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Abstract

The future climate projections in the IPCC reports are visually communicated via

maps showing the mean response of climate models to alternative scenarios of

socio-economic development. The presence of large changes is highlighted by

stippling the maps where the mean climate response (the signal) is large com-

pared to internal variability (the noise) and the response is robust, that is, consis-

tent in sign, across the individual models. In addition, hatching is used to mark

the regions with a small multi-model mean change. This approach may fail to

recognize the risk of large changes in regions where the uncertainty is large and

the response is not robust. Here, we present a more informative diagnostic to

support risk assessment that is obtained by quantifying the mean forced signal-

to-noise ratio of the individual model responses, rather than the signal-to-noise

ratio of the mean response. This enables us to identify regions where a large

future change compared to year-to-year variability is plausible, regardless of

whether the signal is robust across the ensemble. For mean precipitation changes,

we find that the majority (58% in surface area) of the unmarked regions and a

sizeable portion (19%) of the hatched regions from the AR5 projections hid cli-

mate change responses to the RCP8.5 scenario that are on average large compared

to the year-to-year variability. Based on the newer CMIP6 ensemble, a consider-

able potential for large annual-mean precipitation changes, despite the lack of a

robust multi-model projection, exists over 22% of the surface land area, particu-

larly in Central America, northern South America (including the Amazon), Cen-

tral and West Africa (including parts of the Sahel), and the Maritime Continent.
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1 | INTRODUCTION

A central part of the Intergovernmental Panel on Climate
Change (IPCC) assessment reports describes the response

of the physical climate system to the anthropogenic forc-
ing due to greenhouse gas and aerosol emissions, and
land use change (Collins et al., 2013). The key source of
information to these future projections are the climate
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model experiments coordinately run as part of the
Coupled Model Inter-Comparison Project (CMIP) by all
the main world climate modelling groups (Taylor
et al., 2012; Eyring et al., 2016). Multi-model projections
are intrinsically uncertain, even for a given forcing sce-
nario, due to the presence of both internal climate vari-
ability and differences in how models simulate the
response to anthropogenic forcing (Hawkins and
Sutton, 2011). To visually aid the communication of
future climate change, the model projections in the
IPCC reports, such as for surface temperature and pre-
cipitation, are presented via spatial maps of the multi-
model mean change. Additional information on the
size of the mean response to climate change (the sig-
nal) relative to the amplitude of the unforced internal
variability, considered as noise, is overlaid on the maps
in the form of stippling and hatching. In particular,

stippling highlights regions where the signal-to-noise
ratio is large and the response is robust, that is, consis-
tent in sign, across the models. In contrast, hatching
highlights regions where the signal-to-noise ratio of
the mean response is small (see, e.g., Figure 1a).

The above approach is effective in communicating
the aspects of future climate change in which there is
more confidence (stippling), but it leaves some ambiguity
on the evaluation of the potential for large changes in the
presence of non-robust projections. First of all, as dis-
cussed in the IPCC 5th Assessment Report (AR5), hatch-
ing can either indicate that different models genuinely
agree on a small response or that different models project
large changes of opposite sign that compensate in the
mean (Collins et al., 2013). Furthermore, a number of
regions remain neither hatched nor stippled (Figure 1a).
This creates some additional ambiguity on whether these

FIGURE 1 Projected change (%) in the annual mean precipitation by 2081–2100 in the RCP8.5 (a–c) and SSP5-8.5 (d) scenarios as

portrayed using different approaches and model ensembles. (a) Projection based on the CMIP5 models using the standard hatching and

stippling adopted in the IPCC (taken from fig. SPM.8 of the AR5 Summary for Policy Makers [IPCC, 2013]). Stippling reflects changes where

at least 90% of models agree on the direction of change (robust response) and the mean change is large, and hatching where the mean

change is small, compared to internal variability (see box 12.1 in Collins et al., 2013 for the exact definition of hatching). (b) Projected

change in the same set of CMIP5 models analysed in a), but marked using the criteria proposed in this study: Full stippling is a robust

response (≥90% of models agree on the direction of change), while the open stippling indicates a plausibly large response compared to year-

to-year variability in the presence of a non-robust projection (see text for details). (c) Map of the grid points identified with hatching (red)

