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Abstract

We present weighted quadrature for hierarchical B-splines to address the fast formation of system matrices arising from
daptive isogeometric Galerkin methods with suitably graded hierarchical meshes. By exploiting a local tensor product structure,
e extend the construction of weighted rules from the tensor product to the hierarchical spline setting. The proposed algorithm
as a computational cost proportional to the number of degrees of freedom and advantageous properties with increasing spline
egree. To illustrate the performance of the method and confirm the theoretical estimates, a selection of 2D and 3D numerical
ests is provided.

2022 Elsevier B.V. All rights reserved.
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1. Introduction

Local and adaptive mesh refinement methods in isogeometric analysis have gained a notable attention in the last
ears and their mathematical theory has recently been established, see [1] and references therein. One of the more
rominent tool in this context is provided by hierarchical B-spline construction [2–4]. The attractive advantage of
he hierarchical spline model comes from a good balance between sound theoretical foundations, flexibility, and ease
f implementation. A local refinement step is governed by simple conditions that activate/deactivate basis functions
rom hierarchically nested sequence of spline spaces. The use of the hierarchical approach in isogeometric analysis
as originally proposed in [2] and subsequently investigated in different directions, which range from the theory
f adaptive methods [5–7] to engineering applications, see e.g., [8–10] and references therein.

The efficient formation of matrices in isogeometric Galerkin methods is a topic of active research. In this paper
e focus on the weighted quadrature (WQ) approach, introduced in [11]. Other recent results and methods in this

rea are integration by interpolation and look-up [12,13], multiscale quadrature [14], sum-factorization [15,16],
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the surrogate matrix method [17], reduced integration for FEM and immersed methods [18] and at supercon-
vergent points [19], quadrature schemes for shell elements [20] and, beyond quadrature, the use of low-rank
approximation [21] or GPUs [22].

The aim of WQ is to reduce the number of quadrature points that are needed to accurately compute integrals
involving products of B-spline basis functions. In combination with sum-factorization and other implementational
techniques, it reduces significantly the cost of formation of isogeometric matrices. The idea of WQ is that the test
function plays the role of weight function in the integration, and therefore the quadrature weights depends on the test
function. The advantage of this construction is that the number of exactness conditions to be imposed is less than
for Gaussian quadrature, generalized Gaussian quadrature [23–26] or reduced quadrature [27–29]. Therefore, WQ
requires less quadrature points and its number mildly depends on the spline degree. The extension of the weighted
quadrature scheme to accurately integrate the elements of the stiffness matrix in linear elasticity was presented
in [30].

In this paper we extend WQ to hierarchical B-splines with maximum regularity. Since the construction of
the hierarchical basis is simply based on a suitable selection of standard B-splines at different levels of details,
we can define hierarchical WQ as a linear combination of standard WQ on different tensor product levels. The
proposed algorithm has a computational cost proportional to the number of degrees of freedom and advantageous
properties with increasing spline degree. After discussing in detail the case of the mass matrix, we briefly explain
the quadrature formulas for second order operators. To illustrate the performance of the method and confirm the
theoretical estimates, a selection of 2D and 3D numerical tests for L2-projection and linear elasticity is provided.
Note that other types of matrices and PDE problems could conceptually be dealt in a similarly way, see [11].
Although we focus only on spline spaces with maximum regularity, this is not a restriction of WQ, see [30] for a
detailed analysis on this case.

The structure of the paper is as follows. Preliminaries on hierarchical B-splines and weighted quadrature are
recalled in Section 2. The WQ and its use in the matrix formation for hierarchical B-splines is then presented in
Section 3, while the computational cost is studied in Section 4. Section 5 illustrates the numerical experiments and,
finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Hierarchical B-splines

We consider a nested sequence of L + 1 multivariate tensor product spline spaces V ℓ, for ℓ = 0, . . . , L , of
fixed degree p in any coordinate direction defined on a bounded closed hyper-rectangle Ω ⊂ Rd . By focusing on
dyadic mesh refinement, we assume the spline spaces is defined on a sequence of suitably refined knot vectors so
that V ℓ

⊂ V ℓ+1, for ℓ = 0, . . . , L − 1. It should be noted however that the hierarchical B-spline model can be
considered also in connection with more general (non-uniform) mesh refinement rules, where each mesh element
is subdivided in an arbitrary number of children elements. Moreover, not only h-refinement but also p-refinement
can be combined with the construction of the spline hierarchy as long as the spaces remain nested between each
pair (ℓ, ℓ + 1) of consecutive levels, for ℓ = 0, . . . , L − 1. The considered choice in the paper is dyadic (uniform)
refinement and fixed spline degree at all levels, which is the standard setting for adaptive isogeometric methods,
based on hierarchical B-splines, and a suitable compromise between accuracy and efficiency for related application
algorithms. Note that the design and development of fast assembly and efficient numerical integration rules tailored
on hierarchical B-spline constructions are key ingredients for the subsequent development of more flexible adaptive
approximation schemes.

In direction k of the domain Ω , the level ℓ basis Bℓ
k consists of N ℓ

Bk
univariate B-splines bℓ

k,ik
,

Bℓ
k =

{
bℓ

k,ik : ik = 1, 2, . . . , N ℓ
Bk

}
.

The multivariate spline space V ℓ on Ω can be defined as the span of the tensor product B-spline basis functions bℓ
i ,

Bℓ
:=

{
bℓ

i :=

d∏
bℓ

k,ik : bℓ
k,ik ∈ Bℓ

k

}

k=1

2
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Fig. 1. An example of an univariate hierarchical space. Mesh cells and B-splines for levels 0,1,2 are depicted in top, middle and bottom
plot, respectively. The hierarchical space is determined by domains Ωℓ, its basis functions in Iℓ

H are marked and labeled in each plot.

with respect to the index set

Iℓ
B :=

{
i := (i1, . . . , id ) ∈ Nd

: 1 ≤ ik ≤ N ℓ
Bk

, k = 1, . . . , d
}
.

We denote the rectilinear mesh grid of level ℓ by Mℓ. To localize the refinement regions at different hierarchical
levels, we also consider a nested sequence of closed subsets of Ω0

:= Ω given by

Ω0
⊇ Ω1

⊇ . . . ⊇ Ω L+1
= ∅.

The hierarchical mesh M collects the grid elements M ∈ Mℓ, which are not included in any refined region Ωm of
higher level m > ℓ,

M :=
{

M ∈ Mℓ
: M ⊆ Ω ℓ, M ̸⊆ Ω ℓ+1, ℓ = 0, . . . , L

}
.

We define the hierarchical B-spline basis [2] with respect to the hierarchical mesh M as

H(M) :=
{
bℓ

i ∈ Bℓ
: i ∈ Iℓ

H, ℓ = 0, . . . , L
}
,

where

Iℓ
H :=

{
i ∈ Iℓ

B : supp(bℓ
i ) ⊂ Ω ℓ, supp(bℓ

i ) ̸⊂ Ω ℓ+1} .

ote that in this paper we consider the support of a function as an open set. The introduced empty set Ω L+1 ensures
hat all B-splines of the finest level L whose support is fully contained in Ω L through the index set IL

H are activated.
Each basis function bℓ

i ∈ H is uniquely identified by its level ℓ and by the multi-index i ∈ Iℓ
H. Hence we can

efine the set of basis identifiers

IH :=

L⋃
ℓ=0

{(ℓ, i) : i ∈ Iℓ
H}. (1)

he cardinality of IH is denoted by NH. Hierarchical B-splines are non-negative, linear independent, and allow
ocalized mesh refinement by suitably selecting basis functions with a varying level of resolution. An univariate

xample of a hierarchical basis is depicted in Fig. 1.

