functions of level v(¢, i), that is

b = Z o by Y (m,j) €Ty suchthat supp(b;) N supp(by) # 0, (13)
tely
with “?,}U > 0 if supp(b;) < supp(b7}) and oz;f’,'t” = 0 otherwise.

In order to define the quadrature rule Qf for the hierarchical space H, we rely on the definitions and relations
introduced in the previous section for tensor product spaces. In (10) we take

Ig’i) ={qeIy : &, € Q" Nsupp(h))}
and let the quadrature points be xf’q =x, for every q € Ig’i), hence (from definition (9)) we have

QD = Q" Nsupp(by). (14)
See Fig. 2 for an example of quadrature points for a basis function b? € H. Since it interacts with a level 1 basis
function and not with a level 2 one, it inherits a local set of level 1 quadrature points)"c}l.
The quadrature weights for bf are simply
v -
wf’q = Z o W (15)

seZy
for every q € I(Q“), and the coefficients af.’s” are the expansion coefficients of bf on the basis B as in (13).

In the following proposition we show that this choice for the quadrature rule Df satisfies the imposed exactness
conditions on the hierarchical space.

Proposition 1.
For (€,1) € Ty the quadrature rule Df satisfies the exactness conditions (11) on the hierarchical space.

6

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

Proof. Let (m, j) € Ty. If supp(bf) N supp(b'j'-’) = (J, then the equation in (11) is trivially satisfied since the
quadrature points Q“*) belong to the support of b;. On the other hand, if supp(b}) N supp(b}) # @, then

Df(b?)= Z wtqu(tq)

qug")
_ m (v
- Z w’ qbl (q)
qué")
-y (St) (S e
qu"Q sely tely
_ Lv_m,v -V vV (Zv
= o oy Z ws’qbt (xq)
s,teIB quVQ
v _m,v v v
— Z ai,saj’,/ dbs(x)bt(x)dx (16)
s,teI% (0.1]
=/ Doy | | Y o bix) | dx
(0,114

seI” seIB
= / bi (x)b"} (x)dx.
10,11

In (16) we use the property that for each s € Tj; the set of points Q" and the set of weights { Wy, q}qu” satisfy the
Q

exactness conditions (4) on the level v = v(£,i). O

Remark 1. Quadrature rule Qf in (10) of level ¢ is actually a linear combination of quadrature rules defined at
level v. Namely, if supp(b}) N supp(v) # ¥ we can define 7 := {s €), : supp(b!) supp(b;)} and derive

Qf(v): Z wf,qv (xf,q)

(£.1)
qEIQ
_ ¥4 =V
= E wi!qv (xq)
(£.1)
quQ
_ v —v -
= E E ai,s ws.qv (xq)
(L.0) ge(L.D)
quQ s
_ £,
- ai,s
seZ.D) qu(Q”)
— E v {v
- s Ds (v).
st

In particular, the quadrature rule Df is determined by those rules whose support is included in the support of bf.
Note that a construction of weighted quadrature rules as linear combination of other rules was recently addressed
also in the context of (trimmed) tensor product patches [32].

Remark 2. It might seem intuitive that the quadrature points relative to a coarse basis function should be taken
on a finer level only in the overlap with the support of finer basis function. In fact, the present version of weighted
quadrature requires that all points associated to a function are taken on the finest level it interacts with. The reason
behind this is twofold. First, each test function is associated with a single quadrature rule, i.e. a single set of points
and weights, which is used regardless of the level of the interacting trial function. We have numerically tested the
use of different rules for the same test function, taking the points and weights from the finest level between the test

7

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

and the trial function, but we have observed a loss of the order of convergence. Second, the exactness conditions
used to compute the rules involve functions that belong to the same hierarchical level, similarly as in [11]. This
means in particular that there is no guarantee that “mixing” rules of different levels in the support of a given test
function (i.e. using fine points/weights in the overlap with fine functions and coarse points/weights in the overlap
with coarse functions) will result in a rule that satisfies the exactness conditions (11).

3.2. Preprocessing: computing the quadrature points and weights

Since the quadrature weights are not known in advance for every possible mesh, degree, level and interaction,
they need to be computed efficiently in the preprocessing phase, before utilizing them in the matrix formation
phase. For computational efficiency, we fully exploit the tensor product structure of the active basis functions
bf and of the quadrature points. Quadrature weights are therefore obtained in two steps. First, we compute the
univariate quadrature weights of level v, defined in (12), by solving the linear systems arising from the univariate
exactness conditions analogous to (4); this is the same as in [11]. Then, the univariate quadrature weights for the
WQ associated to an active basis function b} are computed as linear combination of level v quadrature weights,
analogously to (15).

The quadrature points and weights for d-variate B-splines are stored and used as d-tuples of the univariate points
and univariate weights, respectively, in order to be ready for the sum-factorization used in the matrix formation.

To avoid redundant computations, all the active basis functions are clustered with respect to the value of v so
that the univariate routines are engaged only once for each level, i.e., we classify the basis functions of H with
respect to v by defining the sets of level n interacting functions

F":={bf : (£,i) eIy, v(L,i)=n).

It is trivial to check the following properties:

H = U F", 17
n<L

F"NF"=@ifm #n, (18)

F" only contains functions of H of levels <n . (19)

The classification of the active basis function bf with respect to the maximum level of interaction v(¢, i) is described
in Algorithm 1.

Algorithm 1: classify basis_functions
Input : H
Initialize F" =@ forn =0,...,L
foreach (¢,i) € 74, do
‘ Fv(@,i) — Fv(l,i) U blE
end foreach

Output: {F"},<1

Because of (13) and (19), every function bf € F" can be written as linear combination of functions b; from
level n, and a similar formula holds for its quadrature weights (see (15)). Analogously, the same can be said for
the (univariate) components: b,f,ik can be written as a linear combination of level n functions by ; , and w,f’ik, o 3
a linear combination of J),’j’ ok

bﬁsik = Z a]f::lknjk bl’cl,jk’ wéik"]k = Z alf:;;jszﬁjkﬂk (20)
jkeDf;j?k jkeDf:;Lk
fork=1,2,...,d, where
Dl = (i € {1, co o NB) o supp(df ;) S supp(by,))-
To switch from the d-variate to the univariate setting, we first need to define two auxiliary functions m; and 7,

Ttki = ik, ‘L'ki = (il,...,ik),

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

acting on a multi-index i = (iy,...,iy). Then, for k = 1,...,d we introduce the set of indices of univariate
B-spline that are used to define the functions bf e H' N F™:
Gy" = lix =mi : bl e H' N F"). (21