and unmarked (blue) in the IPCC approach (a) but marked with open stippling in our approach (b). (d) as (b) but based on the CMIP6

models [Colour figure can be viewed at wileyonlinelibrary.com]
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unmarked regions reflect consistent changes of interme-
diate amplitude, or potentially large changes in which
models do not agree on the direction of change. These
issues become of importance when evaluating climate
impacts in risk assessments (Sutton, 2019), since the dif-
ferent range of responses described above would clearly
have different implications for the evaluation of the soci-
etal risks posed by climate change. The ambiguity is exac-
erbated for those aspects of climate characterized by large
uncertainty and non-robust projections, as for those
influenced by the atmospheric circulation, such as pre-
cipitation. In these cases, the mean response can show a
washed-out signal and risk assessment may better take
the form of examining alternative, physically-based,
storylines of climate change (Shepherd, 2019;
Zappa, 2019). The mean response may be particularly
misleading where models have systematic biases in rep-
resenting the relevant physical processes, hence implying
only low confidence in the projected changes.

A number of more sophisticated statistical methods - of
varying degrees of complexity - have been proposed to map
model agreement and distinguish between cases in which
there is agreement on a small change, large changes of
opposite sign, and agreement on a significant change
(Tebaldi et al., 2011; Knutti and Sedlácek, 2012; Power
et al., 2012). The most advanced statistical methods also
account for the uncertainty in the magnitude of the change,
since a large inter-model spread can still be present in
regions where projections are consistent in sign across
models (Knutti and Sedlácek, 2012). While acknowledging
and comparing these different and more informative
approaches, the simpler diagnostic described above was still
the one adopted in the AR5 (Collins et al., 2013).

Here, we propose a novel method to communicate
and map climate information that is as simple as the
standard IPCC approach, but more suitable to provide
relevant information for risk assessment. We achieve this
by quantifying the mean of the signal-to-noise of the indi-
vidual model responses, rather than the signal-to-noise of
the mean response. The method accounts for the impact
of internal variability in inflating the mean signal-to-noise
of the projected climate response to anthropogenic forcing.
This enables us to identify regions where a large change is
plausible, regardless of whether the multi-model projec-
tions are robust, by avoiding the compensation arising
from discordant individual model responses on the multi-
model mean. While the range of existing methods may
provide a richer description of model uncertainty, the
present one has the advantage of being more intuitive to
those users accustomed to the standard IPCC approach,
and of being directly useful to identify those regions where
the development of physical storylines might be most
needed. We show the utility of the method by applying it

to examine future projections of precipitation change from
the previous (CMIP5) and current (CMIP6) generation of
CMIP climate models. In particular, CMIP5 is here instru-
mental to compare our method against the standard maps
presented in the IPCC AR5, while CMIP6 is used to pro-
vide an updated assessment of the areas of the globe that
may be affected by large—though not robustly projected—
changes.

2 | DATA AND METHODS

2.1 | The CMIP5 and CMIP6 data

We analyse monthly mean precipitation output from the
39 CMIP5 models (Taylor et al., 2012) and 34 CMIP6
models (Eyring et al., 2016) listed in Table 1. To be able
to compare our results with the IPCC AR5, we use the
same set of CMIP5 models and time periods analysed in
the AR5. In particular, for each model (m) the climate
change response (βm) is defined as the difference between
the mean climate in 2081–2100 in the future scenario and
1986–2005 in the historical experiment. The difference
between the two time means includes the forced response
to GHGs, aerosols and land use change, as well as
the residual unforced internal variability in the 20-year
means. Alternative parametric approaches may be
more effective at extracting the forced response
(e.g., Maraun, 2013), but we here stick to the difference
in means to retain consistency with the IPCC. For the
future climate, we consider the highest available emis-
sions scenario, namely RCP8.5 in CMIP5, and SSP5-8.5
in CMIP6 (O'Neill et al., 2016). Although the two scenar-
ios have the same nominal radiative forcing by the end of
the 21st century, they have slight differences in the time
evolution of the forcing and in the balance between the
different forcing agents.