3
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In order to limit the interaction between B-splines introduced at very different levels of the spline hierarchy,
e consider admissible meshes. A hierarchical mesh M is admissible of class r , with 2 ≤ r < L + 1, if the

hierarchical B-splines taking non-zero values on any element Q ∈ M belong to at most r successive levels. We
refer to [1,5] for more details concerning admissible meshes and their properties, and to [31] for the presentation
of the refinement algorithms which guarantee the construction of hierarchical mesh configurations with different
class of admissibility. Note that the suitably graded meshes generated via these algorithms are characterized by a
different (stronger) version of admissibility, which is easier to obtain via automatically-driven refinement rules.

2.2. WQ for tensor product splines

The goal of WQ is to reduce the number of quadrature points in the computation of Galerkin integrals for smooth
B-spline basis functions. In combination with the sum-factorization and replacement of the element-wise assembly
loop by a direct function-wise calculation of the matrix entries, the cost for the formation of isogeometric Galerkin
matrices goes from O(p3d N ) FLOPS down to O(pd+1 N ) FLOPS, where p and N denote the spline degree and

umber of degrees of freedom, respectively.
Consider Bℓ, the level ℓ tensor product B-spline basis, then we can directly apply the construction of [11] and

ntroduce for each i ∈ Iℓ
B, the following WQ

Q̄ℓ
i (v) :=

∑
q∈Iℓ

Q

w̄ℓ
i,qv

(
x̄ℓ

q
)

≈

∫
[0,1]d

v(x)bℓ
i (x)dx (2)

here bℓ
i ∈ Bℓ, w̄ℓ

i,q are the quadrature weights and x̄ℓ
q the quadrature points. For a better distinction between

ensor product and hierarchical objects, we use bars on the top of symbols for quadrature rules, points and weights
n the former case. Note that weights depend on i , that is, on bℓ

i , which plays the role of a weight function for the
ntegration. The rule (2) can be used to approximate the (i, j )-entry of the mass matrix at level ℓ, indeed∫

[0,1]d
c(x)bℓ

j (x)bℓ
i (x)dx ≈ Q̄ℓ

i (cbℓ
j ), (3)

here the given function c takes into account the determinant of the Jacobian of the parametrization map. More
enerally, any matrix arising in an isogeometric Galerkin method can be formed by suitable WQ, see [11]. The
ccuracy of WQ is related to the exactness conditions that the rule satisfies. In the case of (2)–(3), a typical request
s

Q̄ℓ
i (b

ℓ
j ) =

∫
[0,1]d

bℓ
j (x)bℓ

i (x)dx, bℓ
j ∈ Bℓ. (4)

Though not necessary, following [11], the quadrature points x̄ℓ
q in (2) do not depend on i . The set of d-variate

uadrature points is defined as the following tensor product

Qℓ
:= Qℓ

1 × · · · × Qℓ
d , (5)

here Qℓ
k := {x̄ℓ

k,qk
}

Rℓ
k

qk=1 is the set of univariate quadrature points in the kth direction and Rℓ
k is the number of

uadrature points along that direction. In the case of splines of maximum regularity, these points can be selected
s the midpoints and endpoints of the knot spans, with the exception of the first and last knot spans where we
an select p + 1 uniformly distributed points, see [11]. We also introduce the tensor product set of multi-indices,
ssociated to Qℓ as

Iℓ
Q := {q = (q1, . . . , qd ) ∈ Nd

: 1 ≤ qk ≤ Rℓ
k , 1 ≤ k ≤ d} .

ven though the quadrature points are defined globally, only those in the support of bℓ
i are active for Q̄ℓ

i . Thus, the
ctive quadrature points of Q̄ℓ

i depend on i . For simpler explanation purposes this is formalized by setting to zero
he weights {w̄ℓ

i,q}q∈Iℓ
Q

that correspond to points outside the support of bℓ
i (in our implementation, however, only

oint indices with non-zero weights are stored in the data structures to be more efficient). The non-zero weights
re computed by imposing the univariate local exactness conditions, leading to linear problems whose solution cost

s not prevailing in the overall matrix formation cost.

4
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More generally, WQ can be used for any second-order linear operator on a tensor product splines, see [11].
hen restricted to splines of level ℓ, the entries of the stiffness matrix associated to such operator have the form

d∑
β,γ=1

∫
[0,1]d

aβγ (x)∂βbℓ
i (x)∂γ bℓ

j (x)dx +

d∑
γ=1

∫
[0,1]d

bγ (x)bℓ
i (x)∂γ bℓ

j (x)dx +

+

∫
[0,1]d

c(x)bℓ
i (x)bℓ

j (x)dx, i, j ∈ Iℓ
B,

(6)

here, similarly as before, the functions aβγ , bγ and c take into account the geometry mapping and the coefficients
f the operator. For a fixed i ∈ Iℓ

B, each of the integrals in the above expression can be approximated independently
sing a different weighted quadrature rule, precisely

Q̄
ℓ,β,γ

i (v) :=

∑
q∈Iℓ

Q

w̄
ℓ,β,γ

i,q v
(
x̄ℓ

q
)

≈

∫
[0,1]d

∂βbℓ
i (x)v(x)dx,

Q̄
ℓ,γ

i (v) :=

∑
q∈Iℓ

Q

w̄
ℓ,γ

i,q v
(
x̄ℓ

q
)

≈

∫
[0,1]d

bℓ
i (x)v(x)dx,

(7)

nd the rule Q̄ℓ
i already introduced for the mass matrix. Note that the index β is associated with derivatives that

ppears in the integral measure, while the index γ is associated with derivatives for which the rule is exact. Moreover,
he set of quadrature points is the same as for the mass matrix (in particular, we still need just 2d points per element
f not close to a boundary of the domain).

A typical choice for the exactness conditions characterizing these rules is

Q̄
ℓ,β,γ

i (∂γ bℓ
j ) =

∫
[0,1]d

∂βbℓ
i (x)∂γ bℓ

j (x)dx,

Q̄
ℓ,γ

i (∂γ bℓ
j ) =

∫
[0,1]d

bℓ
i (x)∂γ bℓ

j (x)dx, bℓ
j ∈ Bℓ.

(8)

An alternative approach [30] is not considered in this study; it is considered less efficient in our setting since it
epends on more quadrature points, despite relying on fewer number of quadrature rules.

. WQ and matrix formation for hierarchical B-splines

.1. Definition of WQ for mass matrix

A weighted quadrature rule, associated to an active basis function bℓ
i ∈ H, is denoted by Qℓ

i . Its quadrature
oints and weights are jointly indexed with respect to an index set that is denoted by I (ℓ,i)

Q . Namely, let

Q(ℓ,i)
:=

{
xℓ

i,q
}

q∈I(ℓ,i)
Q

(9)

e a set of quadrature points and the set of the corresponding weights is
{
wℓ

i,q

}
q∈I(ℓ,i)

Q
. The quadrature rule Qℓ

i

applied to an auxiliary function v has the following form

Qℓ
i (v) :=

∑
q∈I(ℓ,i)

Q

wℓ
i,qv

(
xℓ

i,q
)

≈

∫
[0,1]d

bℓ
i (x)v(x)dx. (10)

distinguishing feature of this structure is that both the set of quadrature points and the set of quadrature weights
epend on the considered test function bℓ

i . However, as we will see in the following, Q(ℓ,i) can be conveniently
elected as a subset of a global tensor product grid, which is chosen a priori.

