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Abstract. NOSA-ITACA is a finite-element code developed by the Mechanics of Materials
and Structures Laboratory of ISTI-CNR for the structural analysis of masonry constructions
of historical interest via the constitutive equation of masonry-like materials. The latest im-
provements in the software allow applying model updating techniques to match experimental-
ly measured frequencies in order to fine-tune calculation of the free parameters in the model.
The numerical method is briefly presented and applied to two historical buildings in Lucca,
the Church of San Francesco and the Clock Tower.
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1 INTRODUCTION

Finite element model updating is a procedure aimed at calibrating a finite-element (FE)
model of a structure in order to match numerical and experimental results. Introduced in the
1980s, it has earned a crucial role in the design, analysis and maintenance of aerospace, me-
chanical and civil engineering structures [1], [2], [3], [4]. In structural mechanics, model up-
dating techniques are used in conjunction with vibration measurements to determine unknown
system characteristics, such as material properties, constraints, etc. The resulting updated FE
model can then be used to obtain reliable predictions on the dynamic behavior of the structure
subjected to time-dependent loads. A further important application of model updating within
the framework of structural health monitoring is damage identification [5], [6], which is based
on the assumption that the presence of damage is associated with a decrease in the stiffness of
some elements, with consequent changes in the structure’s modal characteristics. FE model
updating involves solving a constrained minimum problem, whose objective function is gen-
erally expressed as the discrepancy between experimental and numerical quantities, such as
natural frequencies and mode shapes.

Application of FE model updating to ancient masonry buildings is relatively recent. In [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], a vibration-based model updating is
conducted, and preliminary FE models are fine-tuned using the dynamic characteristics de-
termined through system identification techniques. In the papers cited above the modal analy-
sis of FE models are conducted via commercial codes, while the model updating procedure is
implemented separately.

An efficient numerical method aimed at minimizing the discrepancy between the numeri-
cal and experimental natural frequencies has been proposed in [19]. The algorithm, based on
the construction of local parametric reduced-order models embedded in a trust region scheme,
has been implemented in a single numerical program, the NOSA-ITACA code [20]. In partic-
ular, the algorithms for solution of the constrained minimum problem, integrated in NOSA-
ITACA, exploit the structure of the stiffness and mass matrices and the fact that only a few of
the smallest eigenvalues have to be calculated. This new procedure reduces both the total
computation time of the numerical process and user effort, thus providing the scientific and
technical communities with efficient algorithms specific for FE model updating.

In this paper the method proposed in [19] is outlined and then tested on two actual struc-
tures of historical interest located in the Tuscan city of Lucca - the Church of San Francesco
and the Clock Tower (Torre delle Ore).

2 MODAL ANALYSIS OF MASONRY BUILDINGS AND FREQUENCY
MATCHING

Although the masonry materials constituting historical buildings have different strengths un-
der tension and compression, modal analysis, which is based on the assumption that the mate-
rials are linear elastic, is widely used in applications and provides important qualitative
information on the dynamic behavior of such structures. Modal analysis consists in solving
the constrained generalized eigenvalue problem

Kv=w’Mv, subjectto Cv=0, (1)

with C e R™ and h<<n. K and M € R™" are respectively the stiffness and mass matrices
of the structure discretized into finite elements. K is symmetric and positive-semidefinite, M
is symmetric and positive-definite, and both are sparse and banded. ve R™ is the vector of
the degrees of freedom of the structure, the integer nis the system’s total number of degrees
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of freedom, which is generally very large, since it depends on the level of discretization of the
problem.
The right part of equation (1) expresses the fixed constraints and the master-slave relations
assigned to v. Imposing such constraints and boundary conditions is equivalent to projecting
the matrices Kand M on a subspace where they are symmetric positive-definite (the right
kernel of the operator C ). Henceforth, we assume that this projection has already been done,
and refer the reader to [21] for further details. Note, in particular, that if Kand M depend
linearly on some parameters X =(x,,...,X), the same holds true for their projections. More
generally, the smooth dependency of K and M is preserved by the projection, since it is a
linear operation.

The eigenvalues @ of (1) are linked to the natural frequencies, or eigenfrequencies f, of

the structure via the relation f, =@ /27 , and the eigenvectors v are the corresponding
mode shape vectors, or eigenmodes. Together with the natural frequencies, the mode shapes
furnish qualitative information on the structure’s deformations under dynamic loads.

An efficient implementation of the numerical solution of the constrained eigenvalue prob-
lem (1) has been embedded into NOSA-ITACA [21].