Also following the AR5, the magnitude of the unforced
internal climate variability is quantified as the variance of
non-overlapping Y-year means from the pre-industrial
control runs of the models. In order to remove any resid-
ual drift, the pre-industrial runs are pre-processed by dis-
carding the first 100 years and by removing long-term
trends in the form of a quadratic polynomial. Using this
data, we quantify both the variance in the 20-year mean
climate (Y = 20, σ̂2m), and that in the year-to-year variabil-
ity (Y = 1, σ2m ). Neglecting the changes in the magnitude
of internal climate variability with anthropogenic forcing,
the variance in the climate change response from a single
realization can then be estimated as 2�σ̂2m.

One ensemble member is analysed per model, and
the models' precipitation output is interpolated via con-
servative remapping onto a common 2.5 × 2.5� grid prior
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TABLE 1 List of CMIP5 and CMIP6 models analysed in this study

Institutions Country CMIP5 models CMIP6 models

Commonwealth Scientific and Industrial
Research Organization

Australia ACCESS1-0 ACCESS-CM2

and Bureau of Meteorology ACCESS1-3 ACCESS-ESM1-5

Alfred Wegener Institute, Helmholtz Centre for
Polar and Marine Research

Germany AWI-CM-1-1-MR

Beijing Climate Centre, China Meteorological
Administration

China bcc-csm1-1 BCC-CSM2-MR

Beijing Normal University China BNU-ESM

Canadian Centre for Climate Modelling
and Analysis

Canada CanESM2 CanESM5

US National Center for Atmospheric Research USA CCSM4 CESM2-WACCM

CESM1-BGC CESM2

CESM1-CAM5

Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici

Italy CMCC-CMS CMCC-CM2-SR5

CMCC-CM

Centre National de Recherches
Meteorologiques and

France CNRM-CM5 CNRM-CM6-1-HR

Centre Européen de Recherche et Formation
Avancées en Calcul Scientifique

CNRM-CM6-1

CNRM-ESM2-1

Commonwealth Scientific and Industrial
Research Organization

Australia CSIRO-Mk3-6-0

European Consortium Europe EC-Earth EC-Earth3-Veg

EC-Earth3

Institute of Atmospheric Physics, Tsinghua
University

China FGOALS-g2 FGOALS-f3-L

FGOALS-g3

The First Institute of Oceanography China FIO-ESM

Geophysical Fluid Dynamics Laboratory USA GFDL-CM3 GFDL-ESM4

GFDL-ESM2G

GFDL-ESM2M

NASA Goddard Institute for Space Studies USA GISS-E2-H (p1, p2, p3) GISS-E2-1-G

GISS-E2-R (p1, p2, p3)

UK Met Office Hadley Centre UK HadGEM2-AO HadGEM3-GC31-LL

HadGEM2-CC HadGEM3-GC31-MM

HadGEM2-ES UKESM1-0-LL

Russian Institute for Numerical Mathematics Russia inmcm4 INM-CM4-8

INM-CM5-0

Institut Pierre Simon Laplace France IPSL-CM5A-LR IPSL-CM6A-LR

IPSL-CM5A-MR

IPSL-CM5B-LR

University of Tokyo, National Institute for
Environmental Studies,

Japan MIROC-ESM-CHEM MIROC-ES2L

and Japan Agency for Marine-Earth Science
and Technology

MIROC-ESM MIROC6

MIROC5
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to data analysis. For CMIP5, minor differences with the
results presented in the AR5 can arise due to possible dif-
ferences in the analysed ensemble members and in the
adopted interpolation method.

2.2 | The mean forced signal-to-noise
ratio

We define the signal-to-noise ratio (γm) in the future
projection of model m as the ratio between the climate
change response (the signal) and the standard devia-
tion in the unforced year-to-year variability (here
considered noise), that is, γm = jβm/σmj. We choose
year-to-year variability since this defines a range of
variations that societies are already adapted to, and
hence constitutes a useful benchmark to quantify large
changes for impact purposes (Hawkins and
Sutton, 2012; Maraun, 2013). An alternative option,
which is used in the stippling of future projections in
the AR5, is to evaluate the noise in terms of the inter-
nal variability in the mean climate, here given by
20-year means. This enables one to assess the statistical
significance of the response, which is informative for
climate change detection purposes (Zappa et al., 2015).
Hence, the two options are both legitimate and the
choice ultimately depends on the question being asked.