Finally, we define

D; -—U U Dy 22)

l/\ EG

The sets Dy identify the univariate quadrature weights that are needed to set up the WQ rules for functions of F”"
along the k—th direction. Precisely, in the next step for each j; € D; we compute the non-zero univariate quadrature

n

Ry
weights {wy ; qk} =l associated to by ; € B} by imposing the univariate exactness conditions analogous to (4),
exactly as done in [11]. Namely, we impose that

w;:-jk»‘{k =0 if)E;quﬂc ¢ Supp(b;z’jk),

while non-zero quadrature weights are obtained by solving the linear system

1
Z lI)Zvjk»kathk(X‘l’gJIk) :/.5 b;zvjk(g)bz-tk(g)ds’ bZ,tk € BI:L,jk’ (23)
qk GAZ ’Jll\
where
Ay Go=lace L REY X, e QEn supp(b,f’jk)}, (24)
By, = 1{bg, € By : supp(by ;) Nsupp(by ,) # ¥} (25)

are the set of indices of quadrature points inside the support of the basis function b,f’ j.» and the corresponding
interacting trial univariate functions, respectively. Note that if the support of b,f’ jdoes not include the first or last
element, the local system has exactly 2p + 1 unknowns and equations. In the case of a rectangular underdetermined
system, which might happen if the support includes the first or last element, we compute the solution with minimum
Euclidean norm. The construction of the univariate quadrature weights is summarized in Algorithm 2.

Algorithm 2: compute_1Dweights
Input : B}, ji, O

compute the indices A"} from (24)

find the interacting trlal univariate functions By i from (25)

compute non-zero weights {wy , .} A by solvmg the linear system (23)

qk <

.« [T
Output: {wy , }qke"‘z,'?k

Up to this point, we have defined the univariate quadrature points and computed the univariate quadrature weights,
associated to all the basis functions in B} that are needed to represent functions in F" as linear combination of
functions of level n, by using (13). Using (20) we can then compute the level ¢ univariate quadrature weights

ln
Wi = fwbi = D ol B, we AL k=14, (26)

n

Jk€DE

e,
for each index iy € G".

The last preprocessing phase is to define the subset of d-dimensional quadrature points that are contained by
the support of functions in F”, that will be used in the matrix formation phase for the evaluation of the non-tensor
product coefficients. The union of support of basis functions in F”,

U supp®@)), @7)

bleFn
1

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

is a set of d-dimensional boxes in [0, 1]¢ that can be described as a set of mesh cells on level n, which in general
does not have a tensor product structure. The d-dimensional level n quadrature points are simply defined as

n= QN U, (28)

Remark 3. Due to nestedness of quadrature points Q" with respect to level n, there are configurations in which
some points are defined in multiple levels. For the sake of efficiency, in our code we also store the union of all d
dimensional set of points, Q , = UnS . @, that is used for the evaluation of the non tensor product coefficients.

The complete preprocessing phase is described by the Algorithm 3.

Algorithm 3: preprocessing
Input : H

{F"}t_, = classify basis_functions(H) (Alg. 1)
for n =0, ..., L such that F" # () do
fork=1,...,d do
compute 1D quadrature points Qf = {x; 5:: , for B} (see Section 2.2)
for ¢=0,...,n do
‘ compute Gi’" from (21)
end for
compute Dy from (22)
foreach j, € D} do

‘ {wz»jkak}quAZ:?k = compute_1Dweights (B}, ji, QF) (Alg. 2)

end foreach
Wy =0
for £ =0,...,n do
foreach i; € G do
compute weights W,fl';{ from (26)
Wi =WpuWeh
end foreach
end for
end for
compute the d-dimensional tensor product points Q" from (5)
compute ¥" from (27)
compute QY, from (28)
end for

Output: F", Wy, ..., W}, Q" QY , forn=0,...,L

3.3. Mass matrix formation: algorithm

The rows and columns of the mass matrix are associated to the test and trial functions, respectively. In order to
emphasize the hierarchical level of a given basis function, we use row (or column) multi-index basis identifiers as
in (1). Therefore the single entry of the mass matrix is denoted as [M] ;) , j) and is defined as:

[Mle.iy.on. iy = / lc(x)bf(X)bZ'(X)dx,
[0.11

where the function c¢:[0, 1] — R incorporates the determinant of the Jacobian of the mapping between the
parametric domain [0, 1]¢ and the physical domain 2, and in general it does not have a tensor product structure.

10

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

Recalling the quadrature rule definition (10), and the fact that wf, q = 0 for Xq ¢ supp(bf), we can write

[M(irm. gy & Qb= D wf cEb (D) dx, (29)
qu"Q
where n = v(¢, i).
Using the sum-factorization approach, we exploit w} , =]_[Z= | W iy q, and D7 (Xg) =]_[Z 1 b (X g,) and write
(29) in terms of nested sums:

Qi (ch]) = Z H(wk o PE e %, (Ik)) gy K g,)

..... qq k=1
' (30)
= Z wd ids Qzlbd Jd(:llqul Z Z wl i1,q1 llnvjl ()Efm)c(ﬂlﬂh’ e ifr;,q(i)
dd—1

where, in the summations above, each running index qi, for k =1, ..., d, belongs to the set
Qi ={a € {1,.... R{}: X}, € supp(by ;) N supp(b}';)} 31
The sum-factorization algorithm in essence is a clever way to perform the nested sum (30), that sequentially performs
the integration along the directions k = 1, ..., d, considering for each k all pairs of indices (i, ji) that identify the

weight and trial function respectively. Details are presented in the remaining part of this subsection, where, for the
sake of notation simplicity, we will systematically omit the set 0}’ [k"j'- for the running index q; in the summations.

In (30) we note that coefficient c(x) must be evaluated at the points of the quadrature rule of level n. Moreover,
from (17)-(19) we know that the sets {F ”} _, (excluding the empty sets) form a partition of the hierarchical basis

H. This suggests to construct the matrix starting from an outer loop over {F "} _o» 1., over the different levels of
quadrature rules, then for a given level n, compute the determinant of the Jacobian at Q%, (i.e., on the points that
have non-empty intersection with the support of each basis function in F") and set the values to be zero for the
points Q" \ Q7.