Measuring the vibrations of masonry buildings is common practice for assessing their dy-
namic behaviour and determining their natural frequencies and mode shapes. Model updating
techniques are used in conjunction with vibrations measurements to determine the structure’s
characteristics, such as the material’s properties (Young’s modulus, Poisson’s ratio, mass
density), constraints, and so forth, which are generally unknown.

The model updating problem can be reformulated as an optimization problem by assuming
that the (projected) stiffness and mass matrices Kand M are functions of the parameter vec-
tors x. We use the notation

K = K(x), M =M (x), xeR' (2)

to denote this dependency. The set of valid choices for the parameters is denoted by Q. With-
in this framework, we assume that the set Qis an | -dimensional box, that is

Q=[a,b]x[a,,b,]x...x[a,b], ®)

for certain values a, <b,, i=1..1.

Our ultimate aim is to determine the optimal value of x that minimizes a certain cost func-
tional ¢(x) within the box Q. Generically, this is an instance of the optimization problem

min ¢(X) . 4)

xeQ

The choice of the objective function ¢(x) is related to the frequencies that we wish to match.
If we need to match s frequencies of the model, we choose a suitable weight vector
w =[w,,...,w,], with w; >0 and define the functional ¢(x) as follows:

w-f . IV, =" diag(w)y ®)

w,2
where f is the vector of the measured frequencies, and A (K,M) the one containing the

smallest s eigenvalues of (1), ordered according to their magnitude. The vector w encodes
the weight that should be given to each frequency in the optimization scheme. If the goal is to

#(x) =
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minimize the distance between the vectors of the measured and the computed frequencies in
the usual Euclidean norm, thenw =1_, the vector of all ones, should be chosen. If, instead,

relative accuracy on the frequencies is desired, w, = f.*is a natural choice. If some frequen-
cies need to be ignored, we can set the corresponding component of w to zero. To avoid scal-
ing issues, the weight vector is always normalized in order to have ||w||2 =1.

When the FE model is very large, it is convenient to use model reduction techniques to re-
duce its size to a more manageable order.
If, as in equation (2), the model depends on the parameters X, it is not a trivial matter to obtain
a reduced parametric model that accurately reflects the behavior of the original one for all
possible parameter values. An efficient Lanczos-based projection strategy tailored to the
needs of the FE analysis of masonry structures is presented in [19]. By modifying the projec-
tion scheme used to compute the first eigenvalues (and corresponding eigenvectors) of prob-
lem (1), we obtain local parametric reduced-order models that, embedded in a trust region
scheme, are the basis for an efficient algorithm that minimizes objective function (5).

3 CASE STUDIES

In this section we verify the performance of our approach in two example applications. In
the first, the Church of San Francesco in Lucca, we perform model updating with a large
number of parameters and fit the first ten natural frequencies of the church computed via the
NOSA-ITACA code (by using fixed parameter values). In the second, the Clock Tower, also
in Lucca, we use the proposed algorithm to fit the tower’s first four natural frequencies, which
have been measured during an experimental campaign conducted in November 2016 [22].
The two case studies have been run on a computer with an Intel Core i7-920 CPU running at
2.67 GHz and 18 GB of RAM clocked at 1066 MHz and the convergence tolerance is set to

10~ (the trust-region procedure is stopped when the norm of the projected gradient falls be-
low 107*).

3.1 The Church of San Francesco

The Church of San Francesco (Figure 1) is a typical single-nave Franciscan masonry build-
ing, about 70 m long, 16 m wide and 19 m high. The nave is closed on the west by the facade
overlooking the square of San Francesco and on the east by the apse. The northern wall leans
against the portico of the monastery cloister; the southern wall, completely free, runs along
the street named via della Quarquonia. The earliest walls of the church date back to the 13th
century, but the building underwent several changes and enlargements over the centuries. At
about 15 m from the facade, there is a transverse joint, the result of an extension added during
the 13th - 14th century. The perimeter walls are about 1 m thick and are mainly made of ma-
sonry bricks and lime mortar, except for the top of the longitudinal walls, where a band of
poor quality masonry is present, probably the result of heightening the nave. The apsidal
chapels date back to the 15th century, and the original rectangular windows in the longitudinal
walls were closed and new ones opened in 1848. The facade was completed during the 1930’s
[23].

Some reinforcement operations, aimed mainly at improving the quality of the masonry and
the connections between the walls, were concluded in July 2013. To increase the building’s
resistance to horizontal actions, considering how slender the nave walls are, a metal frame-
work was constructed at roof level in order to brace the structure, and the roof layer was stiff-
ened by means of a crossed double-layer wooden deck. Some numerical simulations aimed at
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assessing the seismic vulnerability of the church before and after the reinforcement operations
were conducted via the NOSA-ITACA code and can be found in [24].

