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ABSTRACT 
 
The face reveals  the healthy status of an individual, through 
a combination of physical signs and facial expressions. The 
project SEMEOTICONS is translating the semeiotic code of 
the human face into computational descriptors and 
measures, automatically extracted from videos, images, and 
3D scans of the face. SEMEOTICONS is developing a 
multisensory platform, in the form of a smart mirror, 
looking for signs related to cardio-metabolic risk. The goal 
is to enable users to self-monitor their well-being status over 
time and improve their life-style via tailored user guidance. 
Building the multisensory mirror requires addressing 
significant scientific and technological challenges, from 
touch-less data acquisition, to real-time processing and 
integration of multimodal data. 
 

Index Terms— Cardio-metabolic risk, unobtrusive 
health monitoring, 3D face detection and tracking, 3D 
morphometric analysis, multispectral imaging, breath 
analysis, psycho-somatic status recognition, multimodal 
data integration 
 

1. INTRODUCTION 
 
The face is the preeminent channel of communication 
among humans: it is a mirror of status, emotions, and mood. 
As such it is the base of medical semeiotics, revealing  the 
healthy status of an individual through a combination of 
physical signs (e.g., skin color, subcutaneous fat) and facial 
expressions.  

This paper describes how the EU FP7 project 
SEMEOTICONS (http://www.semeoticons.eu/) is moving 
medical semeiotics to the digital realm, translating the 
semeiotic code of the face into computational descriptors  

Fig. 1. The Wize Mirror is a multisensory platform which collects 
videos, images, 3D scans of the human face and gas concentration 
signals, looking for signs correlated with cardio-metabolic risk. 

 
and measures extracted from videos, images, and 3D scans 
of the human face.  A multisensory platform in the form of a 
smart mirror, called the Wize Mirror, is developed. It detects 
and monitors over time facial signs correlating with cardio-
metabolic risk  �  the leading cause of mortality worldwide  
�  and gives personalized advice to users on how to 
improve their habits.  

The Wize Mirror seamlessly integrates contactless 
sensors and a user-friendly interface (Figure1). The sensors 
collect heterogeneous data: 3D scans, videos, (multispectral) 
images, and gas concentration signals of the subject in front 
of the mirror. The data are processed by dedicated 
algorithms, extracting biometric, morphometric, 
colorimetric, and compositional descriptors of facial signs. 
According to a semeiotic model of the face for cardio-
metabolic risk [1], the descriptors include: 



• 3D morphological face descriptors, related e.g. to 
overweight, obesity, swelling, and asymmetry, computed on 
a reconstructed 3D face model; 
• facial descriptors revealing stress, fatigue and anxiety, 
captured via 3D and 2D expression analysis on video 
sequences, and skin face colorimetry descriptors, such as 
pallor, redness, jaundice; 
• physiological parameters such as heart rate, heart rate 
variability, and respiratory rate, all estimated from videos by 
detecting face color changes and cyclic movements actions; 
• descriptors associated with diabetes, cholesterol, and 
endothelial dysfunction, evaluated through a novel multi-
spectral imaging system assessing the skin tissue including 
the microcirculation; 
• exhaled gas composition, measured through a novel gas 
sensing device, which gives feedback about noxious habits 
such as smoke and alcohol intake. 
The descriptors will be integrated to define a Virtual 
Individual Model and an individual Wellness Index. The 
index will enable common people to self-assess and self-
monitor their well-being status over time. The Wize Mirror 
will also offer personalized suggestions and coaching 
messages, up to truly personalized user guidance, towards 
the achievement and the maintenance of a correct life-style. 

Building the Wize Mirror requires addressing 
significant scientific and technological challenges. Indeed, 
the Wize Mirror promises touch-less data acquisition and 
real-time processing of multimodal data to extract reliable 
computational measures correlated with clinical risk factors.  

Below, we report on the data acquisition and 
synchronization (Section 2), the multimedia processing 
(Sections 3-6) and finally the Virtual Individual Model 
definition (Section 7). 
 

2. 3D/2D MEASUREMENT FACILITATION 
 
The vast majority of the measurements performed by the 
Wize Mirror are based on the data acquired from multiple 
imaging devices. To facilitate an unobtrusive data 
acquisition and synchronisation of the different Mirror 
sensors, there is a need for user detection, 3D head pose 
tracking and subsequent face image segmentation 
(Subsection 2.1). Moreover, to detect and monitor over time 
facial changes due to weight, swelling, local growth, facial 
asymmetry or preform other bio-morphometric analysis, the 
Wize Mirror is going to be equipped with a 3D scanner for 
3D face reconstruction (Subsection 2.2). 
 