Since βm contains both the response to anthropogenic
forcing and unforced fluctuations due to internal variabil-
ity, taking the multi-model mean of jβm/σmj would lead to
a positive mean signal-to-noise even if all models had no
forced climate change response at all. We demonstrate in
the Appendix that an unbiased estimator of the mean

forced signal-to-noise can be obtained if the multi-model
mean is computed via a quadratic—rather than arith-
metic—average. In this case, the contribution due to inter-
nal variability can be accounted for, and the mean forced
signal-to-noise of the ensemble (γforced) can be defined as:

γforced=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m=1

β2m
σ2m

" #
−2�f

vuut ð1Þ

where �f =
�̂σ2m
�σ2m
is the ratio of the multi-model median vari-

ance in the 20-year mean climate to the median variance

in the year-to-year variability, and −2�f is the correction
term that accounts for the inflation of the mean signal-
to-noise due to internal variability. All models have pre-
industrial runs longer than 220 years, so that at least
5 independent 20-year-mean samples per model are avail-

able for the estimation of �̂σ2m in �f .
To evaluate the impact of the correction term, we

note that the variance ratio (�f ) is equal to 0.05 if the year-
to-year fluctuations are entirely random, that is, the time-
series behave as white noise. This reference value implies
a correction on γforced of about 10% for γforced≈ 1, and of
about 25% for γforced≈ 0.5. Deviations from 0.05 are found
in regions where atmosphere–ocean coupling creates
memory in the system. In particular, for annual-mean
precipitation, �f ranges from 0.02 in the ENSO region to
0.08 in the high latitude oceans (see the Appendix). In
the Appendix, we also provide the definition of γforced for
users interested in measuring the signal relative to the
noise in the mean climate (σ̂ ) rather than in the year-to-
year variability (Equation A7).

TABLE 1 (Continued)

Institutions Country CMIP5 models CMIP6 models

Max Planck Institute for Meteorology Germany MPI-ESM-LR MPI-ESM1-2-HR

MPI-ESM-MR MPI-ESM1-2-LR

Meteorological Research Institute Japan MRI-CGCM3 MRI-ESM2-0

Nanjing University of Information Science
and Technology

China NESM3

National Institute of Meteorological Sciences Korea KACE-1-0-G

Department of Geosciences, University
of Arizona

USA MCM-UA-1-0

Norwegian Climate Centre Norway NorESM1-ME NorESM2-LM

NorESM1-M NorESM2-MM

Research Center for Environmental Changes Taiwan TaiESM1

Note: Following the IPCC AR5, for the GISS models in CMIP5 we consider the three perturbed physics ensembles (p1, p2, and p3) as different models.
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2.3 | Definition of open and full stippling

We use stippling to mark the future climate projections
as follows:

• full stippling marks regions where at least 90% of the
models agree on the direction of change, that is, a
robust response.

• open stippling, that is, open circles, marks regions
where less than 90% of models agree on the direction
of change, but the mean forced signal-to-noise relative
to the year-to-year variability is greater than unity
(γforced ≥ 1). This is interpreted as a plausibly large
response in the presence of a non-robust projection.

• unmarked marks regions where less than 90% of
models agree on the direction of change and
γforced < 1. This is interpreted as an uncertain response
in which the projected changes are small compared to
inter-annual variability.

The rationale behind this choice is the following.
Robust projections (full stippling) are of interest on
their own, since they define regions where there is
more confidence in the sign of the projected climate
change. For stippling, the IPCC AR5 further required
the mean response to be large compared to the noise
on 20-year means, that is, �β= �̂σm�

ffiffiffi
2

p� �
≥2, which can be

interpreted as the mean response being statistically sig-
nificant at approximately the 5% level. This condition is
here dropped with little loss of information, since a 90%
agreement on direction of change is itself a strong indica-
tion of statistical significance (Power et al., 2012). In
regions where projections are not robust, it is instead the
magnitude of the changes that becomes more important.
Therefore, our attention shifts to quantifying how the
forced changes compare with the amplitude of year-to-year
variability, which is a useful quantity to assess the potential
for impacts. If such signal-to-noise is on average greater
than or equal to unity (γforced≥ 1), it then becomes
important to communicate the risk of a large change,
which is what the open stippling portrays. Note that
open stippling can be found both if the signal-to-noise
is about unity in all models, or if it is much larger than
unity in some models but close to zero in others, so
examining the full spread in the model responses
remains important in follow-up risk assessments.
Finally, unmarked regions show where the risk of a
large response compared to inter-annual variability is
small. Overall, these conditions define a set of three
mutually exclusive and exhaustive categories to classify
and communicate the future changes projected from
multi-model ensembles.