Figure 2: FE mesh of the church.

In the present paper the FE model of the church (Figure 2) is used to test the model updat-
ing algorithm. In the model, thick shell elements and beam elements are used [20], for a total
number of 7295 elements and 40416 degrees of freedom. We update six parameters: Young’s
modulus and the mass density of the masonry constituting the lower part of the longitudinal
walls (E,, p,); the upper band of the longitudinal walls (E,, p,) and the apsidal part of the

church (E,, p,). This choice of parameters partly reflects the structure’s stages of construc-
tion. The parameters are allowed to vary within the intervals:
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kg

2000MPa < E, <6000MPa, 17009 < ,, < 2200X¢
m

= <
m

1000MPa < E, <4000MPa,  1600<% < 5, <1900X¢
m

m®
kg kg

2000 MPa < E, <6000 MPa, 1700— < p, <2200—..
m m

The masonry’s Poisson’s ratio is fixed at 0.2, while the mechanical characteristics chosen
for the iron, wood and remaining masonry parts of the church (including the facade) are

E, =210000MPa, p, = 7850~ , 1, =0.3, E, =8000MPa, p, =800%Y, v, =03,
m m

kg

E, =3500MPa, p, =2000—=.

m

The frequency values [Hz] to match (henceforth, the reference frequencies) are fixed as
f =[0.9824, 1.063, 1.722, 2.0621, 2.2936, 2.330, 2.528, 2.758, 3.172, 3.198]

and correspond to the first ten frequencies calculated by NOSA-ITACA using the following

parameter values (reference parameters):
‘ ‘ kg ‘ kg
E,"=3000MPa, p," =2000—, E,"=2000MPa, p," =1800—,
m m

E," =2500MPa, p," = 1900%.
The objective function (5) is evaluated using w, = f*, i=1,...,10. The total computation time is
41.7 s. For comparison’s sake, a single modal analysis (with fixed parameters) using NOSA-
ITACA takes 28.2s. Table 1 reports the parameter values found by the algorithm and their rel-
ative errors with respect to the reference values. The match between the calculated parameter
values and the reference values is quite good: the relative errors are on the order of 0.5%.

With regard to the model frequencies, they are also matched by the algorithm with very good
accuracy, the corresponding relative errors being on the order of 0.01%.

Reference parameters Parameters
[MPa, k_gg] [MPa, k—%] Relative errors
m m
E," =3000 E, =3019.1 0.6356%
Py = 2000 py =2007.5 0.3773%
E,"= 2000 E,=1993.6 0.3215%
o, =1800 p, =1804.9 0.2743%
E,’ =2500 E, =2499.5 0.0200%
p,, =1900 p, =18845 0.8160%

Table 1: Results of the optimization algorithm: parameters and their relative errors with respect to the reference
values.
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Figure 3 shows on the left side the convergence of the objective function to the minimum
for each new reduced model; the dashed line is the tolerance. On the right, the convergence of
the model’s frequencies to the fixed values during the process is shown.

Obj. function and proj. gradient Convergence of the frequencies

10°

#— Obj. function

4
1‘ —4#— Proj gradient
10 — — —Stopping tolerance 3.5
" ~ ---‘hﬂ"'---_

,_.
=}
w
M
w
f—'

Magnitude
o
T
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
4
Frequencies

—
(=]
wn

0% \\
1077 . II: —————— e ———— -_— T
0.5

108
0 1 2 3 0 1 2 3
Iterations Iterations

Figure 3: Convergence history of the optimization algorithm.

3.2 The Clock Tower

The Clock Tower (Figure 4) is one of the best known and most often visited monuments in
the old city of Lucca, thanks to the peculiar shape of its bell chamber, which is clearly visible
and recognizable throughout the entire historic centre. Built in the 13th century by local fami-
lies, since the last decade of the 15th century the Clock Tower has served as a civic building,
taking its name from the big clock visible on its southern facade. The Clock Tower is 48.4 m
high; it has a rectangular cross section of about 5.1x7.1 m and walls of thickness varying from
about 1.77 m at the base to 0.85 m at the top. The bell chamber, made up of four brick mason-
ry pillars connected by elliptical arches, is covered by a pavilion roof constructed of wooden
trusses and rafters. With regard to the materials constituting the masonry tower, visual inspec-
tion reveals that the masonry from the base up to a height of 15 m is made up of regular stone
blocks and thin mortar joints, as are the corners of the walls above this level, as well. The up-
per walls' central portions are instead made up of regular stone blocks and bricks. On 25 No-
vember, 2016 the ambient vibrations of the Clock Tower were monitored for a few hours via
four seismometric stations made available by the Seismological Observatory of Arezzo
(INGV). This monitoring campaign allowed identifying some of the tower’s natural vibration
frequencies and mode shapes [22]. The measured frequencies (Hz) are

