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Abstract

A novel approach to the diagnosis of hypercubes, called Self-Validating Diagnosis, is
introduced. An algorithm based on this approach, called SVD algorithm, is presented and
evaluated. Given any fault set and the resulting syndrome, the algorithm returns a
diagnosis and a syndrome-dependent bound, T, with the property that diagnosis is correct
(although possibly incomplete) if the actual number of faulty units is less than T_. The
average of T_is very large and the diagnosis is almost complete even when the percentage
of faulty units in the system approaches 50%. Moreover, the diagnosis correctness can be
validated deterministically by individually probing a very small number of units. These
resulls suggest that the SVD algorithm is suitable for applications requiring a large degree
of diagnosability, as it is the case of wafer-scale testing of VLSI chips, where the
percentage of faulty units may be as large as 50%.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing and
Fault-Tolerance; C.4 [Performance of Systems]: Fault-Tolerance, Reliability, Availability and
Serviceability.

General Terms: Algorithms, Reliability

1. Introduction

Self-diagnosis, also called system-level diagnosis, was introduced by Preparata, Metze and
Chien in 1967 ([1]). In self-diagnosis, a system composed of several units connected by bi-
directional links is diagnosed using the information provided by tests performed by the units
comprising the system itsclf. Every test involves two units, called the festing and the fested
unit, which must be interconnected. Every unit in the system may be in a faulty or non-faulty
state. The set of faulty units is called the Actual Fault Set (AFS in the following). Only
permanent faults are considered, i.e. units retain their (faulty or non-faulty) state throughout
the diagnosis process. Essentially, a test is performed as follows:

¢ the testing unit requests the tested unit to run a job;

¢ the tested unit returns a result to the testing unit;

¢ the testing unit compares the actual and the expected results and provides a binary test
outcome, The outcome is 0 if the actual and the expected results match (“the test passes™),
1 otherwise (“the test fails™).

The set of tests utilized for the purpose of diagnosis is defined by digraph DG=(},F), where
V is the set of units and F={{u,v]:unit # tests unit v} . DG is called the diagnostic graph of

M Notations {w,v) and [w,v] denote and undirecied edge connecting  and v, and a directed arc from # to v,
respectively.



the system. The test of unit v performed by unit # with outcome x is denoted by u—=>v. In
the following we will also use notation w25 10 collectively denote the test of unit v
performed by unit # with outcome x and the test of # performed by v with outcome y. Given an
AFS, the set of the outcomes of all tests in DG is called syndrome and is denoted ©.

The reliability of any test outcome depends on the state of the testing unit. Different
hypotheses upon the test outcomes returned by faulty units lead to different invalidation rules,
and consequently to different diagnostic models. The most widely used diagnostic model] is the
PMC model introduced in [1], which assumes arbitrary test outcomes for tests performed by
faulty units. The invalidation rule of the PMC model is shown in Table 1.

Tester unit's Tested unit’s Test
state state outcome
non-faulty non-faulty 0
non-faulty faulty 1
faulty non-faulty Qori
faulty faulty Oori

Table . Invalidation rule in the PMC model

It is immediate from Table 1 that any given fault set may yield different syndromes;
conversely, any given syndrome may derive from different fault sets. A diagrosis algorithm 1s
an algorithm which, given a syndrome, provides a diagnosis of the system, i.e. classifies each
units as faulty, non-faulty or suspect. The diagnosis algorithm is usually executed on an
external and reliable computer, called the diagnoser (centralized diagnosis). The diagnosis
algorithm is correct under syndrome © if, given ¢, no faulty unit is classified as non-faulty and
no non-faulty unit is classified as faulty. The diagnosis algorithm is said to be correct if it is
correct under all possible syndromes. The diagnosis algorithm is complete under syndrome ¢
if, given G, every unit in the system is classified as either faulty or non-faulty (i.e. there are no
suspect units). The diagnosis algorithm is said to be complere if it is complete under all
possible syndromes.

A diagnosis which is both correct and complete is called one-step diagnosis. 1t is known
([1]) that one-step diagnosis is possible only if the cardinality of the AFS does not exceed the
diagnosability, a parameter of the diagnostic graph which is limited above by the minimum of
the nodes in-degrees. This requirement may be relaxed if it is admissible that the diagnosis be
divided into several test and repair phases, where every phase identifies at least one faulty unit,
which is repaired or replaced, thus reducing the number of faulty units. Under this approach,
called sequential diagnosis, the systern diagnosability is increased, at the expense of longer
time requirements to perform the diagnosis.