2.1 Face detection, tracking and segmentation 
 
The proposed face detection and 3D head pose estimation is 
based on the approach described in [2]. A random forest 
framework is used to classify depth image patches between 
two different classes (head and no head) and perform a 
regression in the continuous spaces of head position and 
orientation. detection noise [3] and use of a personalized 3D 

mask, to improve the spatial accuracy. Subsequently the 
user personalized and labeled face mask is projected into the 
corresponding image domain enabling face segmentation 
and partition. The proposed processing pipeline has been 
tested against number of the state-of-the-art solutions 
([4][5][6])as shown in Figure 2. A comparison between the 
several methods is summarized in Table 1. The personalized 
face mask used in this case is shown on the right in Fig. 3. 
 

             
 

             
 

             

 
Fig. 2. Sample of results using different methods, from left to 
right: [4],[5],[6], and the proposed method. Extreme head poses are 
not detected by all approaches. For the last three methods, the 
automatic face partition is demonstrated using differently colored 
dots to indicate position of eyes and nose. 
 

Table 1. Summary results of face detection accuracy obtained for 
the tested methods. TP and FP denote True and False Positive rates 

respectively. 
[4] [5] [6] Proposed 

TP FP TP FP TP FP TP FP 
81 % 1 % 93 % 5 % 58 % 0 % 100 % 0 % 

 
2.2 3D face reconstruction 
 

 
Fig. 3. A sample of preliminary 3D reconstructions (blue 
background) and corresponding scans obtained from FaroArm 
laser scanner for the head model, and DI scanner for the real face. 

 
The currently implemented approach is based on the method 
proposed in [7]. Originally, the reconstruction method was 
designed to reconstruct static scenes of rigid objects by 
moving a range sensor and capturing different points of 
view of the area. The reconstruction requirements for the 
Mirror are different, as the sensor is in a fixed position and a 
subject is moving. In the proposed algorithm the reversed 
relative motion of the head with respect to the sensor is 
calculated for each depth frame in order to estimate the 
point of view. Then, only the segmented face regions and 



the camera parameters are used as input for the 
reconstruction. The output is provided as a triangulated 3D 
point cloud. A sample of the preliminary results is shown in 
Fig. 3, alongside corresponding 3D scans obtained by the 
commercial reference scanners. The whole reconstruction 
process, using the developed inexpensive compact scanner, 
is taking just couple of seconds. It should be noted that the 
use of the reference scanners on the Wize Mirror is not 
possible as these scanners are too big and expensive for that. 

 
3. 3D FACE ANTHROPOMETRIC 

QUANTIFICATION 
 
Anthropometry is the discipline which deals with facial 
morphology. One of the pioneers of modern craniofacial 
morphology was Leslie G. Farkas, who gathered a set of 
measurements of the face based on anatomical landmarks 
across different ethnic groups. Landmark-based measures, 
which are called morphometric, usually consist of distances, 
angles, areas etc. that involve more than one landmark. 
Farkas also examined the effects of some syndromes on 
these measures [8]. 

Up to now, the recording and analysis of morphometric 
measures was generally performed in 2D, that is on images.  
Nevertheless, 2D measures suffer from the sensory gap and 
cannot represent fully surface information.  With the recent 
technological advancements of the devices for 3D 
acquisition and modeling, the measurements of 
morphometric properties on 3D models started gaining 
momentum [9]. Nonetheless, up to our knowledge, effective 
solutions to the 3D analysis of facial morphology have not 
been demonstrated in clinical settings yet.  

In SEMEOTICONS, 3D face data  are analysed to 
monitor and quantify temporal facial shape changes related 
with cardio-metabolic risk. One of the main causes of such 
face changes are overweight and obesity: the face is 
involved in the process of fat accumulation, which often 
produces an increase in some facial dimensions [10]. Some 
studies  demonstrate that some geometrical facial features 
are strictly related to Body Mass Index and Waist 
Circumference [11]. 