3 | RESULTS

3.1 | Revisiting the IPCC AR5

We first analyse the projected changes in annual-mean
precipitation in the CMIP5 models for the RCP8.5 sce-
nario (Figure 1b). Here, the aim is not to discuss the
mean precipitation changes themselves, which have been
extensively discussed in the literature, but rather to eval-
uate the information provided by our diagnostic against
that employed by the IPCC. The patterns and magnitudes
of precipitation change are indeed nearly identical to
those presented in the AR5 (Figure 1a) since the same set
of CMIP5 models and time periods are considered.

Comparing Figure 1a,b reveals that the two diagnostic
approaches are overall consistent. First of all, the AR5
stippled regions largely coincide with the full stippled
regions in our approach. This is to be expected, since
robust changes are defined in the same way, and, as pre-
viously mentioned, the additional criterion on the magni-
tude of the mean response included in the AR5 is largely
redundant (Power et al., 2012). Furthermore, the majority
of hatched regions in the AR5 (small signal in the mean)
coincide with areas that are unmarked in our approach
(small mean signal-to-noise).

The additional benefit of our approach is that it
enables a direct assessment of the regions with a large
forced signal-to-noise despite the lack of a robust projec-
tion (open stippling). We find that these regions tend to
predominantly correspond to the unmarked regions from
the AR5 (blue dots in Figure 1c), but the correspondence
is not one to one. First of all, we note that there are some
unmarked responses in the AR5 map, such as the wetting
of the northern contiguous United States and western
Canada, that remain unmarked also within our diagnos-
tic. Furthermore, open stippling is also found in some of
the hatched regions from the AR5 map (red dots in
Figure 1c). This is the case in some oceanic areas, for
example, the high-latitude North Atlantic and the Gulf of
Guinea, as well as some land areas, such as to the east of
the northern Andes in South America, and parts of the
Maritime Continent. The implication is that the presence
of a small response in the mean (hatching) hides large
individual model responses that tend to average out,
which is consistent with what was previously found using
other statistical approaches (Tebaldi et al., 2011; Knutti
and Sedlácek, 2012).

In summary, the majority (58% in global surface area)
of the unmarked regions and a sizeable portion (19%) of
the hatched regions from the AR5 hid non-robust precipi-
tation responses to climate change that are on average
large compared to the year-to-year variability. These
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results confirm the presence of some ambiguity in inter-
preting the magnitude of the responses in the hatched
and in the unmarked regions using the standard IPCC
scheme. Such ambiguities can be avoided by explicitly
considering the mean forced signal-to-noise of the multi-
model ensemble as presented in this study.

3.2 | The CMIP6 ensemble

Having found consistent results with those presented for
the CMIP5 models in the AR5, we move on to examine
the CMIP6 ensemble, in order to characterize the risk of
large - though not robustly projected - precipitation
changes in this latest set of climate models. As a general
note, comparing Figure 1b,d shows a very similar large-
scale pattern in the end-of-century annual-mean
precipitation change in the CMIP5 and CMIP6 models
(the pattern correlation weighted by unit area is .94). This
is consistent with the fact that the large-scale

precipitation changes are largely controlled by thermody-
namic mechanisms, such as wet-get-wetter and land-sea
contrast, that are robust to model formulation (Held and
Soden, 2006; Byrne and O'Gorman, 2015). The magnitude
of the precipitation changes, such as the increase in high-
latitude precipitation, is however slightly higher in
CMIP6 (19% more in the global-mean) which is consis-
tent with the higher climate sensitivity—and hence
warming—of CMIP6 compared to CMIP5 models
(Forster et al., 2019; Zelinka et al., 2020).