One-step diagnosis can be trusted only if it can be reliably assumed that the cardinality of
the AFS is not above the diagnosability. One alternative approach, called probabilistic
diagnosis, is based on diagnosis algorithms which provide a (usually complete) diagnosis,
whose correctness is evaluated probabilistically. Using this approach, the probability of
providing correct diagnosis may be close to 1 even when the cardinality of the AFS is
considerably above the diagnosability.

A natural domain of application of system-level diagnosis is provided by massively parallel
computers, where large numbers of processors, or units, cooperate to perform computations.



In most cases, the units are linked by point-to-point connections, each to a limited number of
neighbors and using a regular scheme. As the number of units increases, the probability of
faults in the system increases as well, and the propagation of errors may corrupt the entire
computation. System-level diagnosis may be exploited to identify faulty units and, in
combination with replacement and recovery, may be used as a relatively low cost alternative to
error codes or to hardware redundancy.

Many different interconnection schemes have been proposed for massive parallel systems.
The hypercube is one of the most widely used, due to its structure which eases both process
allocation and routing tasks. For example, the Intel iPSC [11] and the nCUBE [12] machines
are structured as hypercubes.

Another promising application area of system-level diagnosis is the wafer-scale testing of
VLSI chips during the manufacturing process ([2],[3],[4]). The goal of the diagnosis is to
select good chips and to discard faulty chips in an early stage of the manufacturing process,
thus avoiding the costly process of bonding and packaging in the case of faulty elements. In
order to implement the diagnosis process, the wafer is seen as a regular arrangement of
identical components, which should be complemented with communication links, power
supply, ground, clock and so on. Application to wafer-scale testing of integrated circuits poses
a serious challenge to the theory of system-level diagnosis, since:

— the expected fraction of faulty chips in the wafer can be as large as 50%, depending on

the complexity of the chip;

— in order to be feasible, the interconnection structure to be implemented on the wafer has

to be regular and the degree of the nodes has to be small.

Among the interconnection schemes which appear suitable for wafer-scale testing,
hypercube connection deserves special attention, In fact, as proved by Scheinerman ([16]) and
Blough ([17]), probabilistic diagnosis is almost certainly correct (i.e. correct with probability
approaching 1 as the size of the system increases) if the in-degree of nodes in the diagnostic
graph is order of logN, where Nis the size of the systeni”.

Self-diagnosis of hypercube-structured systems has been studied quite extensively.
Kavianpour and Kim ([7],[8]) proposed four different strategies for the diagnosis of
hypercubes, based on both the one-step and the sequential diagnosis approaches. They showed
that the diagnosability of the systemn increases by allowing the replacement of at most one
possibly non-faulty unit. Feng, Bhuyan and Lombardi ([9]} introduced two algorithms (called
HADA and THADA) to perform adaptive diagnosis of hypercubes. They deserved special
attention at reducing the cost associated to the diagnosis process. Khanna and Fuchs ([10])
introduced an algorithm for sequential diagnosis of hypercubes and they evaluated its
diagnosability and cost.

In this paper we introduce a novel approach to the diagnosis of hypercube systems. This
approach, called self~validating diagnosis (SVD), may be easily extended to other regular
structures. We present a diagnosis algorithm whose correctness is proved deterministically if
the total number of faults in the system is less than a syndrome-dependent bound, T_, which is
asserted by the algorithm itself. The diagnosis correctness can be trusted if the cardinality of

@ In this paper, all logarithms are 1o basc 2.



the AFS is expected to be below T ; if not, it can be checked by individually probing N- T +1
units which were diagnosed as non-faulty. The expected values of T_ have been evaluated by
means of simulation, as well as the degree of completeness of the diagnosis. The average of T
resulted very close to N as long as the cardinality of the AES is not above MN/2, and the
diagnosis resulted almost complete under the same condition. Both results agree with the
probabilistic evaluations byScheinerman and Blough.

This paper is structured as follows. In Section 2 a Self-Validating Diagnosis algorithm for
hypercube systems is introduced and the bound T, is derived. In Section 3 the completeness of
the algorithm is considered. In Section 4 the performance of the SVD algorithm introduced in
Section 2 is evaluated by means of simulation. In Section 5 the SVD algorithm is compared
with previous algorithms for hypercubes. Finally, Section 6 draws some conclusions.