 Computational topology, an emerging field of research 
in Computer Graphics [12], gives accurate descriptors  of 
3D data, which can be used to study morphological face 
changes. One of these descriptors, which has been 
investigated in SEMEOTICONS, is Persistent Homology 
[13]. It is a technique which grows a space incrementally 
and analyses the placement of topological events within the 
history of this growth: for example, the birth of a connected 
component and its death when it merges into another 
component. The lifespan of topological attributes is encoded 
in a simple and compact representation called persistence 
diagram. The aim is to furnish a scale to assess the relevance 
of topological attributes, under the assumption that 
longevity is equivalent to significance. Persistent homology 
can be useful in analysing 3D shape data and shape changes 

in particular: comparing faces by using a metric on the space 
of their persistence diagrams can provide information about 
the variability within the data, and help to identify 
interesting features. Similar ideas were used with success in 
orthodontics, for the study of the outcome of clinical 
procedures [14].   

In our contest, Persistent Homology was tested on 
different configuration of soft-tissue face landmarks. The 
input of the algorithm is the 3D Delaunay triangulation, 
whose nodes correspond to anthropometric landmarks, and 
edge lengths to their Euclidean or geodesic distances; note 
that distances are computed on the surface mesh, which 
retains complete information about the face morphology, as 
compared with linear measurements on images. The output 
is the shape descriptor (a persistence diagram) giving 
information on the geometry and topology of the landmark 
structure. As persistence diagrams can be efficiently 
compared using suitable distances, evaluating face changes 
boils down to comparing the persistence diagrams computed 
on 3D face scans taken at different times. Then, 
dimensionality reduction techniques are applied to the 
matrices of similarities between persistent diagrams, 
followed by an analysis of variance to make inference about 
landmark data and check if the proposed technique helps 
discovering 3D features which are well-related to 
overweight and obesity. As a longitudinal study on real 
subjects to monitor weight and 3D face changes is not 
available, a dataset of synthetic 3D faces simulating weight 
changes was generated using a parametric morphable model 
[15] and used for the first experiments ( Fig. 4). 
 

 
Fig. 4. A synthetic 3D face deformed to simulate weight gain. Red 
dots label anthropometric landmarks. 
 
4. EMOTIONAL AND PSYCHOPHYSICAL STATUS 

 
The Wize Mirror includes methods to detect and analyze 
facial expressions that are related to fatigue, stress and 
anxiety (Subsection 4.1). It also monitors some 
physiological signs (heart rate, heart rate variability, 
respiratory rate) and skin colour (Subsection 4.2). 
 
4.1 Stress, anxiety and fatigue detection 
 
Table 2 lists the signs that are the most representative of 
stress, anxiety and fatigue, according to the literature. The 
Wize Mirror uses a high resolution camera at a maximum 
frame rate of 90 fps for a non-obtrusive detection of those 
signs. Advanced algorithms process the captured frame 
sequence and produce a set of signs that represent the 



psychophysical status as expressed through the face. The 
algorithms rely on face detection, tracking and segmentation 
of appropriate regions of interest (ROIs) based on the 
techniques described in Section 2. 
 

Table 2. Signs of stress, anxiety, fatigue monitored by the WM. 

 

For head motion estimation, a ROI defining the face 
region between eyes and mouth is initially set and points on 
the four edges of the ROI are tracked. To retain the most 
stable feature points, the maximum distance traveled by 
each point between consecutive frames is used as a measure 
to discard points with a distance exceeding the mode of 
distribution of distances. Then, the feature point trajectories 
are analyzed to extract motion signals in different directions. 

For eyebrows motion, a ROI that includes the eyes and 
eyebrows is defined. Eyebrow segmentation is based on the 
observation that facial features differ from the rest of the 
face due to their low brightness [16]. A skin filter helps in 
removing areas covered with hair. Minima in the x and y 
image projections indicate the position of eyebrows feature 
points [17]. This information is used for the evaluation of 
eyebrow lowering and eyebrow raising. 

Mouth and lips motion are analyzed in terms of dense 
optical flow [18] in order to get a description of the motion 
pattern of the lips. Eye and mouth related parameters can 
also be studied using deformable models that are fitted to an 
image or to a video sequence. A combined model of shape 
and texture appearance like Active Appearance Models [19] 
is considered more appropriate. 

 

 
Fig. 5. Yawn probability in a video sequence. The method is robust 
against occlusions. 

The analysis of specific landmarks of the face and their 
relational position can characterize action units and facial 
movements such as yawning. The Wize Mirror detects 

yawns by matching landmark-based geometric features of 
each frame in a video sequence with templates representing 
yawning and neutral expressions. Fig. 5 shows the 
probability of each frame in a sequence to represent a yawn: 
peaks are correctly located in correspondence of the yawns. 

All the methodologies above were tested on different 
datasets ([20],[21]), and a project reference dataset collected 
during an acquisition campaign. Tests showed that the 
methods are promising, and indicated directions for 
improving robustness and performance. 
 