Similarly as in the non-hierarchical case discussed in the previous section, the quadrature rules are characterized
y exactness conditions. More specifically, we require that the rules are exact for all functions in the spline space,
r equivalently that

Qℓ
i (b

m
j ) =

∑
(ℓ,i)

wℓ
i,q bm

j
(
xℓ

i,q
)

=

∫
[0,1]d

bℓ
i (x)bm

j (x)dx, (m, j ) ∈ IH. (11)

q∈IQ

5
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Fig. 2. Example of a hierarchical mesh with three different levels. Three basis functions from Bℓ, with ℓ = 0, 1, 2 are considered. The
upports and quadrature points for these B-splines from spaces B0 (red), B1 (green) and B2 (blue) are depicted on the hierarchical mesh
left). The quadrature points for b0

i ∈ H used in weighted quadrature for hierarchical B-splines are also shown (right). (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

For a given pair (ℓ, i) ∈ IH we define ν(ℓ, i) as the finest hierarchical level whose functions interacts with bℓ
i ,

.e.,

ν(ℓ, i) := max
{
m : ∃ bm

j ∈ H s.t. supp(bℓ
i ) ∩ supp(bm

j ) ̸= ∅
}
. (12)

o make the notation lighter, the argument (ℓ, i) in ν(ℓ, i) will be sometimes omitted, since the dependence on the
asis identifier will be clear from the context.

Any active basis function bm
j that interacts with bℓ

i (including itself) can be written as a linear combination of
asis functions of level ν(ℓ, i), that is

bm
j =

∑
t∈Iν

B

α
m,ν
j ,t bν

t ∀ (m, j ) ∈ IH such that supp(bℓ
i ) ∩ supp(bm

j ) ̸= ∅, (13)

with α
m,ν
j ,t > 0 if supp(bν

t ) ⊆ supp(bm
j ) and α

m,ν
j ,t = 0 otherwise.

In order to define the quadrature rule Qℓ
i for the hierarchical space H, we rely on the definitions and relations

introduced in the previous section for tensor product spaces. In (10) we take

I (ℓ,i)
Q :=

{
q ∈ Iν

Q : x̄ν
q ∈ Qν

∩ supp(bℓ
i )

}
and let the quadrature points be xℓ

i,q = x̄ν
q for every q ∈ I (ℓ,i)

Q , hence (from definition (9)) we have

Q(ℓ,i)
= Qν

∩ supp(bℓ
i ). (14)

See Fig. 2 for an example of quadrature points for a basis function b0
i ∈ H. Since it interacts with a level 1 basis

function and not with a level 2 one, it inherits a local set of level 1 quadrature points x̄1
q.

The quadrature weights for bℓ
i are simply

wℓ
i,q =

∑
s∈Iν

B

α
ℓ,ν
i,s w̄ν

s,q (15)

for every q ∈ I (ℓ,i)
Q , and the coefficients α

ℓ,ν
i,s are the expansion coefficients of bℓ

i on the basis Bν as in (13).
In the following proposition we show that this choice for the quadrature rule Qℓ

i satisfies the imposed exactness
conditions on the hierarchical space.

Proposition 1.
ℓ
For (ℓ, i) ∈ IH the quadrature rule Qi satisfies the exactness conditions (11) on the hierarchical space.

6
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q

Proof. Let (m, j ) ∈ IH. If supp(bℓ

i ) ∩ supp(bm
j ) = ∅, then the equation in (11) is trivially satisfied since the

uadrature points Q(ℓ,i) belong to the support of bℓ
i . On the other hand, if supp(bℓ

i ) ∩ supp(bm
j ) ̸= ∅, then

Qℓ
i
(
bm

j
)

=

∑
q∈I(ℓ,i)

Q

wℓ
i,qbm

j
(
xℓ

i,q
)

=

∑
q∈I(ℓ,i)

Q

wℓ
i,qbm

j
(
x̄ν

q
)

=

∑
q∈Iν

Q

⎛⎝ ∑
s∈In

B

α
ℓ,ν
i,s w̄ν

s,q

⎞⎠ ⎛⎝∑
t∈Iν

B

α
m,ν
j ,t bν

t
(
x̄ν

q
)⎞⎠

=

∑
s,t∈Iν

B

α
ℓ,ν
i,s α

m,ν
j ,t

∑
q∈Iν

Q

w̄ν
s,qbν

t
(
x̄ν

q
)

=

∑
s,t∈Iν

B

α
ℓ,ν
i,s α

m,ν
j ,t

∫
[0,1]d

bν
s (x)bν

t (x)dx (16)

=

∫
[0,1]d

⎛⎝ ∑
s∈Iν

B

α
ℓ,ν
i,s bν

s (x)

⎞⎠ ⎛⎝ ∑
s∈Iν

B

α
m,ν
j ,t bν

t (x)

⎞⎠ dx

=

∫
[0,1]d

bℓ
i (x)bm

j (x)dx.

In (16) we use the property that for each s ∈ Iν
B the set of points Qν and the set of weights

{
w̄ν

s,q
}

q∈Iν
Q

satisfy the
exactness conditions (4) on the level ν = ν(ℓ, i). □

Remark 1. Quadrature rule Qℓ
i in (10) of level ℓ is actually a linear combination of quadrature rules defined at

level ν. Namely, if supp(bℓ
i ) ∩ supp(v) ̸= ∅ we can define I (ℓ,i)

:= {s ∈ Iν
B : supp(bν

s ) ⊆ supp(bℓ
i )} and derive

Qℓ
i (v) =

∑
q∈I(ℓ,i)

Q

wℓ
i,qv

(
xℓ

i,q
)

=

∑
q∈I(ℓ,i)

Q

wℓ
i,qv

(
x̄ν

q
)

=

∑
q∈I(ℓ,i)

Q

∑
s∈I(ℓ,i)

α
ℓ,ν
i,s w̄ν

s,qv
(
x̄ν

q
)

=

∑
s∈I(ℓ,i)

α
ℓ,ν
i,s

∑
q∈I(ν,s)

Q

w̄ν
s,qv

(
x̄ν

q
)

=

∑
s∈I(ℓ,i)

α
ℓ,ν
i,s Q̄

ν
s (v).

In particular, the quadrature rule Qℓ
i is determined by those rules whose support is included in the support of bℓ

i .
Note that a construction of weighted quadrature rules as linear combination of other rules was recently addressed
also in the context of (trimmed) tensor product patches [32].

Remark 2. It might seem intuitive that the quadrature points relative to a coarse basis function should be taken
on a finer level only in the overlap with the support of finer basis function. In fact, the present version of weighted
quadrature requires that all points associated to a function are taken on the finest level it interacts with. The reason
behind this is twofold. First, each test function is associated with a single quadrature rule, i.e. a single set of points
and weights, which is used regardless of the level of the interacting trial function. We have numerically tested the

use of different rules for the same test function, taking the points and weights from the finest level between the test

7
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e
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f

and the trial function, but we have observed a loss of the order of convergence. Second, the exactness conditions
used to compute the rules involve functions that belong to the same hierarchical level, similarly as in [11]. This
means in particular that there is no guarantee that “mixing” rules of different levels in the support of a given test
function (i.e. using fine points/weights in the overlap with fine functions and coarse points/weights in the overlap
with coarse functions) will result in a rule that satisfies the exactness conditions (11).

3.2. Preprocessing: computing the quadrature points and weights

Since the quadrature weights are not known in advance for every possible mesh, degree, level and interaction,
they need to be computed efficiently in the preprocessing phase, before utilizing them in the matrix formation
phase. For computational efficiency, we fully exploit the tensor product structure of the active basis functions
bℓ

i and of the quadrature points. Quadrature weights are therefore obtained in two steps. First, we compute the
univariate quadrature weights of level ν, defined in (12), by solving the linear systems arising from the univariate
exactness conditions analogous to (4); this is the same as in [11]. Then, the univariate quadrature weights for the
WQ associated to an active basis function bℓ

i are computed as linear combination of level ν quadrature weights,
analogously to (15).

The quadrature points and weights for d-variate B-splines are stored and used as d-tuples of the univariate points
and univariate weights, respectively, in order to be ready for the sum-factorization used in the matrix formation.

To avoid redundant computations, all the active basis functions are clustered with respect to the value of ν so
that the univariate routines are engaged only once for each level, i.e., we classify the basis functions of H with
respect to ν by defining the sets of level n interacting functions

Fn
:= {bℓ

i : (ℓ, i) ∈ IH , ν(ℓ, i) = n}.