In spite of the greater climate sensitivities within the
CMIP6 ensemble, there is only a slight increase in the
global surface area satisfying γforced ≥ 1 from CMIP5 to
CMIP6. However, the CMIP6 models tend to show a
higher inter-model agreement on the direction of change.
In particular, the area covered by either full or open stip-
pling remains approximately the same, but while the
fraction of Earth's surface showing full stippling increases
from 36% in CMIP5 to 45% in CMIP6, the open stippled
area decreases from 27 to 17%. This change is most
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season (May–October). (c,d) Distribution of individual model responses at the selected locations around the globe indicated by the red circles
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notable in, but not limited to, the band of increasing pre-
cipitation extending from eastern Africa to northern
India, passing through the Arabian Gulf, which is open
stippled in CMIP5 but full stippled, and with a much
larger precipitation increase, in CMIP6. The causes for
this change will have to be investigated. However, the
increasing robustness on a wetting of East Africa should
be regarded with caution, given that a drying trend—
opposite to the forced response—is so far emerging in the
observational record (Rowell et al., 2015; Lyon and
Vigaud, 2017).

To describe the potential for large future changes in
more detail, we examine the seasonal response and sepa-
rately present the boreal cold-season (November–April,
NDJFMA) and warm-season (May–October, MJJASO) in
Figure 2a,b. In particular, by focusing on land, we
find that:

• Non-robust but potentially large changes (open stip-
pling) are typically found in the tropics. In particular,
they are found year-round in the Amazon region, in
large parts of central and northern Africa (including
the Sahel), of Central America, and of the Maritime
Continent in MJJASO, as well as in the remaining
tropical part of South America in NDJFMA.

• A robust wetting (full stippling) is primarily found in
the mid-to-high latitudes year-round, in central Africa,
eastern Africa, and south-east South America in
NDJFMA, and in large parts of South-east Asia in
MJJASO.

• A robust drying (full stippling) is mostly confined to
Mediterranean-like climates in the cold season, partic-
ularly the Mediterranean proper and southern Chile in
NDJFMA, and western Europe, central Chile, and
south-west Australia in MJJASO.

To contrast the different models' behaviour identified
by the diagnostic, Figure 2c,d compares the distribution
of the model responses against the magnitude of inter-
annual variability at different locations marked by full
stippling, open stippling and no stippling. The selected
locations within the full stippled regions, for example,
Montreal (Canada) and Gibraltar (Iberia) in NDJFMA, in
addition to showing robust changes, are also character-
ized by typically large responses compared to inter-
annual variability. While this is not an imposed criterion,
we find that the condition γforced ≥ 1 is indeed satisfied
for 85% of the full stippled area in NDJFMA and 81% in
MJJASO. At the other end of the spectrum, locations that
are unmarked, such as San Francisco and Mexico City in
NDJFMA, show projections that are not robust and on
average within the typical range found in the year-to-year
variability. Note that this does not necessarily imply the

percentage changes are small—with values of the order
of 10 to 20% being common—so that absence of stippling
should not be interpreted as absence of impacts. Finally,
the locations marked by open stippling show a range of
behaviours in terms of inter-model spread, but they all
support the potential for large changes compared to
inter-annual variability. For example, Quito (Equador) in
NDJFMA shows no change in the mean, but both a large
wetting or large drying are possible in the individual
models. Manaus (Brazil) in NDJFMA and Singapore in
MJJASO show a non-robust tendency towards drying,
but with the potential for a very large drying in some
models. S~ao Paulo (Brazil) in MJJASO shows a mean ten-
dency towards moderate wetting, but both a large wetting
and a large drying compared to inter-annual variations
are possible based on the full ensemble spread.

Having described end-of-century projections, we
finally explore when such potentially large responses
might first appear in the course of the 21st century. For
this purpose, the signal-to-noise ratio has been rec-
omputed for a range of 5-year-apart future time windows
starting from 2011–2030. The first time-window satisfying
γforced ≥ 1 is shown in Figure 3a,c, and it provides an
alternative way to estimate the mean time-of-emergence
of a large climate change response (Hawkins and
Sutton, 2012; Maraun, 2013; King et al., 2015; Zappa
et al., 2015). In the open-stippled areas, with the notable
exception of central Africa in MJJASO, large precipitation
responses to climate change tend to be only found in the
second-half of the 21st century. For example, among the
regions mentioned before, γforced ≥ 1 is first met in
2056–2075 for NDJFMA precipitation in Manaus, and in
2071–2090 for MJJASO in Singapore. However, it would
be dangerous to conclude from these results that there is
ample time to adapt to these uncertain changes. Societal
impacts due to climate change can take place well before
the changes in the mean climate become as large as year-
to-year variability, especially since they are first realized
during extreme weather events resulting from the combi-
nation of forced changes and internal variability
(Seneviratne et al., 2012). Allowing for an additional con-
tribution from internal variability, Figure 3b,d shows that
the emergence of a large response associated with a lower
threshold on the mean forced signal-to-noise
(γforced ≥ 0.5) is already satisfied over vast areas of the
globe by 2050.