The key point here is that the evaluation of the non-tensor product coefficient c(x) may be a costly operation,
so we want to evaluate it just for the involved quadrature points, i.e., for each q € Z; we set:

c(x?) ifxy e Q"
cr=cr =1 () iE €y (32)
q 1> 4d 0 otherwise
Given a quadrature level n € {0, ..., L} such that F" # @, we loop over £,m € {0, ...,n} and compute the
connectivity between the test functions of H¢ N F" and the trial functions of H", i.e.,
Ky, ={G.j) eIy x Iy : bj e H' NF", b7 € H"™, supp(b}) N supp(b7) # B}. (33)
At this point we can apply the sum-factorization algorithm that allows us to evaluate the mass-matrix entries.
The integration along direction k = 1 writes as
(H — 14 m o=n n
I(t1)(/1) (92.-4d) " Zwlqilm Lj1 (x1~¢11)C(m ----- qa)
_ 1 ©0)
= 2 Wi b) a0 - (34
where we have defined ”) = C7 , which only depends on the d-tuple of indices associated to the
0.0:(a1,--92) (CTRS)) :
quadrature points. Performing the summation over q; we have as result I((i])) (i1):(@...qn that depends on the pair
(i1, j1) (related to the univariate test and trial basis along direction 1) and on the (d — 1)-tuple (q, . .., qq) (related
to univariate quadrature points along the directions 2, ..., d). The integration along directions k = 2,...,d — 1
then writes as:
(k) — 14 m c=n (k=1)
Iy i) Gt = 2 ki Gl T i Gt - (35)

9k
11

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

and finally for k = d:
(d) — 0 m -n d-1) e m
Ly im0 = D Wtianarbi i g e 0iomia it = 2 €D (36)
dd

where the final expression in (36) is now independent of the quadrature point index but it depends on the pair of
test and trial d-tuple ((iy, ..., i), (j1, ..., jq)) and is equal to Qf(cb;f‘).

Remark 4. For k = 1,...,d, for each (k — 1)-tuple pair (iy,...,i{x—1), (j1,-.., jki—1) the coefficients
k—1)
oot v ool D3 qg) ATE used in a loop of the sum-factorization algorithm, soethey should be stored in an

efficient data structure for the data retrieval with respect to the loop index qix € Qzlk";k The non-zero entries of
(k=1)

1ot e 1): Gk, IAVE @ DON tensor product structure with respect to the point indices (qx, - - - , q4). Hence,
in order to save memory it is better to store these non-zero values in a sparse container. By observing that the indices
in Q"’e’m- are contiguous, in order to have data locality and improve the cache efficiency, we store the data using

kyik, jk
a sparse data structure for the data associated to the inactive summation/integration directions k + 1, ..., d, while
the entries along the active summation/integration direction k (and associated to the sub-index (qx+1, ..., Jq)) are

stored using a (dense) vector of length equal to the distance between the first and last non-zero value.

I(k—l)
Gpseenslkg=1 oo J—1)5 @k s 9a)
iMoo J @ 150" To exploit this fact, when we are

integrating along a direction k we must consider all the pairs of k-tuples ((iy, ..., ix), (i, ..., jk))-
Accordingly, for each k € {1,...,d} we define the “projection” of the connectivity K;, along the first k
directions:

The key point to reduce the computational cost is to exploit the fact that the value of

a®ky, = (G .. i), Gro oo o) = (i), Y0, J) € K7l 37)
and then the pairs of k-tuple that must be considered for the efficient computation of (35) are just the elements of
nvKy .

The sum-factorization algorithm is summarized by Algorithm 4. The overall algorithm for the matrix formation
is depicted by Algorithm 5.

Algorithm 4: sum factorization

Input : T4, {Cs} ... €, K] {Wz?}le

quQ L,m>
foreach (qi, ..., qq4) € 7 do
|19 —cn
0,0:@t,--.94) @p+--,94)

end foreach

fork=1,...,d do

compute [T®K}, from (37)

foreach (i, j;) € {{I,..., Nék} x{1,..., Ng,-} : supp(b,f’ik) Nsupp(by ;) # 7} do

‘ compute Qka";k from (31);

end foreach

foreach ((i1,....ix), (1, jv)) € IPK},
retrieve W,fl'; from W} (see (26))
foreach (qi41,...,qq) € {1,...,RZ+1} x...x{l,..., R}} do

(k)
‘ compute I(il ~~~~~ i), (1seees JOH (G4 150-59d) from (35)

do

end foreach
end foreach
end for

e
Output: IV = {150} jexr

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

Algorithm 5: computematrix

Inmput : H, {F", Q", QY o Wihigs €
foreach n € {0, ..., L} such that F" # ¢ do
compute {Cg} ez, from (32)

foreach ¢ € {0, ..., n} such that H' N F" # @ do
foreach m € {0, ...,n} do
compute Ky, from (33)

. . n n n n d
{[M]([*i)’(mvj)}(i,j)el(jz',m = sum,factorlzatlon(IQ, {C }qu" A Ky {Wk }k:l) (Alg. 4)
end foreach

end foreach
end foreach

Output: M

3.4. The stiffness matrix

We now briefly discuss how weighted quadrature can be used to form the stiffness matrix, highlighting the main
differences with the case of the mass matrix.

Let Qf’ﬂ 7 and Df’y, for B,y =1,...,d, denote the hierarchical counterpart of the tensor product rules defined
in (7), associated to bf € H. Similarly as in the mass case, these rules are defined as a linear combination of tensor
product rules on the finest level with whom the basis spline b interacts, i.e.

LBy Ly /v.B.y _ l, v v y
Q" =Yy Q5 =2 ;9
jeIy JeIy

where the coefficients af:; are defined as in (13).
We refer to [11] for the details on the rules Q;ﬂ 7 and Q;y defined on the tensor product space B", for

= 0,1,..., L. In particular, the set of weights associated to one such rule is the tensor product of d sets
of unlvarlate welghts that can be of 4 different types, namely {w)’ j]quk (I;LLI, {_,’(':j].k‘f)qk }5k’(=1, {w Z;)quk} s—1 and
{w} W jeoai } PRSP for jr € D}, k=1, , d. The latter set of weights is the same used for the mass matrix, while the
former ones are defined by the following univariate exactness conditions
—n 1 1 n ! -n : n ! n !
2 i (bl) o) = | (Bhs) © (Biy) ©1de.
WEAL
1
_ ,0,1 / _ /
> () Gl = [61,© (b1,) @)
wEAL
1 ’
=n,1,0
S aph b, = [() @ ©de b, e B,
‘IkEAZ:’;k

where the sets B} ; and Ay 'fk are defined as in (24) and (25).