It is trivial to check the following properties:

H =

⋃
n≤L

Fn, (17)

Fm
∩ Fn

= ∅ if m ̸= n, (18)

Fn only contains functions of H of levels ≤ n . (19)

The classification of the active basis function bℓ
i with respect to the maximum level of interaction ν(ℓ, i) is described

in Algorithm 1.
Algorithm 1: classify basis functions

Input : H
Initialize Fn

= ∅ for n = 0, . . . , L
foreach (ℓ, i) ∈ IH do

Fν(ℓ,i)
= Fν(ℓ,i)

∪ bℓ
i

nd foreach

utput: {Fn
}n≤L

Because of (13) and (19), every function bℓ
i ∈ Fn can be written as linear combination of functions bn

j from
level n, and a similar formula holds for its quadrature weights (see (15)). Analogously, the same can be said for
the (univariate) components: bℓ

k,ik
can be written as a linear combination of level n functions bn

k, jk
, and wℓ

k,ik ,qk
as

a linear combination of w̄n
k, jk ,qk

,

bℓ
k,ik =

∑
jk∈Dℓ,n

k,ik

α
ℓ,n
k,ik , jk

bn
k, jk , wℓ

k,ik ,qk
=

∑
jk∈Dℓ,n

k,ik

α
ℓ,n
k,ik , jk

w̄n
k, jk ,qk

(20)

or k = 1, 2, . . . , d, where

Dℓ,n
k,ik

= { jk ∈ {1, . . . , N n
Bk

} : supp(bn
k, jk ) ⊆ supp(bℓ

k,ik )}.

To switch from the d-variate to the univariate setting, we first need to define two auxiliary functions πk and τk ,

π i := i , τ i := (i , . . . , i ),
k k k 1 k

8
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acting on a multi-index i = (i1, . . . , id ). Then, for k = 1, . . . , d we introduce the set of indices of univariate
-spline that are used to define the functions bℓ

i ∈ Hℓ
∩ Fn:

Gℓ,n
k := {ik = πk i : bℓ

i ∈ Hℓ
∩ Fn

}. (21)

inally, we define

Dn
k :=

n⋃
ℓ=0

⋃
ik∈Gℓ,n

k

Dℓ,n
k,ik

. (22)

he sets Dn
k identify the univariate quadrature weights that are needed to set up the WQ rules for functions of Fn

long the k−th direction. Precisely, in the next step for each jk ∈ Dn
k we compute the non-zero univariate quadrature

eights {w̄n
k, jk ,qk

}
Rn

k
qk=1 associated to bn

k, jk
∈ Bn

k by imposing the univariate exactness conditions analogous to (4),
xactly as done in [11]. Namely, we impose that

w̄n
k, jk ,qk

= 0 if x̄n
k,qk

/∈ supp(bn
k, jk ),

hile non-zero quadrature weights are obtained by solving the linear system∑
qk∈An,n

k, jk

w̄n
k, jk ,qk

bn
k,tk (x̄n

k,qk
) =

∫ 1

0
bn

k, jk (ξ ) bn
k,tk (ξ ) dξ, bn

k,tk ∈ Bn
k, jk , (23)

here

Aℓ,n
k, jk

:= {qk ∈ {1, . . . , Rn
k } : x̄n

k,qk
∈ Qn

k ∩ supp(bℓ
k, jk )}, (24)

Bn
k, jk := {bn

k,tk ∈ Bn
k : supp(bn

k, jk ) ∩ supp(bn
k,tk ) ̸= ∅} (25)

re the set of indices of quadrature points inside the support of the basis function bℓ
k, jk

, and the corresponding
nteracting trial univariate functions, respectively. Note that if the support of bℓ

k, jk
does not include the first or last

element, the local system has exactly 2p +1 unknowns and equations. In the case of a rectangular underdetermined
system, which might happen if the support includes the first or last element, we compute the solution with minimum
Euclidean norm. The construction of the univariate quadrature weights is summarized in Algorithm 2.

Algorithm 2: compute 1Dweights

Input : Bn
k , jk,Qn

k

compute the indices An,n
k, jk

from (24)
nd the interacting trial univariate functions Bn

k, jk
from (25)

ompute non-zero weights {w̄n
k, jk ,qk

}qk∈An,n
k, jk

by solving the linear system (23)

utput: {w̄n
k, jk ,qk

}qk∈An,n
k, jk

Up to this point, we have defined the univariate quadrature points and computed the univariate quadrature weights,
ssociated to all the basis functions in Bn

k that are needed to represent functions in Fn as linear combination of
unctions of level n, by using (13). Using (20) we can then compute the level ℓ univariate quadrature weights

Wℓ,n
k,ik

:=

{
wℓ

k,ik ,qk
=

∑
jk∈Dℓ,n

k,ik

α
ℓ,n
k,ik , jk

w̄n
k, jk ,qk

: qk ∈ Aℓ,n
k,ik

}
k = 1, . . . , d , (26)

or each index ik ∈ Gℓ,n
k .

The last preprocessing phase is to define the subset of d-dimensional quadrature points that are contained by
he support of functions in Fn , that will be used in the matrix formation phase for the evaluation of the non-tensor
roduct coefficients. The union of support of basis functions in Fn ,

Ψ n
:=

⋃
ℓ n

supp(bℓ
i ), (27)
bi ∈F

9
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is a set of d-dimensional boxes in [0, 1]d that can be described as a set of mesh cells on level n, which in general
does not have a tensor product structure. The d-dimensional level n quadrature points are simply defined as

Qn
Ψ := Qn

∩ Ψ n. (28)

Remark 3. Due to nestedness of quadrature points Qn with respect to level n, there are configurations in which
some points are defined in multiple levels. For the sake of efficiency, in our code we also store the union of all d
dimensional set of points, QΨ :=

⋃
n≤L Qn

Ψ , that is used for the evaluation of the non tensor product coefficients.

The complete preprocessing phase is described by the Algorithm 3.

Algorithm 3: preprocessing
Input : H
{Fn

}
L
n=0 = classify basis functions(H) (Alg. 1)

or n = 0, . . . , L such that Fn
̸= ∅ do

for k = 1, . . . , d do
compute 1D quadrature points Qn

k = {x̄n
k,qk

}
Rn

qk=1 for Bn
k (see Section 2.2)

for ℓ = 0, . . . , n do
compute Gℓ,n

k from (21)
end for
compute Dn

k from (22)
foreach jk ∈ Dn

k do
{w̄n

k, jk ,qk
}qk∈An,n

k, jk
= compute 1Dweights(Bn

k , jk , Qn
k) (Alg. 2)

end foreach
Wn

k = ∅

for ℓ = 0, . . . , n do
foreach ik ∈ Gℓ,n

k do
compute weights Wℓ,n

k,ik
from (26)

Wn
k = Wn

k ∪ Wℓ,n
k,ik

end foreach
end for

end for
compute the d-dimensional tensor product points Qn from (5)
compute Ψ n from (27)
compute Qn

Ψ from (28)
end for

Output: Fn,Wn
1 , . . . ,Wn

d ,Qn,Qn
Ψ , for n = 0, . . . , L

3.3. Mass matrix formation: algorithm

The rows and columns of the mass matrix are associated to the test and trial functions, respectively. In order to
mphasize the hierarchical level of a given basis function, we use row (or column) multi-index basis identifiers as
n (1). Therefore the single entry of the mass matrix is denoted as [M](ℓ,i),(m, j ) and is defined as:

[M](ℓ,i),(m, j ) =

∫
[0,1]d

c(x)bℓ
i (x)bm

j (x) dx ,

here the function c : [0, 1]d
→ R incorporates the determinant of the Jacobian of the mapping between the

arametric domain [0, 1]d and the physical domain Ω , and in general it does not have a tensor product structure.
10
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Recalling the quadrature rule definition (10), and the fact that wℓ
i,q = 0 for x̄n

q /∈ supp(bℓ
i ), we can write

[M](ℓ,i),(m, j ) ≈ Qℓ
i (c bm

j ) =

∑
q∈In

Q

wℓ
i,qc(x̄n

q)bm
j (x̄n

q) dx, (29)

here n = ν(ℓ, i).
Using the sum-factorization approach, we exploit wn

i,q =
∏d

k=1 wn
k,ik ,qk

and bm
j (x̄n

q) =
∏d

k=1 bm
k, jk

(x̄n
k,qk

) and write
(29) in terms of nested sums:

Qℓ
i (cbm

j ) =

∑
q1,...,qd

d∏
k=1

(
wℓ

k,ik ,qk
bm

k, jk (x̄n
k,qk

)
)

c(x̄n
1,q1

, . . . , x̄n
d,qd

)

=

∑
qd

wℓ
d,id ,qd

bm
d, jd (x̄n

d,qd
)

⎛⎝∑
qd−1

. . .
∑

q1

wℓ
1,i1,q1

bm
1, j1

(x̄n
1,q1

)c(x̄n
1,q1

, . . . , x̄n
d,qd

)

⎞⎠ (30)

here, in the summations above, each running index qk , for k = 1, . . . , d, belongs to the set

Qn,ℓ,m
k,ik , jk

:= {qk ∈ {1, . . . , Rn
k } : x̄n

k,qk
∈ supp(bℓ

k,ik ) ∩ supp(bm
k, jk )}. (31)

he sum-factorization algorithm in essence is a clever way to perform the nested sum (30), that sequentially performs
he integration along the directions k = 1, . . . , d , considering for each k all pairs of indices (ik, jk) that identify the
eight and trial function respectively. Details are presented in the remaining part of this subsection, where, for the

ake of notation simplicity, we will systematically omit the set Qn,ℓ,m
k,ik , jk

for the running index qk in the summations.
In (30) we note that coefficient c(x) must be evaluated at the points of the quadrature rule of level n. Moreover,

rom (17)–(19) we know that the sets
{

Fn
}L

n=0 (excluding the empty sets) form a partition of the hierarchical basis
. This suggests to construct the matrix starting from an outer loop over

{
Fn

}L
n=0, i.e., over the different levels of

uadrature rules, then for a given level n, compute the determinant of the Jacobian at Qn
Ψ (i.e., on the points that

ave non-empty intersection with the support of each basis function in Fn) and set the values to be zero for the
oints Qn

\ Qn
Ψ .

The key point here is that the evaluation of the non-tensor product coefficient c(x) may be a costly operation,
o we want to evaluate it just for the involved quadrature points, i.e., for each q ∈ In

Q we set:

Cn
q = Cn

(q1,...,qd ) :=

{
c(x̄n

q) if x̄n
q ∈ Qn

Ψ

0 otherwise
. (32)

Given a quadrature level n ∈ {0, . . . , L} such that Fn
̸= ∅, we loop over ℓ, m ∈ {0, . . . , n} and compute the

onnectivity between the test functions of Hℓ
∩ Fn and the trial functions of Hm , i.e.,

K n
ℓ,m := {(i, j ) ∈ Iℓ

B × Im
B : bℓ

i ∈ Hℓ
∩ Fn , bm

j ∈ Hm , supp(bℓ
i ) ∩ supp(bm

j ) ̸= ∅}. (33)

t this point we can apply the sum-factorization algorithm that allows us to evaluate the mass-matrix entries.
The integration along direction k = 1 writes as

I (1)
(i1),( j1);(q2,...,qd ) :=

∑
q1

wℓ
1,i1,q1

bm
1, j1

(x̄n
1,q1

)Cn
(q1,...,qd )

=

∑
q1

wℓ
1,i1,q1

bm
1, j1

(x̄n
1,q1

)I (0)
(),();(q1,...,qd ) , (34)

here we have defined I (0)
(),();(q1,...,qd ) := Cn

(q1,...,qd ), which only depends on the d-tuple of indices associated to the
uadrature points. Performing the summation over q1 we have as result I (1)

(i1),( j1);(q2,...,qd ) that depends on the pair
i1, j1) (related to the univariate test and trial basis along direction 1) and on the (d − 1)-tuple (q2, . . . , qd ) (related
o univariate quadrature points along the directions 2, . . . , d). The integration along directions k = 2, . . . , d − 1
hen writes as:

I (k)
(i1,...,ik ),( j1,..., jk );(qk+1,...,qd ) :=

∑
wℓ

k,ik ,qk
bm

k, jk (x̄n
k,qk

)I (k−1)
(i1,...,ik−1),( j1,..., jk−1);(qk ,...,qd ) , (35)
qk

11
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and finally for k = d:

I (d)
(i1,...,id ),( j1,..., jd );() :=

∑
qd

wℓ
d,id ,qd

bm
d, jd (x̄n

d,qd
)I (d−1)

(i1,...,id−1),( j1,..., jd−1);(qd ) = Qℓ
i (cbm

j ) , (36)

here the final expression in (36) is now independent of the quadrature point index but it depends on the pair of
est and trial d-tuple ((i1, . . . , id ), ( j1, . . . , jd )) and is equal to Qℓ

i (cbm
j ).

emark 4. For k = 1, . . . , d , for each (k − 1)-tuple pair (i1, . . . , ik−1), ( j1, . . . , jk−1) the coefficients
I (k−1)
(i1,...,ik−1),( j1,..., jk−1);(qk ,...,qd ) are used in a loop of the sum-factorization algorithm, so they should be stored in an
fficient data structure for the data retrieval with respect to the loop index qk ∈ Qn,ℓ,m

k,ik , jk
. The non-zero entries of

I (k−1)
(i1,...,ik−1),( j1,..., jk−1);(qk ,...,qd ) have a non tensor product structure with respect to the point indices (qk, . . . , qd ). Hence,
n order to save memory it is better to store these non-zero values in a sparse container. By observing that the indices
n Qn,ℓ,m

k,ik , jk
are contiguous, in order to have data locality and improve the cache efficiency, we store the data using

sparse data structure for the data associated to the inactive summation/integration directions k + 1, . . . , d , while
he entries along the active summation/integration direction k (and associated to the sub-index (qk+1, . . . , qd )) are
tored using a (dense) vector of length equal to the distance between the first and last non-zero value.

The key point to reduce the computational cost is to exploit the fact that the value of I (k−1)
(i1,...,ik−1),( j1,..., jk−1);(qk ,...,qd )

n (35) may be needed to compute multiple values of I (k)
(i1,...,ik ),( j1,..., jk );(qk+1,...,qd ). To exploit this fact, when we are

ntegrating along a direction k we must consider all the pairs of k-tuples ((i1, . . . , ik), ( j1, . . . , jk)).
Accordingly, for each k ∈ {1, . . . , d} we define the “projection” of the connectivity K n

ℓ,m along the first k
irections:

Π (k) K n
ℓ,m :=

{(
(i1, . . . , ik), ( j1, . . . , jk)

)
=

(
τk i, τk j

)
, ∀

(
i, j

)
∈ K n

ℓ,m

}
(37)

nd then the pairs of k-tuple that must be considered for the efficient computation of (35) are just the elements of
(k) K n

ℓ,m .
The sum-factorization algorithm is summarized by Algorithm 4. The overall algorithm for the matrix formation

s depicted by Algorithm 5.
Algorithm 4: sum factorization

Input : In
Q,

{
Cn

q
}

q∈In
Q

, ℓ, K n
ℓ,m,

{
Wn

k

}d
k=1

foreach (q1, . . . , qd ) ∈ In
Q do

I (0)
(),();(q1,...,qd ) = Cn

(q1,...,qd )

end foreach
for k = 1, . . . , d do

compute Π (k) K n
ℓ,m from (37)

foreach (ik, jk) ∈ {{1, . . . , N ℓ
Bk

} × {1, . . . , N m
B j

} : supp(bℓ
k,ik

) ∩ supp(bm
k, jk

) ̸= ∅} do

compute Qn,ℓ,m
k,ik , jk

from (31);
end foreach
foreach

(
(i1, . . . , ik), ( j1, . . . , jk)