4.2 Other signs 
 
Besides facial expressions, other signs and biometrics of 
facial regions like heart rate (HR), heart rate variability 
(HRV) and respiratory rate (RR) can be used to get 
information [22]. Facial pallor and reddening are significant 
signs of the psychophysical status of the user, therefore also 
a colorimetric analysis of the face is carried out. In addition 
to videos, thermal imaging and  near infrared spectroscopy 
are considered quite promising as a non-invasive techniques 
in cardiac pulse estimation [23]. 
 

5. MULTISPECTRAL MEASUREMENTS 
 
The multispectral imaging (MSI) of facial skin aims to 
determine endothelial function [24], cholesterol 
concentration [25], and advanced glycation end-product 
(AGE) accumulation [26]. These parameters are measured 
in facial skin including its microcirculation, either directly 
or indirectly, emphasizing reproducibility for longitudinal 
health assessment.  

The principle for measuring endothelial function is to 
evaluate skin hyperemia during local heating. Skin 
cholesterol determination is based on characterizing spectral 
features during controlled illumination. AGE accumulation 
is measured using UV induced auto-fluorescence.  

The MSI hardware is based on compact cameras with 
filters at selected wavelengths controlled by a computer. It 
consists of five small monochrome 3.2 MP USB 3.0 CMOS 
cameras, computer controllable light sources (a bright 
white-LED and UV-LED, respectively), and a remote skin 
heater. Specification of the wavelength regions was deduced 
from theoretical analysis, simulations and hyperspectral data 
acquired by a line scanning diffraction grating based camera 
or cameras with liquid crystal or acousto-optical tunable 
filters. Among the skin tissue parameters also hemoglobin 
concentration and saturation can be measured.   

The experimental tests indicate that the best candidate 
for assessing microcirculation parameters is hemoglobin 
saturation. This parameter typically increases from 35% to 
92% in forearm skin indicating a shunt flow in larger vessels 
[27]. The facial skin has a baseline oxygenation of about 
65%, which could be due to a different vascular structure.      

Facial skin spectra recorded using white light 
illumination showed that spectral features correlated with 

Status Signs 
Stress  Heart rate (HR), heart rate variability (HRV) and 

respiratory rate (RR), blood pressure, galvanic skin 
response, gaze spatial distribution, saccadic eye 

movement, pupil dilation, blink rate 
Anxiety HR, HRV, RR, Blinks, eye opening, eyebrows 

movement, reddening, lip deformations, strained 
face, facial pallor, pupil dilation, and eyelid 

twitching 
Fatigue  Percentage eye closure, eye blink rate, speed (or 

duration), and amplitude, head motion, yawning 



lipid accumulation can be identified in skin regions below 
the eyes. These features correlate with blood cholesterol 
levels. In addition, numerical simulations indicated that 
small lipid depositions, microxanthelasmas, can be detected.  

For AGE detection, the UV-induced auto-fluorescence 
in the visible wavelength range was registered. The 
corresponding MSI data is strongly correlated with the 
reference method recordings from forearm skin (a 
commercial AGE reader). 

Remotely heating facial skin at a controlled temperature 
is not trivial. Experiences from local forearm heating 
indicate that temperatures in-between 39 oC – 42 oC are 
preferred for endothelial function assessment by 
determining the skin hyperemia, while heating to 44 oC 
provides a measure of the maximal hyperemia response 
[28]. We have tested full face heating based on IR heat 
sources. However, full facial heating including deep tissue, 
at higher than 42 oC is not well tolerated. Heating with 
visible light is feasible but interferes with the camera 
recordings. A promising solution based on a temperature-
controlled fan with heated air is being developed. 
 

6. BREATH ANALYSIS 
 
Breath gases are good indicators of the presence of diseases 
and clinical conditions. This motivates the idea to develop a 
portable, cheap, and easy-to-use device able to detect breath 
gases and analyse them in real time: the Wize Sniffer. The 
Wize Sniffer captures breath samples, and thanks to a 
chemical gas sensors array, detects a selected number of 
molecules (carbon dioxide, oxygen, hydrogen, ethanol, 
carbon monoxide, ammonia)  related to cardio-metabolic 
risk or to noxious habits for cardio-metabolic risk. The Wize 
Sniffer uses eight gas sensors, six placed in a store chamber, 
and two which work in flow thanks to a sampling circuit. 
The signals from the sensors are read by Arduino Mega 
2560 platform and sent to the principal board of the Wize 
Mirror by Ethernet connection (protocol). 