2. The diagnosis algorithm

In this section we introduce a self-diagnosis algorithm for hypercube-connected systems
which validates its own diagnosis by asserting a syndrome-dependent bound for correctness.
Because of this feature, the algorithm is called SVD algorithm, or SVDA.,

An hypercube system can be represented by an undirected graph H=(V,£), where vertices
correspond to units and edges represent point to point interconnections. The number #/°° of
vertices is N=2" and the number #£ of edges is n2"", for some integer » greater than 1. Integer
n 1s called the dimension of the hypercube. Every ve IV is labeled with a # digit binary number
denoted lab(v). Vertices are connected based on the Hamming distance of their labels, denoted
dy: edge (u,v) exists if and only if di(lab(1),lab(v))=1. In the following, words vertex and unit,
as well as words edge and interconnection, will be used indifferently. Since it is assumed that
any two adjacent units test each other, the set of tests utilized for the purpose of diagnosis is
defined by the arcs in the digraphDH=(},1."), where E'={[u,v]: (u,v)e E}.

The SVD algorithm is divided into three steps: Local Diagnosis, Fault-Free Core
Identification and Augmentation. Every step of the algorithm is described in a separate
subsection. In the last subsection the complexity of the algorithm is evaluated. The algorithm is
summarized in Table 2.

2.1 Local Diagnosis

The objective of local diagnosis is to classify every unit as either F (faulty unit) or D
(dual unit), or § (suspect unit). F-units are known to be faulty. D-units are defined in
disjoint pairs with the property that, for every pair, at least one unit is faulty. The state of S-
units remains unidentified and, in most cases, will be determined in the subsequent steps of
the algorithm. The sets of units classified S, F or Dare denoted by S, F and D, respectively.

Unit classification is based upon the following Lemma:

Lemma 1: Let u and v be adjacent units in H:

a) if te———sv then u is faulty;

. r 11 . .
b) if ue———v then at least one unit between u and v is faulty;

. 0 0 . : .
¢} if ue———v then u and v are in the same state (that is, both units are

® Given any set H, notation # /7 denotes its cardinality.



either faulty or non-faulty);
d) if v is faulty and u——>v then u is faulty.

Proof; Immediate from the invalidation rule of Table 1. d

Local Diagnosis proceeds as follows. Initially F-units are identified using statements a)
and d) of Lemma 1. Then D-units (statement b) of Lemma 1) are defined in disjoint pairs,
with the property that in every pair at least one unit is faulty. Since maximizing the
cardinality of set D tends to increase the average of bound T_ defined in step 2 of the
algorithm, pairs of D-units are determined as a maximum matching ([19]) on the subgraph
M’ of I induced by the vertex set 'V, which contains all vertices incident to edges
labeled with outcomes 11. Finally set S is defined as the set of units which were classified
as neither F nor D in the preceding steps.

2.2 Fault-Free Core Identification

In this step, the subgraph A’ of H induced by the units classified S is considered, and the
vertex set of every connected component of A’ is defined as an aggregate. Isolated S-units
(that is, S-units which are adjacent only to F-units or to D-units) are trivial aggregates. The
collection of all the aggregates is denoted { Ay,As,..., A}

It is mmmediate from Table 1 that all units in an aggregate are in the same state.
However, we cannot decide whether the actual state is faulty or non-faulty.

Letting o0 be the maximum of #A #A,,....#A,, the Fault-Free Core (denoted FFQ) is
defined as the union set of all the aggregates of cardinality «. The syndrome-dependent
bound T_ is also defined at this step, as T _= #F+#D/2+o.

The FFC plays a fundamental role in the diagnosis algorithm since, under certain
conditions to be stated in subsection 2.4, all units in the FFC are non-faulty, This also
implies that tests performed by units in theFFC are completely reliable.

2.3 Augmentation
The third step of the algorithm is aimed at augmenting sets FFC and F, by identifying

the state of (as many as possible) units in setsD and | J4; - FFC.
i=1..k

Augmentation is based on the tests of units in set V-(FFC U F) performed by units in
FFC, and on tests of units in set £ performed by units in V-(FFC w F). For every test
u—x—w, with we FFC and ve I'-(FFC U F):

- if x=0, then v is identified as non-faulty and set FFC is redefined as FFCU{v}. If v
belongs to some aggregate A, then all the umts belonging to A; are identified as non-
faulty and included inFFC.

- if x=1, then v is identified as faulty and set F is redefined as FU{v}. If v belongs to
some aggregate A; then all the units belonging to A; are identified as faulty and
included in F.

For every test u»-i—}v, with we V-(FFC U F) and ve F:

- if y=0, then » is identified as faulty and set F is redefined as FU{n}. If # belongs to
some aggregate A;, then all the units belonging to A; are identified as faulty and
included in F.