)
∈ Π (k) K n

ℓ,m do
retrieve Wℓ,n

k,ik
from Wn

k (see (26))
foreach (qk+1, . . . , qd ) ∈ {1, . . . , Rn

k+1} × . . . × {1, . . . , Rn
d } do

compute I (k)
(i1,...,ik ),( j1,..., jk );(qk+1,...,qd ) from (35)

end foreach
end foreach

end for

Output: I (d)
≡

{
I (d)
(i),( j );()

}
(i, j )∈K n

ℓ,m
12
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Algorithm 5: compute matrix

Input : H, {Fn,Qn,Qn
Ψ ,Wn

1 , . . . ,Wn
d }

L
n=0, c

foreach n ∈ {0, . . . , L} such that Fn
̸= ∅ do

compute
{
Cn

q
}

q∈In
Q

from (32)

foreach ℓ ∈ {0, . . . , n} such that Hℓ
∩ Fn

̸= ∅ do
foreach m ∈ {0, . . . , n} do

compute K n
ℓ,m from (33){

[M](ℓ,i),(m, j )
}

(i, j )∈K n
ℓ,m

= sum factorization(In
Q,

{
Cn

q
}

q∈In
Q

, ℓ, K n
ℓ,m,

{
Wn

k

}d
k=1) (Alg. 4)

end foreach
end foreach

end foreach

Output: M

3.4. The stiffness matrix

We now briefly discuss how weighted quadrature can be used to form the stiffness matrix, highlighting the main
ifferences with the case of the mass matrix.

Let Qℓ,β,γ

i and Q
ℓ,γ

i , for β, γ = 1, . . . , d, denote the hierarchical counterpart of the tensor product rules defined
n (7), associated to bℓ

i ∈ H. Similarly as in the mass case, these rules are defined as a linear combination of tensor
roduct rules on the finest level with whom the basis spline bℓ

i interacts, i.e.

Q
ℓ,β,γ

i =

∑
j∈Iν

B

α
ℓ,ν
i, j Q̄

ν,β,γ

j , Q
ℓ,γ

i =

∑
j∈Iν

B

α
ℓ,ν
i, j Q̄

ν,γ

j ,

here the coefficients α
ℓ,ν
i, j are defined as in (13).

We refer to [11] for the details on the rules Q̄
ν,β,γ

j and Q̄
ν,γ

j defined on the tensor product space Bn , for
= 0, 1, . . . , L . In particular, the set of weights associated to one such rule is the tensor product of d sets

f univariate weights that can be of 4 different types, namely {w̄
n,1,1
k, jk ,qk

}
Rn

k
qk=1, {w̄

n,1,0
k, jk ,qk

}
Rn

k
qk=1, {w̄

n,0,1
k, jk ,qk

}
Rn

k
qk=1 and

{w̄n
k, jk ,qk

}
Rn

k
qk=1, for jk ∈ Dn

k , k = 1, . . . , d. The latter set of weights is the same used for the mass matrix, while the
former ones are defined by the following univariate exactness conditions∑

qk∈An,n
k, jk

w̄
n,1,1
k, jk ,qk

(
bn

k,tk

)′

(x̄n
k,qk

) =

∫ 1

0

(
bn

k, jk

)′

(ξ )
(

bn
k,tk

)′

(ξ ) dξ,

∑
qk∈An,n

k, jk

w̄
n,0,1
k, jk ,qk

(
bn

k,tk

)′

(x̄n
k,qk

) =

∫ 1

0
bn

k, jk (ξ )
(

bn
k,tk

)′

(ξ ) dξ,

∑
qk∈An,n

k, jk

w̄
n,1,0
k, jk ,qk

bn
k,tk (x̄n

k,qk
) =

∫ 1

0

(
bn

k, jk

)′

(ξ ) bn
k,tk (ξ ) dξ, bn

k,tk ∈ Bn
k, jk ,

(38)

here the sets Bn
k, jk

and An,n
k, jk

are defined as in (24) and (25).
The pipeline to assemble the stiffness matrix for hierarchical B-splines using WQ is similar to the already

resented mass case. The main differences are that in Algorithm 2, the linear systems (38) are solved in addition
o (23) to compute all the necessary weights, and that in the innermost loop of Algorithm 5, the contributions of
ll rules Q

ℓ,β,γ

i , Qℓ,γ

i and Qℓ
i for β, γ = 1, . . . , d must be computed and summed.

emark 5. In our implementation, the weights {w̄
n,1,1
k, jk ,qk

}
Rn

k
qk=1 and {w̄

n,0,1
k, jk ,qk

}
Rn

k
qk=1 are not actually computed by solving
he first and second sets of equations in (38). Note that these equations must be satisfied whenever the integrand

13
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function is the derivative of a B-spline, and these functions span the space of splines with degree and regularity
reduced by 1. Therefore, the exactness conditions can be reformulated using the basis of the latter space as integrand
functions, leading to equivalent linear systems that is solved to compute the weights.

4. Computational cost

We now want to estimate the total computational cost of the matrix formation, by first focusing on the mass.
There are mainly three steps that contribute to this cost: the evaluation of the non-tensor product coefficient c, the
omputation of the weights, and the computation of the matrix entries via sum-factorization.

The coefficient c has to be evaluated for every active quadrature point. Quadrature points are more dense for
lements that are adjacent to the boundary of Ω . However, the total number of active quadrature points is commonly
ominated from the interior part. Recalling (14) and ν − ℓ ≤ r − 1, the number of quadrature points that belong to

interior elements is bounded by∑
(ℓ,i)∈IH

#Q(ℓ,i)
≤

∑
(ℓ,i)∈IH

(2r−1(p + 1))d
= O(2dr pd NH). (39)

We remark that bound above is not sharp especially for what concerns its dependence on p, since quadrature points
in different Q(ℓ,i) may coincide.

As for the computation of the weights, we recall that we have to solve a system of the form (23) for every
univariate index jk , for k = 1, . . . , d . Since the number of univariate indices is bounded by the number of multi-
indices NH, and since each of these linear system has O(p) unknown non-zero weights and O(p) equations, the
cost to compute them all using a direct solver is bounded by O(p3 NH) flops.

If we compare the bound on this cost with the one on the cost to compute the matrix entries (derived below),
we see that they have the same order with respect to p for d = 2 and that the former has lower order for d = 3.
Note also that this bound does not depend on the admissibility parameter r .

We finally discuss the computation of the matrix entries. Following the structure of Algorithm 5, we fix
n ∈ {0, . . . , L} and ℓ, m ∈ {0, . . . , n} and consider the computation of the matrix entries (29) for all (i, j ) ∈ K n

ℓ,m ,
as performed by Algorithm 4.

As a preliminary step, we observe that for any fixed direction k ∈ {1, . . . , d} and any fixed index value ik , the
number of indices jk that must be considered in (30) is clearly bounded by the number of basis functions of level
m whose support intersects the support of bℓ

k,ik
. It can be verified that the latter number is bounded by 2p +1 when

m ≤ ℓ, and by 2m−ℓ(p + 1) + p when m > ℓ. In both cases, this number is bounded by 2n−ℓ+1(p + 1), since
n ≥ max{m, ℓ}.