4 | SUMMARY AND
CONCLUSIONS

We have here revisited the standard approach from the
IPCC to present future projections from multi-model
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ensembles with the aim of highlighting the regions with
potentially large—though not robustly projected—
changes. In the standard approach from the IPCC, the
focus is placed on contrasting regions with a robust
response to anthropogenic forcing (stippling) against
those that feature a small or uncertain response (hatch-
ing). The rationale for this may be that adaptation plan-
ning requires to have confidence in the response, and
distinguishing between a small and an uncertain
response may be thought of as a matter of secondary
importance. However, from the point of view of risk
assessment, recognizing the potential for large future
changes is itself of importance regardless of the confi-
dence in the response itself. Such information is directly
available in our approach.

In its essence, the new diagnostic mainly differs from
the IPCC one by evaluating the mean forced signal-to-noise
ratio of the individual model responses, rather than the
signal-to-noise ratio of the mean response. Doing so
avoids the compensation in the mean response that
occurs in regions where models disagree on the direc-
tion of change, and hence provides a real quantifica-
tion of the mean forced signal-to-noise from a multi-
model ensemble. This enables one to discriminate
between areas where the response is robust and those

where it is potentially large though non-robust, that is,
where climate-related uncertainties need to be taken
into account with particular caution. Together with the
unmarked areas (small signal-to-noise compared to
variability), the approach provides three mutually
exclusive and exhaustive categories to unambiguously
classify the projected climate change in multi-model
ensembles. As a caveat, the method (as does the IPCC
one) assumes the distinct CMIP model responses to be
independent and equally likely, which is known not to be
the case (Abramowitz et al., 2019). Model weighting
could be considered to down-weight either similar model
versions within the same ‘family’ (Knutti et al., 2013)
and/or the models that are most poorly-performing under
present climate conditions (e.g., Gillett, 2015). However,
while model dependence certainly affects the assessment
of robustness in the response, it has a milder impact on
mean statistics, such as the mean forced signal-to-noise.

The approach is applicable to any field and multi-
model dataset provided that enough data, either in the
form of ensemble members or long runs, is available to
estimate the amplitude of internal climate variability.
Here, by examining projections of mean precipitation
change in the CMIP5 and CMIP6 global climate models,
we conclude that:

FIGURE 3 First time the forced mean signal-to-noise of the precipitation response in the CMIP6 models exceeds unity (γforced ≥ 1) in

(a) the boreal cold season (NDJFMA) and (c) the boreal warm season (MJJASO). b and d are the same but for γforced ≥ 0.5. The colour

shading displays the last year of the future 20-year time window. The open stippling in panels (a) and (c) is the same as in panels (a) and

(b) of Figure 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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• For a high emissions scenario, the majority (58% in
surface area) of the unmarked regions and a sizeable
portion (19%) of the hatched regions from the AR5
map for mean precipitation (based on CMIP5) hid
non-robust climate change responses that are on aver-
age large compared to the year-to-year variability.

• The agreement on the direction of future mean precipi-
tation changes has increased in the newer CMIP6
ensemble. Whether this truly represents more reliable
projections remains to be assessed. Nevertheless, large
but non-robust precipitation changes that could
emerge before the end of the 21st century still charac-
terize 22% of the global surface land area in CMIP6—
particularly including Central America, northern
South America (including the Amazon), central and
west Africa (including parts of the Sahel) and the Mari-
time Continent.

• Forced precipitation changes as large as half the stan-
dard deviation in the year-to-year variability can
potentially emerge by the mid-21st century in the
majority of the land surface area.