The pipeline to assemble the stiffness matrix for hierarchical B-splines using WQ is similar to the already
presented mass case. The main differences are that in Algorithm 2, the linear systems (38) are solved in addition
to (23) to compute all the necessary weights, and that in the innermost loop of Algorithm 5, the contributions of

all rules Df’ﬁ'y, Qf’y and Qf for B,y =1, ..., d must be computed and summed.
Remark 5. In our implementation, the weights {wZ j]k : a) qkk | and {11)2 ?k : o }{I;k" , are not actually computed by solving

the first and second sets of equations in (38). Note that these equations must be satisfied whenever the integrand
13

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

function is the derivative of a B-spline, and these functions span the space of splines with degree and regularity
reduced by 1. Therefore, the exactness conditions can be reformulated using the basis of the latter space as integrand
functions, leading to equivalent linear systems that is solved to compute the weights.

4. Computational cost

We now want to estimate the total computational cost of the matrix formation, by first focusing on the mass.
There are mainly three steps that contribute to this cost: the evaluation of the non-tensor product coefficient c, the
computation of the weights, and the computation of the matrix entries via sum-factorization.

The coefficient ¢ has to be evaluated for every active quadrature point. Quadrature points are more dense for
elements that are adjacent to the boundary of {2. However, the total number of active quadrature points is commonly
dominated from the interior part. Recalling (14) and v — ¢ < r — 1, the number of quadrature points that belong to
interior elements is bounded by

Do o#Qh < N @M p+) = 027 p Nay). (39)
(0,i)eTy (0,i)eTy
We remark that bound above is not sharp especially for what concerns its dependence on p, since quadrature points
in different Q“? may coincide.

As for the computation of the weights, we recall that we have to solve a system of the form (23) for every
univariate index ji, for k = 1, ..., d. Since the number of univariate indices is bounded by the number of multi-
indices Ny, and since each of these linear system has O(p) unknown non-zero weights and O(p) equations, the
cost to compute them all using a direct solver is bounded by O(p>Ny) flops.

If we compare the bound on this cost with the one on the cost to compute the matrix entries (derived below),
we see that they have the same order with respect to p for d = 2 and that the former has lower order for d = 3.
Note also that this bound does not depend on the admissibility parameter r.

We finally discuss the computation of the matrix entries. Following the structure of Algorithm 5, we fix

nef0,...,L}and £,m € {0, ..., n} and consider the computation of the matrix entries (29) for all (i, j) € sz,
as performed by Algorithm 4.
As a preliminary step, we observe that for any fixed direction k € {1, ...,d} and any fixed index value i, the

number of indices j; that must be considered in (30) is clearly bounded by the number of basis functions of level
m whose support intersects the support of b,f,i .- 1t can be verified that the latter number is bounded by 2p +1 when
m < £, and by 2"~“(p + 1) + p when m > £. In both cases, this number is bounded by 2"~**!(p + 1), since
n > max{m, £}.

Moreover, again for any fixed direction k and index value i, the active quadrature points X; .~ are the ones
belonging to the support of bf,ik; since we have 2 quadrature points on each interior element of level n, or p + 1
on the elements that touch the boundary, and the support of b,f‘ik contains at most 2"~¢(p + 1) elements of level n,
we conclude that there are at most 2"~“*!(p + 1) active quadrature points if b,f,ik does not touch the boundary, or
at most (2”"Z+1 + 1) (p + 1) quadrature points if b,f’ik touches the boundary. Again, the cost is typically dominated
by the quadrature at the interior, therefore we assume that the number of index values taken by q; in the kth sum
of (30) is roughly 2"=“!(p + 1).

We are now ready to estimate the cost of computing (30). As a first step, we evaluate the innermost sum (34)
for all relevant values of i}, j; and qp, ..., qq. Of course in the sum we only need to consider the non-zero terms,
and we observe that the term corresponding to a fixed q; is non-zero only for the p 4+ 1 values of j; such that
bt i (xg,) # 0. Note that if we preliminary multiply wf’il’ qlbj’f it (xg,) for all such values of q; and j; (which has a
negligible cost), the computation of the sum (34) requires 2 flops for each of its non-zero terms.

Since each index q, ..., qq, can take up to 2"‘“1(1} + 1) values, and since the number of values taken by
i1 = 7;i is bounded by the number of multi-indices i belonging to F”" N H¢, the cost of the first step is bounded
by

2(p + DdFt 2d0=tED N, flops, (40)
where

Ny = |F"NHY.

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

For k = 2,...,d — 1, the kth step of the sum-factorization requires the computation of (35) for all values of
i1, ...y iks Jis .-y Jr and ggy1, - . ., g, where the inner sum I((l'kli-l-?ik—l)q(jlv---ajk—l)?(‘lk _____ o) Das already been computed
for all the relevant index values.

Since (iy, ..., Ix) = i, the total number of k-tuples (iy, ..., i) that have to be considered is again bounded

by the number of multi-indices N,, .

Moreover, again we observe that for each value of q; there are only p + 1 values of j; that contribute to the
sum, and since the number of values taken by each index q, ..., qq and ji, ..., jr—; is bounded by Py p+1),
the cost of this step is again bounded by (40). With similar arguments, it can be shown that this is true also for
the dth step of the sum-factorization (35).

We conclude that the cost of the whole sum-factorization step is bounded by

2d (p + 1)?+! 24—t N, flops.

We sum the above expression for all values of n, £ and m, and observe that for a fixed level £ the number of
levels m that interact with it is at most 2r — 1. Thus, a bound on the total cost for the matrix entries computation
is given by

2dQ2r — 1) (p+ 1* Y > 29N, , flops. 1)

n {<n

We can derive a more explicit bound on the cost of the matrix entries computation if take a further step and
observe that n — £ + 1 < r and that

ZZNH,Z = N’H-

n {<n

Hence the total cost for the matrix entries computation (41) is bounded by
2d2r — D27 (p + D' Ny = 0 (dr2? p?*' Ny,) flops. (42)

We observe that, similarly as in the bound on the active quadrature points (39), the latter expression grows
exponentially with respect to the admissibility parameter r, and this effect worsen with the increasing of the
dimension d. This might seem unsatisfactory, but we emphasize that (42) is easily a rather pessimistic bound. Indeed,
a careful analysis of the derivation of (42) reveals that we are essentially assuming that every hierarchical B-spline
basis function bf, with (€,i) € Ty, interacts with all the admissible levels. In many practical cases, however,
refinement is performed only in specific regions of the domain, e.g., in the neighborhood of low dimensional
manifolds, and as a result the number of basis functions that interact with all the admissible levels is limited.