Moreover, again for any fixed direction k and index value ik , the active quadrature points x̄n
k,qk

are the ones
belonging to the support of bℓ

k,ik
; since we have 2 quadrature points on each interior element of level n, or p + 1

on the elements that touch the boundary, and the support of bℓ
k,ik

contains at most 2n−ℓ(p + 1) elements of level n,
we conclude that there are at most 2n−ℓ+1(p + 1) active quadrature points if bℓ

k,ik
does not touch the boundary, or

at most
(
2n−ℓ+1

+ 1
)

(p + 1) quadrature points if bℓ
k,ik

touches the boundary. Again, the cost is typically dominated
by the quadrature at the interior, therefore we assume that the number of index values taken by qk in the kth sum
of (30) is roughly 2n−ℓ+1(p + 1).

We are now ready to estimate the cost of computing (30). As a first step, we evaluate the innermost sum (34)
for all relevant values of i1, j1 and q2, . . . , qd . Of course in the sum we only need to consider the non-zero terms,
and we observe that the term corresponding to a fixed q1 is non-zero only for the p + 1 values of j1 such that
bm

1, j1
(x̄n

q1
) ̸= 0. Note that if we preliminary multiply wℓ

1,i1,q1
bm

1, j1
(x̄n

q1
) for all such values of q1 and j1 (which has a

egligible cost), the computation of the sum (34) requires 2 flops for each of its non-zero terms.
Since each index q1, . . . , qd , can take up to 2n−ℓ+1(p + 1) values, and since the number of values taken by

1 = τ1 i is bounded by the number of multi-indices i belonging to Fn
∩ Hℓ, the cost of the first step is bounded

y

2 (p + 1)d+1 2d(n−ℓ+1) Nn,ℓ flops, (40)

where
n ℓ
Nn,ℓ := |F ∩ H |.
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For k = 2, . . . , d − 1, the kth step of the sum-factorization requires the computation of (35) for all values of
1, . . . , ik , j1, . . . , jk and qk+1, . . . , qd , where the inner sum I (k−1)

(i1,...,ik−1),( j1,..., jk−1);(qk ,...,qd ) has already been computed
for all the relevant index values.

Since (i1, . . . , ik) = τk i , the total number of k-tuples (i1, . . . , ik) that have to be considered is again bounded
by the number of multi-indices Nn,ℓ.

Moreover, again we observe that for each value of qk there are only p + 1 values of jk that contribute to the
sum, and since the number of values taken by each index qk, . . . , qd and j1, . . . , jk−1 is bounded by 2n−ℓ+1(p + 1),
the cost of this step is again bounded by (40). With similar arguments, it can be shown that this is true also for
the dth step of the sum-factorization (35).

We conclude that the cost of the whole sum-factorization step is bounded by

2d (p + 1)d+1 2d(n−ℓ+1) Nn,ℓ flops.

We sum the above expression for all values of n, ℓ and m, and observe that for a fixed level ℓ the number of
levels m that interact with it is at most 2r − 1. Thus, a bound on the total cost for the matrix entries computation
is given by

2d(2r − 1) (p + 1)d
∑

n

∑
ℓ≤n

2d(n−ℓ+1) Nn,ℓ flops. (41)

We can derive a more explicit bound on the cost of the matrix entries computation if take a further step and
bserve that n − ℓ + 1 ≤ r and that∑

n

∑
ℓ≤n

Nn,ℓ = NH.

ence the total cost for the matrix entries computation (41) is bounded by

2d(2r − 1)2dr (p + 1)d+1 NH = O
(
dr2dr pd+1 NH

)
flops. (42)

We observe that, similarly as in the bound on the active quadrature points (39), the latter expression grows
xponentially with respect to the admissibility parameter r , and this effect worsen with the increasing of the
imension d . This might seem unsatisfactory, but we emphasize that (42) is easily a rather pessimistic bound. Indeed,
careful analysis of the derivation of (42) reveals that we are essentially assuming that every hierarchical B-spline

asis function bℓ
i , with (ℓ, i) ∈ IH, interacts with all the admissible levels. In many practical cases, however,

efinement is performed only in specific regions of the domain, e.g., in the neighborhood of low dimensional
anifolds, and as a result the number of basis functions that interact with all the admissible levels is limited.
The computational cost for the stiffness matrix can be analyzed in a similar way, since the number of quadrature

oints is the same. The main difference is that each integral appearing in (6) has to be approximated independently,
nd this clearly increases the cost. For example, if only second-order terms appear in the operator (as is the case
or the scalar Poisson stiffness matrix), the formation cost is d2 times higher than for the mass matrix.

. Numerical tests

The numerical tests comprise of the L2-projection operator (both in 2D and 3D) a(u, v) :=
∫
Ω uv dΩ ,

nd the linear elasticity operator (in 3D) a(u, v) := 2µ
∫
Ω ε(u) : ε(v) dΩ + λ

∫
Ω div(u) · div(v) dΩ , where

i j (u) =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
.

For the 2D cases the physical domain Ω ∈ R2 is defined as the image of the two-dimensional parametric domain
Ω̂ = [1, 2] × [π

4 , 3π
4 ] through the (polar) map

F(ρ, θ) =

(
ρ cos θ

ρ sin θ

)
, (43)

while for the 3D cases the physical domain Ω ⊂ R3 is defined as the image of the three-dimensional parametric
domain Ω̂ = [1, 2] × [π

4 , 3π
4 ] × [0, π

2 ] through the (polar) map

F(ρ, θ, φ) =

⎛⎝ ρ cos θ

ρ sin θ cos φ

⎞⎠ . (44)

ρ sin θ sin φ
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Fig. 3. L2-projection (left) and element levels (right) after 51 adaptive refinements for the 2D case with degree p = 2 and admissibility
= 2. For this configuration the space contains 867947 degrees of freedom, and the L2-error between the function (45) and its L2-projection

is ≈ 3.4e − 7.

For both L2-projection and linear elasticity problems we set the boundary conditions and the right-hand side
vector of the linear system that assures a known unique exact solution of the problem (the details are given below)
and then, for a given value of the admissibility parameter r , a nested sequence of hierarchical B-spline spaces of

egree p is constructed [31]. The adaptive mesh refinement is steered by the “error estimator”, which is simply the
L2-error between the computed solution and the known solution and by using the Dörfler marking strategy [33]
with parameter θ∗ = 0.2.

For each refinement step, we perform a simulation using the standard element-based Gaussian quadrature (using
p + 1 quadrature point along each direction of the element) to build the bilinear operator (and the vector of the
linear system) and then, using the same sequence of hierarchical spaces we compute the bilinear operator using the
proposed hierarchical WQ algorithm.

Remark 6. All the numerical tests were performed using the IGATOOLS library [34], on a single core of an Intel
Xeon Gold 6242R processor running at 3.1 GHz. In order to alleviate the random fluctuations in the elapsed CPU
time, all plots involving CPU time refer to the average CPU time of multiple (5 for the 2D case and 3 for the 3D
case) runs of the same simulation.

Remark 7. In all plots the lowest monitored CPU time is set to 10−1 seconds to reduce the effect of random time
uctuations, due to the CPU scheduling.

.1. L2-Projection

These numerical tests comprise of the L2-projection of the function f :Ω → R,

f (x) = exp
[
−

(
∥x − x0∥ − 1

β

)2
]
, (45)

here the physical domain Ω ∈ Rd is specified above ((43)–(44)), the parameter β ∈ R and the point x0 ∈ Rd are:

• β = 5 · 10−3 and x0 = (0, 5
2 ) for d = 2 (see Fig. 3);

• β = 0.1 and x0 = (0, 5
2 , 0) for d = 3 (see Fig. 8).