Tests showed that the device is able to provide reliable 
outputs. We plan in the future to improve the sensitivity of 
the sensors using nano fibers as sensing element, increasing 
surface/volume ratio (the sensitivity strongly depends on it).  
Such materials, as well as their selectivity, will be evaluated 
in order to develop, possibly, an hybrid platform.  
 

7. VIRTUAL INDIVIDUAL MODEL 
 
The final aim of the Wize Mirror is to monitor the 
individual well-being with respect to the cardio-metabolic 
risk, and foster healthier lifestyle. Besides the data 
acquisition and processing functionalities described above, 
the platform has to include three other modules for (i) user 
profiling; (ii) building of a Virtual Individual Model and 
definition of the Wellness Index; (iii) tailored user guidance. 

The user profiling has a twofold objective: assessing the 
page-zero health status of users at their starting point,; and 

identifying users’, attitudes, habits and preferences, so as to 
select the best strategy to provide customized suggestions 
and coaching messages. We define a baseline profile and an 
action profile. According to the semeiotic model of cardio-
metabolic risk, the baseline profile is built up on the base of 
a minimum set of descriptors, collected by the Wize Mirror, 
able to assign the user  to a cardio-metabolic risk cluster. 
The action profiling aims to identify user’s targets (that is, 
objectives of lifestyle intervention), and modulators (which 
pertain the way the intervention is managed). 

The complete set of computational descriptors of face 
signs are gathered into the Virtual Individual Model day-
bay-day, in order to build a representation of the 
individual’s status consistent with his/her cardio-metabolic 
risk. By means of data fusion techniques, the Virtual 
Individual Model is exploited to synthesize the Wellness 
Index, a non-diagnostic estimation for self-assessment and 
self-monitoring of cardio-metabolic risk. Most of the 
existing wellness or well-being indices [29] are designed for 
statistics about large populations, rather than for individual 
monitoring, and are often based on subjective components 
only, rather than on measured biophysical data. Conversely, 
our Wellness Index is based on both subjective criteria (e.g., 
perceived physical and mental status recorded via properly 
selected questionnaires) and objective data, i.e. the 
parameters measured on the sensed data described in the 
previous section. Conceptually, the values of monitored 
parameters can be seen as the components of a state vector 
moving in a multidimensional well-being space. In 
particular,  the Virtual Individual Model is mapped into 
three separate wellness sub-spaces, which relate to physical 
wellness, emotional wellness, life-style habit wellness 
respectively. This allows to reduce the dimensionality of the 
problem and introduces a semantic characterization of data. 
The Wellness Index lives in this space and the analysis of its 
trajectories characterize the user’s health status over time.  
Well-established cardio-metabolic risk charts (HEART 
SCORE, Fatty-Liver index, HOMA index, FINRISK index) 
are the ground-truth for the index validation [1].  

The Wize Mirror will provides customized and 
personalized suggestions and messages, in accordance with 
the estimated WI and its variation over time, the user’s 
profile in terms of  attitudes, habits and preferences, and 
contextual information about the user’s life circumstances. 
To promote health education, ad-hoc information and 
educational messages will be provided to users. The 
messages will be tailored to users’ characteristics so as to 
increase information intake and user engagement. The 
presentation, visualization and linguistic style of suggestions 
are studied to be in accordance with users’ peculiarities, 
since they are important moderators in communication 
modalities. Indeed, techniques used in recommender system 
are under investigation. A proactive decision support system 
is being studied, exploiting both computational models and 
procedural knowledge through ontologies and open 
standards provided by Semantic Web community. 



 
8.CONCLUSIONS 

 
This paper described the ongoing work in the European 
project SEMEOTICONS, which is developing a 
multisensory platform which detects and monitors over time 
facial signs correlated with cardio-metabolic risk, and gives 
personalized guidance towards lifestyle changes. 
SEMEOTICONS brings medical semeiotic analysis close to 
everyday life: from the office of medical doctors to the 
home, the gym, the pharmacy.  The empowerment of 
individuals, in terms of their ability to self-monitor their 
status and improve their life-style, is expected to have a 
great impact on the reduction of disease burden and health 
expenditure. Indeed, it is well-known that the cost of health 
systems grows exponentially with the aging of the 
population, together with the widespread use of complex 
diagnostic procedures. Currently prevention is the best 
strategy to limit the spread of cardio-metabolic diseases, and 
SEMEOTICONS offers a fresh, ICT-driven perspective on 
educational programs and lifestyle intervention. 
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