The computational cost for the stiffness matrix can be analyzed in a similar way, since the number of quadrature
points is the same. The main difference is that each integral appearing in (6) has to be approximated independently,
and this clearly increases the cost. For example, if only second-order terms appear in the operator (as is the case
for the scalar Poisson stiffness matrix), the formation cost is d? times higher than for the mass matrix.

5. Numerical tests

The numerical tests comprise of the L2-projection operator (both in 2D and 3D) a(u,v) := /. quv di2,
and the linear elasticity operator (in 3D) a(u,v) = 2u fQ e(u):e(v) df2 + AfQ div(u) - div(v) df2, where

du; ou
&ij(u) = %(E + 50)-
_ For the 2D cases the physical domain {2 € R? is defined as the image of the two-dimensional parametric domain
2 =11,2] x [%, 2] through the (polar) map

__(pcosd
while for the 3D cases the physical domain {2 C R? is defined as the image of the three-dimensional parametric
domain {2 =[1,2] x [Z, 2] x [0, Z] through the (polar) map
pcos6
F(p,0,9)= | psinfcos¢ | . (44)
p sin 6 sin ¢

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

L2 projection Level ID
0.0e+00 1.0e+00 e 2.0e+00 6 8

1.2e+01

Fig. 3. L2—projecti0n (left) and element levels (right) after 51 adaptive refinements for the 2D case with degree p = 2 and admissibility
r = 2. For this configuration the space contains 867947 degrees of freedom, and the L?-error between the function (45) and its L2-projection
is ~34e—1.

For both L2-projection and linear elasticity problems we set the boundary conditions and the right-hand side
vector of the linear system that assures a known unique exact solution of the problem (the details are given below)
and then, for a given value of the admissibility parameter r, a nested sequence of hierarchical B-spline spaces of
degree p is constructed [31]. The adaptive mesh refinement is steered by the “error estimator”, which is simply the
L?-error between the computed solution and the known solution and by using the Dérfler marking strategy [33]
with parameter 6, = 0.2.

For each refinement step, we perform a simulation using the standard element-based Gaussian quadrature (using
p + 1 quadrature point along each direction of the element) to build the bilinear operator (and the vector of the
linear system) and then, using the same sequence of hierarchical spaces we compute the bilinear operator using the
proposed hierarchical WQ algorithm.

Remark 6. All the numerical tests were performed using the IGATOOLS library [34], on a single core of an Intel
Xeon Gold 6242R processor running at 3.1 GHz. In order to alleviate the random fluctuations in the elapsed CPU
time, all plots involving CPU time refer to the average CPU time of multiple (5 for the 2D case and 3 for the 3D
case) runs of the same simulation.

Remark 7. In all plots the lowest monitored CPU time is set to 10~ seconds to reduce the effect of random time
fluctuations, due to the CPU scheduling.

5.1. L?-Projection

These numerical tests comprise of the L>-projection of the function f: (2 — R,

fx) = exp[—(%)z], (45)

where the physical domain {2 € R is specified above ((43)—(44)), the parameter 8 € R and the point xo € R¥ are:

e =5-10"%and xg = (0, 3) for d = 2 (see Fig. 3);

e 5 =0.1 and xy = (0, %, 0) for d = 3 (see Fig. 8).
5.1.1. L*-Projection: 2D case

For this case we performed simulations using the admissibility parameters r = 2, 3 and for each value of r we
used the degrees p =2,...,6.

Fig. 4 shows the total time (preprocessing 4+ matrix computation) with respect to Ny for r = 2. The plots
indicate that the total time for the WQ approach seems to be nearly independent of the degree p, while for the
element-based Gaussian approach we note that the cost increases with p (as expected). Moreover, also the most
favorable case for the element-based Gaussian approach (i.e., p = 2) costs more of any of the WQ cases we have
tested. As a result, we can conclude that if one wants achieve a very low error level (< 1077), the best strategy in
terms of CPU time needed to build the matrix is to use WQ with high degree (see Fig. 5).

16

C. Giannelli, T. Kanduc¢, M. Martinelli et al.

Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

2D case: Ny vs. total time for the matrix computation, admissibility r = 2.

103
102
o 10tp
& k
H I
100 |-

1071

—WQp=2
—WQp=3
—WQp=4
——WQp=5
—WQp=6

-

-

-

Gauss p =2
Gauss p =3
Gauss p =4
Gauss p=5
Gauss p =6

| L L

04 -

e]

7 .

.
o .. ey ‘,’ s
T e

. o, o e |
o~ o P | B
* P B
O e,]
.]
.]

103

Ny

10°

108

Fig. 4. L>-projection: N; vs. total time for the matrix computation for the 2D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

2D case: L2-error vs. total time for the matrix computation, admissibility » = 2.

103 T T T T T
w02 g
m | 1
2
© 10t | . E
g T SRENNE
07 —WQp=2 Gauss p = 2 . “".'. |
07 | —wWQp=3 + Gauss p =3 E
Fl—WQp=4 + Gauss p =4 ¢ .
F1l—WQp=5 v Gauss p=>5 V5
Frl—WQp=6 « Gauss p =16 \('
S S O A S 0T SRS TS 0 Gl
107 107 10°% 1077 10°¢ 10— 10°* 107% 1072 107!
L2-error

Fig. 5. L2-projection: L2-error vs. total time for the matrix computation for the 2D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

Regarding the CPU cost of the WQ approach, in Fig. 6 are shown (for the degrees p = 2, ..., 5) the preprocessing
cost (Algorithm 3) and the matrix computation cost (Algorithm 5), that is split in the time needed to evaluate the
coefficients in (32) (forn =0, ..., L) and the rest of the algorithm (i.e., the computation of the connectivities K g’m
from (33) and the sum-factorization). From the plots in Fig. 6 we observe that the asymptotic behavior of the costs
is the same for all different degrees, resulting in the dominant cost being the formation of the matrix whereas the

17

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

L2-proj. 2D: WQ time details, p = 2, 7 = 2. L2-proj. 2D: WQ time details, p = 3, r = 2.
1025 T T T TTTTT T T T T TTTTT T \\\\H‘ \E 1025 T T TTTTTT T T T TTTTTT T T \\\H‘ E
Floe Preprocessing] Floe Preprocessing B
i Matrix formation] | | —— Matrix formation]

10l 1 - —-- Coeffs. evaluation 101 - - Coeffs. evaluation o
PGS e H4 YV E E
U' = .| Q = .
g [18 I]
) X 1 o X b
g0 | | B0l i
Sh 1O E
10~ ,"': 2 - 107t My E
E \f'\vﬂw) Ll Ll B E L o Ll Ll B