5.1.1. L2-Projection: 2D case
For this case we performed simulations using the admissibility parameters r = 2, 3 and for each value of r we

used the degrees p = 2, . . . , 6.
Fig. 4 shows the total time (preprocessing + matrix computation) with respect to NH for r = 2. The plots

indicate that the total time for the WQ approach seems to be nearly independent of the degree p, while for the
element-based Gaussian approach we note that the cost increases with p (as expected). Moreover, also the most
avorable case for the element-based Gaussian approach (i.e., p = 2) costs more of any of the WQ cases we have
ested. As a result, we can conclude that if one wants achieve a very low error level (< 10−7), the best strategy in

erms of CPU time needed to build the matrix is to use WQ with high degree (see Fig. 5).
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t

Fig. 4. L2-projection: NH vs. total time for the matrix computation for the 2D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

Fig. 5. L2-projection: L2-error vs. total time for the matrix computation for the 2D case and admissibility parameter r = 2. For WQ the total
ime for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

Regarding the CPU cost of the WQ approach, in Fig. 6 are shown (for the degrees p = 2, . . . , 5) the preprocessing
cost (Algorithm 3) and the matrix computation cost (Algorithm 5), that is split in the time needed to evaluate the
coefficients in (32) (for n = 0, . . . , L) and the rest of the algorithm (i.e., the computation of the connectivities K n

ℓ,m
from (33) and the sum-factorization). From the plots in Fig. 6 we observe that the asymptotic behavior of the costs

is the same for all different degrees, resulting in the dominant cost being the formation of the matrix whereas the
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Fig. 6. NH vs. the CPU time needed to run the WQ algorithm: preprocessing (Algorithm 3) and matrix computation (Algorithm 5) for
he L2-projection in 2D and admissibility parameter r = 2. The cost for the matrix computation is split in the CPU cost for coefficient

evaluations ((32) for n = 0, . . . , L) and the CPU cost for executing the rest of the Algorithm 5.

ost for the preprocessing is smaller but not negligible (at least for the tested cases). It is worthy to note that for
ow number of degrees of freedom, the main cost is due to the preprocessing.

Regarding the case with admissibility parameter r = 3, Fig. 7 shows the total time (preprocessing + matrix
omputation) with respect to NH. The plots indicate that both approaches (element-based Gaussian quadrature and

Q) have a higher cost (for a given number of NH) for all tested degrees with respect to the case with r = 2
Fig. 4), but the WQ approach seems to be nearly independent of the degree and for the tested degrees p = 2, . . . , 6
t is less expensive than the element-based Gaussian approach of degree ≥ 3.

.1.2. L2-Projection: 3D case
For this case we performed simulations using the admissibility parameter r = 2 and the degrees p = 2, . . . , 6.
Fig. 9 shows the total time (preprocessing + matrix computation) with respect to NH, while Fig. 10 shows

he total time with respect to the L2-error. From the plots in these figures, we can observe that the WQ approach
utperforms the element-based Gaussian approach. In fact, considering the CPU time with respect to NH (Fig. 9),
he total time (preprocessing + matrix computation) for the WQ approach seems to be mildly dependent from the
egree p, while for the element-based Gaussian approach we note that the cost increases with p, by a factor higher
han the 2D case (as expected). Moreover, also the most favorable case for the element-based Gaussian approach
i.e. p = 2) costs more of any of the WQ cases we have tested. As result, we can again infer that the best strategy

n terms of error/CPU time ratio is WQ with high degree (see Fig. 10).
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r

c

Fig. 7. NH vs. total time for the matrix computation for the 2D case and admissibility parameter r = 3. For WQ the total time for the
matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

Fig. 8. L2-projection (left) and element levels (right) after 27 adaptive refinements for the 3D case with degree p = 2 and admissibility
= 2. For this configuration the space contains 754614 degrees of freedom, and the L2-error between the function (45) and its L2-projection

is ≈ 8.5e − 6.

Regarding the CPU cost of the WQ approach, in Fig. 11 are shown (for the degrees p = 2, . . . , 5) the
preprocessing cost (Algorithm 3) and the matrix computation cost (Algorithm 5), that is split in the time needed
to evaluate the coefficients in (32) (for n = 0, . . . , L) and the rest of the algorithm (i.e., the computation of the
onnectivities K n

ℓ,m from (33) and the sum-factorization). In this case we observe that for degree p = 2 the dominant
cost is due to the evaluation of the coefficients, whereas for higher degrees this cost is less important (moreover,
the relative importance decreases raising the degree, and increases raising the number of degrees of freedom).
Regarding the other two major costs, the same pattern observed for the 2D case seems to emerge: when the number
of degrees of freedom is “small” (depending on the degree) the bigger cost is due to the preprocessing, otherwise
the dominating cost is due to the matrix formation phase.

5.2. Linear elasticity in 3D

These numerical tests comprise of the solution of the following linear elasticity problem:( 1 )3 ( 1 )3
Find u ∈ H0 (Ω ) s.t. ∀v ∈ H0 (Ω ) holds

19
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Fig. 9. L2-projection: NH vs. total time for the matrix computation for the 3D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

Fig. 10. L2-projection: L2-error vs. total time for the matrix computation for the 3D case and admissibility parameter r = 2. For WQ
the total time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation
(Section 3.3).
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Fig. 11. NH vs. the CPU time needed to run the WQ algorithm: preprocessing (Algorithm 3) and matrix computation (Algorithm 5) for
the L2-projection in 3D and admissibility parameter r = 2. The cost for the matrix computation is split in the CPU cost for coefficient
evaluations ((32), for n = 0, . . . , L) and the CPU cost for executing the rest of the Algorithm 5.

µ

∫
Ω

ε(u) : ε(v) dΩ + λ

∫
Ω

div(u) · div(v) dΩ =

∫
Ω

f · v dΩ on Ω (46)

here εi j (u) =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
and the Lamé parameters (λ, µ) correspond to the elasticity modulus E = 1 and

Poisson’s ratio ν = 0.3. The function f :Ω → R3 is chosen to satisfy the strong form of (46) applied to the
manufactured solution u :Ω → R3

u(x) = exp
[
−

(
∥x − x0∥ − 1

β

)2
]

(ρ2
− 1)(ρ2

− 4)
(π

4
− θ

)(3π

4
− θ

)
φ
(π

2
− φ

)
(x − x0) , (47)

here the parameters (ρ, θ, φ) are the parametric coordinates of the (physical) point x when mapped by the function
44).

For this case we performed simulations using the admissibility parameter r = 2 and the degrees p = 2, . . . , 6.
Fig. 12 shows the total time (preprocessing + matrix computation) with respect to NH. From the plots in this

gure we can observe that the WQ approach has a milder dependence on p than the element-based Gaussian
pproach, and (for a fixed degree p) its total cost is smaller than the cost of the element-based Gaussian approach,
xcept for the degree p = 2 where the two costs are comparable. In particular, it is worthy to note that for degree

p = 6, when NH ≈ 8.0 · 104, the time for assembling the stiffness matrix for WQ is ≈ 100 times smaller than the

ime needed by the standard element-based Gaussian approach.
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Fig. 12. Linear elasticity: NH vs. total time for the matrix computation in the 3D case and admissibility parameter r = 2. For WQ the total
time for the matrix computation is the sum of the time needed for the preprocessing (Section 3.2) and for the matrix formation (Section 3.3).

6. Closure

A fast matrix formation technique for adaptive isogeometric Galerkin methods with multivariate hierarchical
B-splines was presented by focusing on the efficient design of weighted quadrature rules. As standard choice for
adaptivity with hierarchical B-spline constructions, we perform local mesh refinement by successively introducing
dyadically refined knot sequences as background machinery for the construction of the spline hierarchy. The
theoretical estimates of the computational cost suitably exploit the limited number of basis functions, which are
non-zero on any element of an admissible hierarchical mesh. A selection of numerical examples confirm that
the results obtained with the hierarchical weighted approach compare favorably with respect to standard Gaussian
quadrature rules, specially in the three-dimensional case. Interesting topics for future research include for example
a combination of the proposed algorithm with matrix-free methods [35] as well as the extension to the case of
truncated hierarchical B-splines [3,4], characterized by (possibly) reduced supports with respect to the ones of
standard hierarchical B-splines, and an application to different PDE problems of applicative interest.
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