f =[1.05, 1.3,4.19, 4.50].
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Figure 4: The Clock Tower

cﬁ-

Figure 5: FE mesh of the Clock Tower

The FE model of the Clock Tower (Figure 5) is used here to test the proposed algorithm.
The model employs 11383 eight-node brick elements for the masonry [20], while the tie rods
and the wooden roof are modelled via beam elements, for a total number of 45511 degrees of
freedom. We update two parameters, Young’s modulus of the masonry constituting the tower,
E,.» and that of the bell chamber, E . These parameters are allowed to vary within the in-

tervals:
2500MPa <E, A <5500MPa, 1000 MPa <E _<5500MPa.

low — up —
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The masonry’s Poisson’s ratio has been fixed at 0.2; the assumed mass densities of the
tower and the bell chamber are p,, = 2100 kg/m® and p,, = 1700 kg/m®, respectively, while

the mechanical characteristics chosen for the iron and wood components are

kg

E, = 210000MPa, p, = 7850~ , v, =0.3, E, =8000MPa, p, =800<% v, =0.35.
m m

The total computation time was 76.32 s. A single modal analysis (with fixed parameters)
using NOSA-ITACA takes 29.59 s. In this case the algorithm’s performance is shown for two
different expressions of objective function (5), which has been evaluated for w, = f,* (default

choice) and w, =1, i=1,...,4. The parameters found are:

E,w =3076 MPa, E  =1950 MPa

low
for w, = f* and

E.w =3182MPa, E  =1873MPa

low

for w, =1. Table 2 shows the tower’s frequencies found in the two cases, and their relative er-
rors with respect to the experimental values. In the case of w, = f,*, the accuracy of frequency

matching tends to increase for the lowest modes; analogously, using Operational Modal
Analysis, the lowest frequencies are generally determined with greater accuracy [25]. For
w, =1 the matching of the lower frequencies is less accurate.

Exp. freq. Freq. Rel. errors Freq. Rel. errors
(Wi:fi_l) (Wi:fi_l) (Wi:]') (Wizl)
1.05 1.0449 0.49% 1.0621 1.15%
13 1.315 1.15% 1.3366 2.82%
4.19 4.2154 0.61% 4.2041 0.33%
4.5 4.4409 1.31% 4.4729 0.60%

Table 2: Results of the optimization algorithm: frequencies and their relative errors with respect to the experi-
mental values, in the case of w, = f* and w, =1. Frequencies are expressed in Hz.

Figure 6 shows the objective function ¢(x) evaluated for w, = f* (the function’s values are
in log-scale). Figure 7 shows instead a section of ¢(x) (blue line) passing through the func-
tion’s minimum point; the plot for w, =1 is also shown in red. Finally Figure 8 shows, on the

left, the convergence of the objective function to the minimum for each new reduced model
(dashed line is the tolerance), and on the right, the convergence of the model’s frequencies to
the experimental values.
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log(e(x))

Figure 6: Objective function built for the Clock Tower for w, = f, ™. Young’s moduli are expressed in Pa.
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Figure 7: Sections of the objective functions for w, = f* (blue line) and for w, =1 (red line), passing through
the corresponding minimum points. The tower’s Young’s modulus is expressed in Pa.
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Figure 8: Convergence history of the optimization algorithm.

4 CONCLUSIONS

A new algorithm for solving FE model updating problems has been presented. The strategy
followed is to calibrate the parameters of a FE model (mechanical properties or boundary
conditions) in order to minimize the discrepancies between a set of experimentally determined
natural frequencies and the corresponding frequencies evaluated numerically. The algorithm,
which relies on construction of local parametric reduced order models embedded in a trust
region scheme, has been coupled with the NOSA-ITACA code for calculation of the eigen-
frequencies. The resulting procedure, which is completely automatic, turns out to be very effi-
cient and reduces both the total computation time of the numerical process and the user effort.
The paper illustrates its applications to two monumental buildings in Lucca, the Church of
San Francesco and the Clock Tower. Although the results are very encouraging, several prob-
lems remain open, and deserve further study, which has been planned for future research.
Among these, special attention will be devoted to optimization of the eigenmodes, in order to
obtain even more accurate simulations of the dynamic behavior of masonry structures.
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