104 10° 106 10* 10° 106
Ny Ny
L2-proj. 2D: WQ time details, p = 4, r = 2. L2-proj. 2D: WQ time details, p =5, r = 2.
1025 T T T TTTTT T T T T TTTTT T \\\\H‘ E 1025 T T TTTTTT T T T TTTTTT T T \\\H‘ E
Floe Preprocessing R Floe Preprocessing B
i Matrix formation i | | —— Matrix formation]
100 1 - —=—- Coeffs. evaluation : 1 1ok - - Coeffs. evaluation |
ol 150]
2 L 18 L]
o) X 1 o X b
g0 | | B0l i
Sh 1O E
107! &) 4 107 . E
E L »*) Ll Ll B E H"H)(Ll Ll B
10* 10° 106 10* 10° 106
Ny Ny

Fig. 6. Ny, vs. the CPU time needed to run the WQ algorithm: preprocessing (Algorithm 3) and matrix computation (Algorithm 5) for
the L?-projection in 2D and admissibility parameter r = 2. The cost for the matrix computation is split in the CPU cost for coefficient
evaluations ((32) for n =0, ..., L) and the CPU cost for executing the rest of the Algorithm 5.

cost for the preprocessing is smaller but not negligible (at least for the tested cases). It is worthy to note that for
low number of degrees of freedom, the main cost is due to the preprocessing.

Regarding the case with admissibility parameter r = 3, Fig. 7 shows the total time (preprocessing + matrix
computation) with respect to N,. The plots indicate that both approaches (element-based Gaussian quadrature and
WQ) have a higher cost (for a given number of N) for all tested degrees with respect to the case with r = 2
(Fig. 4), but the WQ approach seems to be nearly independent of the degree and for the tested degrees p =2,...,6
it is less expensive than the element-based Gaussian approach of degree > 3.

5.1.2. L?*-Projection: 3D case

For this case we performed simulations using the admissibility parameter » = 2 and the degrees p =2, ...,6.

Fig. 9 shows the total time (preprocessing + matrix computation) with respect to Ny, while Fig. 10 shows
the total time with respect to the L2-error. From the plots in these figures, we can observe that the WQ approach
outperforms the element-based Gaussian approach. In fact, considering the CPU time with respect to Ny (Fig. 9),
the total time (preprocessing + matrix computation) for the WQ approach seems to be mildly dependent from the
degree p, while for the element-based Gaussian approach we note that the cost increases with p, by a factor higher
than the 2D case (as expected). Moreover, also the most favorable case for the element-based Gaussian approach
(i.e. p =2) costs more of any of the WQ cases we have tested. As result, we can again infer that the best strategy
in terms of error/CPU time ratio is WQ with high degree (see Fig. 10).

18

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

2D case: Ny vs. total time for the matrix computation, admissibility r = 3.

103 —— — —— -
102 = < _.-."' ot et
S
2
o 101; E
e B]
H L N
07 « Gauss p = 2 |
10 F e Gauss p =3 | |
F r « Gauss p=4| |
L o e Gauss p=5| |
L B « Gauss p=16| |
1071 L1 et I |
103 104 10° 108

Ny

Fig. 7. Ny vs. total time for the matrix computation for the 2D case and admissibility parameter » = 3. For WQ the total time for the
matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

L2 projection Level ID

0.0e+00 1.0e+00 = 1.0e+00 4 7.0e+00

| i - | ki § |

Fig. 8. L?-projection (left) and element levels (right) after 27 adaptive refinements for the 3D case with degree p = 2 and admissibility
r = 2. For this configuration the space contains 754614 degrees of freedom, and the L?-error between the function (45) and its L2-projection
is ~ 8.5¢ — 6.

Regarding the CPU cost of the WQ approach, in Fig. 11 are shown (for the degrees p = 2,...,5) the
preprocessing cost (Algorithm 3) and the matrix computation cost (Algorithm 5), that is split in the time needed
to evaluate the coefficients in (32) (for n = 0, ..., L) and the rest of the algorithm (i.e., the computation of the
connectivities Ky, from (33) and the sum-factorization). In this case we observe that for degree p = 2 the dominant
cost is due to the evaluation of the coefficients, whereas for higher degrees this cost is less important (moreover,
the relative importance decreases raising the degree, and increases raising the number of degrees of freedom).
Regarding the other two major costs, the same pattern observed for the 2D case seems to emerge: when the number
of degrees of freedom is “small” (depending on the degree) the bigger cost is due to the preprocessing, otherwise
the dominating cost is due to the matrix formation phase.

5.2. Linear elasticity in 3D

These numerical tests comprise of the solution of the following linear elasticity problem:

Find u € (H} (1)) s.t. Vo € (H}(2))’ holds

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

3D case: Ny vs. total time for the matrix computation, admissibility r = 2.

r T T T T T T T T T T T T]
| |—WQp=2 o Gauss p = 2 ot PR
103 1 —WQp=3 - Gauss p =3 e : |
Fl—WQp=4 - Gauss p =4 . S]
F[—WQp=5 « Gauss p =5 . - L 1
L |— WQp=6 « Gauss p==6 o o]
102 ; . o R . .'0 75
s r]
% r- T |
. |
R=! 1L i
B0]
10° E
101 I
10* 10°
Ny

Fig. 9. L>-projection: N; vs. total time for the matrix computation for the 3D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

3D case: L2-error vs. total time for the matrix computation, admissibility » = 2.

L . B

I g, B

10 e o

L
s
L

T
3
-

0 B : S E
g I e T . :
\fg: | T— s . |
g 100 e
i % T

Ll |—WQp=2 + Gauss p =2 T |

100 1 —WQp=3 s Gauss p=3 T t
Fl—WQp=4 « Gauss p=4 b

E —WQp=5 - Gauss p =5 E
—WQp=6 + Gauss p==6 o

1071 | Lol Lol Lol Lol Lol I il 3
1077 10~6 107° 10~ 1073 1072 107!

L2?-error

Fig. 10. L2-projection: L2-error vs. total time for the matrix computation for the 3D case and admissibility parameter r = 2. For WQ
the total time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation
(Section 3.3).

20

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

L2-proj. 3D: WQ time details, p = 2, r = 2. L2-proj. 3D: WQ time details, p = 3, r = 2.