In these identified regions with large but non-robust
responses, it would be useful to develop alternative plau-
sible regional storylines of climate change that illustrate
the physical factors that can drive such large—but
discordant—responses, together with the impacts that
would unfold from such changes (Shepherd, 2019;
Zappa, 2019). Using regional climate model output would
be particularly valuable given their potential to better
inform changes at the local scale, provided that the biases
in the large-scale atmospheric circulation and regional
processes are accounted for (Maraun et al., 2017). Provid-
ing such information would help to support any risk
assessment.
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APPENDIX

Derivation of the mean forced signal to noise
The signal-to-noise (γm) of the climate change response
in model m is here defined as the ratio between the
response itself (βm) and the standard deviation in the
unforced year-to-year variability (σm). Since the climate
change response is evaluated as the difference in means
between a future and a present Y-year time slice from a
single realization, βm can itself be regarded as a normally
distributed random variable with mean Cm and variance
2σ̂2m , i.e., βm �N Cm,2σ̂

2
m

� �
, where Cm is the forced

response and σ̂2m is the variance in the Y-year mean cli-
mate. Therefore, the multi-model mean of the squares of
the signal-to-noise ratios from an ensemble of M models
is distributed as follows:
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We define the parameter f m= σ̂2m=σ
2
m as the ratio of the

Y-year mean variance to the inter-annual variance. The
values of fm depend on the auto-correlation of the data,
so that fm≈ 1/Y if the data is serially independent (white
noise), but it will differ if there is some inter-annual
memory in the system. As shown in Figure A1, this is the
case in the presence of slow multi-decadal variability
(fm> 1/Y), or of faster oscillating phenomena such as
ENSO (fm< 1/Y). Therefore:
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We then take fm out of the sums in the second and third
terms by approximating it with the ratio of the multi-
model-median variances, �f = �̂σ2m=

�σ2m . This is justified
under the assumption that, for any given grid point, the
magnitude of the inter-annual variance is unrelated to
the structure of the auto-correlation function across the
CMIP models. The authors are not aware that such a
behaviour is commonly found, and the proposed approxi-
mation is still an improvement compared to the common
approach of simply treating inter-annual variability as
white noise (Thompson et al., 2015). It thus follows that
γ2 is distributed as
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where χ2 is the chi-squared distribution with M degrees
of freedom. The expected value for the mean of γ2 is:
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By rearranging the terms in Equation (A5), we obtain
that the multi-model mean forced signal-to-noise of the
ensemble can be estimated as
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In the last step, we have evaluated the expected value of β2m
assuming that only a single realization of the climate
change response is available for each model. Otherwise,
if multiple ensemble members are available, the estima-
tion of γforced can be made more accurate by taking an
ensemble average, that is, E β2m

� �
≈1=Rm

PRm
r=1β

2
mr , where

FIGURE A1 Value of �f for annual-mean precipitation in the

CMIP5 models, evaluated as the ratio of the multi-model-median

20-year-mean variance to the multi-model-median of the inter-

annual variance. White shading, approx. 0.05, corresponds to a

variance ratio consistent with white noise. Blue shading (ratio

>0.05) in the high-latitude oceans indicates that slow atmosphere–
ocean processes—such as the Atlantic Multi-decadal Variability—
generate more decadal variability in the mean precipitation than

expected based on year-to-year fluctuations. Red shading (ratio

<0.05) in the tropical regions indicates that fast oscillating

processes, such ENSO, generate lower multi-decadal variability

than expected based on year-to-year variability [Colour figure can

be viewed at wileyonlinelibrary.com]
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βmr is the climate change response in ensemble member
r, and Rm is the number of available ensemble members
for model m. However, a substantial benefit is only
expected if all models provide multiple members of both
historical and future climate, which has not been the case in
CMIP. Due to sampling uncertainty, the argument of the square
root can be negative where the forced response is close to zero
in all models, in which case γforced is approximated to zero.

Equation (A6) provides the mean forced signal-to-noise
relative to the amplitude of the year-to-year variability,
which is most useful to assess the magnitude of climate
change for risk assessment. If the focus is instead on
climate change detection, the response might better be
evaluated relative to the noise in the Y-year mean climate,
and the expression for γforced becomes:
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