102 E T T TTTTT T T T T T T 171 ‘ T T T 17 iE 102 E T T TTTTT T T T T T T 171 ‘ T 1T T 17 iE

Lo Preprocessing . [l Preprocessing 1

+ Matrix formation e + Matrix formation e

| | - =-- Coeffs. evaluation) | | - =-- Coeffs. evaluation)

—~10t - 10t | E

Q = - Q = -

o} = 1 r E

2z F 12 1

g | o~ g | i

00 | o Foo E

/r’ B

1071 RN) Lo [N 1071 R Lo [N

104 10° 109 10* 10° 109
Ny Ny

L2-proj. 3D: WQ time details, p = 4, r = 2. L2-proj. 3D: WQ time details, p = 5, r = 2.

102 E T T TTTTT T T T T T T 171 ‘ T T T 17 ; 102 E T T TTTTT T T T T T T 171 ‘ T 1T T 17 iE

F|oe Preprocessing b) Preprocessing B

+ Matrix formation e + Matrix formation . E

| | - =-- Coeffs. evaluation) | | - =-- Coeffs. evaluation)

~10t - ~10t | -

Q = - Q = .|

o} = 1 9 r §

[12 E

s | lg |]

00 | o Foo E

10-1 ST | Ll Ll g1 e Ll L
10* 10° 106 10* 10° 106

Ny Ny

Fig. 11. Ny vs. the CPU time needed to run the WQ algorithm: preprocessing (Algorithm 3) and matrix computation (Algorithm 5) for
the L?-projection in 3D and admissibility parameter r = 2. The cost for the matrix computation is split in the CPU cost for coefficient
evaluations ((32), for n =0, ..., L) and the CPU cost for executing the rest of the Algorithm 5.

pL/ e(u):e(v) d!Z—i—k/ div(u) - div(v) d 2 =/ f-vd on (2 (46)
10 10 10
where &;;(u) = %(g% + %) and the Lamé parameters (A, u) correspond to the elasticity modulus £ = 1 and

Poisson’s ratio v = 0.3. The function f:{2 — R? is chosen to satisfy the strong form of (46) applied to the
manufactured solution u: 2 — R3

u(x) = exp[—(%ﬂ(p2 0 =05 -0) (- 0)o(5 —9)x—x0)

where the parameters (p, 8, ¢) are the parametric coordinates of the (physical) point x when mapped by the function
(44).

For this case we performed simulations using the admissibility parameter » = 2 and the degrees p =2, ...,6.

Fig. 12 shows the total time (preprocessing + matrix computation) with respect to Ny,. From the plots in this
figure we can observe that the WQ approach has a milder dependence on p than the element-based Gaussian
approach, and (for a fixed degree p) its total cost is smaller than the cost of the element-based Gaussian approach,
except for the degree p = 2 where the two costs are comparable. In particular, it is worthy to note that for degree
p = 6, when Ny & 8.0 - 10, the time for assembling the stiffness matrix for WQ is &~ 100 times smaller than the
time needed by the standard element-based Gaussian approach.

21

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

3D case: Ny vs. total time for the matrix computation, admissibility r = 2.

S e S e
10* |- o g
r s o o]
10:,)? * - 7;
= L]
;%/ 102 | . E!
) = M B
= s]
= 5 < R
10! £ E
g . —WQp=2 Gauss p =2 | |
F —WQp=3 v Gauss p=3 | |
10° 1 —WQp=4 «~Gauss p=4 | 4
i —WQp=5 e Gauss p=>5 |
L —WQp=6 «Gauss p=6| |
1071 \\A\\‘, Lo T R | Lol X
103 10% 10° 106

Ny

Fig. 12. Linear elasticity: Ny, vs. total time for the matrix computation in the 3D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

6. Closure

A fast matrix formation technique for adaptive isogeometric Galerkin methods with multivariate hierarchical
B-splines was presented by focusing on the efficient design of weighted quadrature rules. As standard choice for
adaptivity with hierarchical B-spline constructions, we perform local mesh refinement by successively introducing
dyadically refined knot sequences as background machinery for the construction of the spline hierarchy. The
theoretical estimates of the computational cost suitably exploit the limited number of basis functions, which are
non-zero on any element of an admissible hierarchical mesh. A selection of numerical examples confirm that
the results obtained with the hierarchical weighted approach compare favorably with respect to standard Gaussian
quadrature rules, specially in the three-dimensional case. Interesting topics for future research include for example
a combination of the proposed algorithm with matrix-free methods [35] as well as the extension to the case of
truncated hierarchical B-splines [3,4], characterized by (possibly) reduced supports with respect to the ones of
standard hierarchical B-splines, and an application to different PDE problems of applicative interest.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgments

C. Giannelli, M. Martinelli, G. Sangalli and M. Tani are members of the INJAM Research group GNCS.
The INdAM support through GNCS and Finanziamenti Premiali SUNRISE is gratefully acknowledged. Moreover,
M. Tani was partially supported by the INAAM-GNCS 2022 project “Metodi numerici efficienti e innovativi per la
risoluzione di PDE”.

This work was partially supported by the ERC Project CHANGE, which has received funding from the European
Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant
agreement No 694515).

22

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

References

[1]
[2]
[3]
[4]
[5]
(6]
[71
[8]
[91
(10]
(11]
[12]
[13]
[14]
[15]
[16]
(171
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

A. Buffa, G. Gantner, C. Giannelli, D. Praetorius, R. Vazquez, Mathematical foundations of adaptive isogeometric analysis, Arch.
Comput. Methods. Engrg. (2022) in press, arXiv:2107.02023.

A.-V. Vuong, C. Giannelli, B. Jiittler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput.
Methods Appl. Mech. Engrg. 200 (2011) 3554-3567.

C. Giannelli, B. Jittler, H. Speleers, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Des. 29 (2012)
485-498.

C. Giannelli, B. Tiittler, S. Kleiss, A. Mantzaflaris, B. Simeon, J. Speh, THB-splines: An effective mathematical technology for adaptive
refinement in geometric design and isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 299 (2016) 337-365.

A. Buffa, C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models
Methods Appl. Sci. 26 (2016) 1-25.

A. Buffa, C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates, Math. Models
Methods Appl. Sci. 27 (2017) 2781-2802.

G. Gantner, D. Haberlik, D. Praetorius, Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines, Math. Models
Methods Appl. Sci. 27 (2017) 2631-2674.

P. Hennig, M. Ambati, L. De Lorenzis, M. Kistner, Projection and transfer operators in adaptive isogeometric analysis with hierarchical
B-splines, Comput. Methods Appl. Mech. Engrg. 334 (2018) 313-336.

M. Carraturo, C. Giannelli, A. Reali, R. Vdzquez, Suitably graded THB-spline refinement and coarsening: towards an adaptive
isogeometric analysis of additive manufacturing processes, Comput. Methods Appl. Mech. Engrg. 348 (2019) 660-679.

G. Kuru, C. Verhoosel, K. van der Zee, E. van Brummelen, Goal-adaptive isogeometric analysis with hierarchical splines, Comput.
Methods Appl. Mech. and Engrg. 270 (2014) 270-292.

F. Calabro, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, Comput. Methods Appl.
Mech. Engrg. 316 (2017) 606-622.

M. Pan, B. Jiittler, A. Giust, Fast formation of isogeometric Galerkin matrices via integration by interpolation and look-up, Comput.
Methods Appl. Mech. Engrg. 366 (2020) 113005.

M. Pan, B. Jiittler, A. Mantzaflaris, Efficient matrix assembly in isogeometric analysis with hierarchical B-splines, J. Comput. Appl.
Math. 390 (2021) 113278.

T. Hirschler, P. Antolin, A. Buffa, Fast and multiscale formation of isogeometric matrices of microstructured geometric models, Comput.
Mech. 69 (2022) 439-466.

P. Antolin, A. Buffa, F. Calabro, M. Martinelli, G. Sangalli, Efficient matrix computation for tensor-product isogeometric analysis: The
use of sum factorization, Comput. Methods Appl. Mech. Engrg. 285 (2015) 817-828.

A. Bressan, S. Takacs, Sum factorization techniques in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 352 (2019)
437-460.

D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: Accelerating isogeometric analysis of waves, Comput. Methods
Appl. Mech. Engrg. 372 (2020) 113322.

G. Moutsanidis, W. Li, Y. Bazilevs, Reduced quadrature for FEM, IGA and meshfree methods, Comput. Methods Appl. Mech. Engrg.
373 (2021) 113521.

F. Fahrendorf, L. De Lorenzis, H. Gomez, Reduced integration at superconvergent points in isogeometric analysis, Comput. Methods
Appl. Mech. Engrg. 328 (2018) 390-410.

Z. Zou, T. Hughes, M. Scott, R. Sauer, E. Savitha, Galerkin formulations of isogeometric shell analysis: Alleviating locking with
Greville quadratures and higher-order elements, Comput. Methods Appl. Mech. Engrg. 380 (2021) 113757.

A. Mantzaflaris, B. Jiittler, B.N. Khoromskij, U. Langer, Low rank tensor methods in Galerkin-based isogeometric analysis, Comput.
Methods Appl. Mech. Engrg. 316 (2017) 1062-1085.

A. Karatarakis, P. Karakitsios, M. Papadrakakis, GPU accelerated computation of the isogeometric analysis stiffness matrix, Comput.
Methods Appl. Mech. Engrg. 269 (2014) 334-355.

T.J. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg.
199 (5-8) (2010) 301-313.

F. Auricchio, F. Calabro, T.J. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for
NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 249 (2012) 15-27.

M. Barton, V.M. Calo, Gauss—Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric
analysis, Comput.-Aided Des. 82 (2017) 57-67.

M. Barton, V.M. Calo, Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric
analysis, Comput. Methods Appl. Mech. Engrg. 305 (2016) 217-240.

R.R. Hiemstra, F. Calabro, D. Schillinger, T.J. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically
refined splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 316 (2017) 966—1004.

D. Schillinger, S.J. Hossain, T.J. Hughes, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric
analysis, Comput. Methods Appl. Mech. Engrg. 277 (2014) 1-45.

C. Adam, T.J. Hughes, S. Bouabdallah, M. Zarroug, H. Maitournam, Selective and reduced numerical integrations for NURBS-based
isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 284 (2015) 732-761.

R.R. Hiemstra, G. Sangalli, M. Tani, F. Calabro, T.J. Hughes, Fast formation and assembly of finite element matrices with application
to isogeometric linear elasticity, Comput. Methods Appl. Mech. Engrg. 355 (2017) 234-260.

23

http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://arxiv.org/abs/2107.02023
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb2
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb2
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb2
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb3
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb3
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb3
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb4
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb4
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb4
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb5
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb5
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb5
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb6
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb6
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb6
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb7
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb7
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb7
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb8
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb8
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb8
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb9
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb9
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb9
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb10
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb10
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb10
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb11
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb11
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb11
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb12
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb12
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb12
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb13
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb13
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb13
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb14
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb14
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb14
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb15
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb15
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb15
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb16
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb16
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb16
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb17
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb17
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb17
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb18
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb18
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb18
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb19
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb19
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb19
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb20
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb20
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb20
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb21
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb21
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb21
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb22
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb22
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb22
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb23
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb23
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb23
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb24
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb24
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb24
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb25
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb25
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb25
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb26
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb26
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb26
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb27
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb27
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb27
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb28
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb28
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb28
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb29
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb29
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb29
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb30
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb30
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb30

C. Giannelli, T. Kandu¢, M. Martinelli et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115465

[31] C. Bracco, C. Giannelli, R. Vazquez, Refinement algorithms for adaptive isogeometric methods with hierarchical splines, Axioms 7
(3) (2018) 43.

[32] B. Marussig, Fast formation and assembly of isogeometric Galerkin matrices for trimmed patches, in: C. Manni, H. Speleers (Eds.),
Geometric Challenges in Isogeometric Analysis, Springer INHJAM Series, Vol. 49, 2022.

[33] W. Dorfler, A convergent algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996) 1106-1124.

[34] M.S. Pauletti, M. Martinelli, N. Cavallini, P. Antolin Sanchez, Igatools: an isogeometric analysis library, SIAM J. Sci. Comput. 37 (4)
(2015) 465-496.

[35] G. Sangalli, M. Tani, Matrix-free weighted quadrature for a computationally efficient isogeometric k-method, Comput. Methods Appl.
Mech. Engrg. 338 (2018) 117-133.

24

http://refhub.elsevier.com/S0045-7825(22)00496-0/sb31
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb31
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb31
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb32
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb32
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb32
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb33
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb34
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb34
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb34
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb35
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb35
http://refhub.elsevier.com/S0045-7825(22)00496-0/sb35

	Weighted quadrature for hierarchical B-splines
	Introduction
	Preliminaries
	Hierarchical B-splines
	WQ for tensor product splines

	WQ and matrix formation for hierarchical B-splines
	Definition of WQ for mass matrix
	Preprocessing: computing the quadrature points and weights
	Mass matrix formation: algorithm
	The stiffness matrix

	Computational cost
	Numerical tests
	L2-Projection
	L2-Projection: 2D case
	L2-Projection: 3D case

	Linear elasticity in 3D

	Closure
	Declaration of competing interest
	Acknowledgments
	References