At the end of this step, the set S of suspect units is redefined as V-(FFC u F).



2.4 Self-Validation

The diagnosis algorithm returns sets ~, FFC and S as defined in step 3 (Augmentation).
If set S is non-empty, the diagnosis is incomplete. The SVDA also returns the maximum o
of the aggregate cardinalities, the syndrome-dependent bound T_ and it validates its own
output by asserting that the diagnosis is correct if a>0 and the cardinality of the AFS is
less than T .

The validation is based on the following theorem.

Theorem 1. Given any syndrome G, the Fault-Free Core is non-empty and completely
fault-free, provided a>0 and the total number of faults in the system is less
than T .

Proof. Consider sets FFC, F and D as defined in steps 1 and 2 of the SVD algorithm.
The hypothesis >0 ensures that there exists at least one aggregate and,
consequently, set FFC is non-empty. Suppose that some unit in FFC is faulty.
Since set FFC is defined as the union set of all the aggregates of cardinality «,
at least one such aggregate must be completely faulty. Recalling that the number
of faulty units in F is #F and the number of faulty units in D is at least #0/2, the
total number of faulty units in the system is at least #F+#D/2+c. This is a
contradiction, since the total number of faults in the system is less than T = #F
+#D/2 + a by hypothesis. d

i set FFC is non-empty and completely fault-free, the diagnosis provided by the SVD
algorithm is correct. In fact, units assigned to set £ during Local Diagnosis are guaranteed
to be faulty by statement a) of Lemma 1, and units added to FFC or to F during
Augmentation are guaranteed to be non-faulty or faulty, respectively, by the reliability of
tests performed by units in ~FC, or by statement d) of Lemma 1.

From this reasoning, the following result is immediate:
Corollary 1: The SVD algorithm is correct under syndrome © if >0 and the
cardinality of the AFS is less thanT .

Observe that the existence of at least one aggregate (that is, ¢>0) is guaranteed if N =
#AFS<N/2, because the admissible classifications of non-faulty units are S or D, and the
number of non-faulty units in set D is at most #D/2<N/2,

Corollary | states that the diagnosis returned by the SVDA may be incorrect only if
N.=T,. This means that it is reasonable to trust the diagnosis whenever the expected
number of faults is considerably below T_. This situation actually occurs in most cases of
interest, as it is seen from simulation results reported in Section 4: in fact, the average of
T, always resulted above N-2 as long as N <N/2.

A deterministic validation of the diagnosis correctness is also suggested from Corollary
1. To this purpose, it is sufficient to test individually as few as N- T_+1 units, among those
declared non-faulty by the algorithm. If all of them are confirmed to be non-faulty, then
must be N.<T_and the diagnosis is correct. This is a valuable result since, as simulation
shows, the expected number of units to be tested is at most 2 if N <N/2, regardless of the
size of the system.



2.5 Complexity of SVD algorithin
In this subsection, the time complexity of SVD algorithm is evaluated as follows:

312

Theorem 2. The time complexity of the algorithm SVD is O(N " logN).
Proof. In the order, the complexity of the algorithm is the maximum of complexities of

the operations executed in a step. Consider an implementation of the algorithm
which, for every unit, defines boolean flags associated to sets F, D, S and FFC.
If unit u belongs to a set, the corresponding flag is set to TRUE, otherwise it 1s
FALSE. Under this implementation, determining whether a unit belongs to a
given set, adding a unit to, or removing a unit from a set can be done in O(1).
To identify aggregates, an integer value is associated to each unit: this value is &
if the units belongs to A, 0 otherwise. Hence all the operations €, ¢, U and -
between a unit and an aggregate can be done in O(1). Moreover, an auxiliary
queue of units is utilized throughout the algorithm.
Let us consider the first step of the SVDA. Initially, set F is constructed in
O(NlogN) by scanning all the edges of graph H and considering the 01 test
outcomes (statement a) of Lemma 1). In order to detect increase the cardinality
of set F, faulty units are inserted in queue Q, from which they are removed one
at a time. For every unit u removed from Q, the zero-ancestors, which are
identified among the neighbors of «# in set V-F according to statement d) of
Lemma 1, are added to set £ and inserted in Q. As soon as a new unit is
identified as belonging to F, it is inserted in the queue. Since every unit is
inserted in Q at most once, and every unit has loglV neighbors, this operation
also requires time Q(NlogN).
Set D is determined by finding a maximum matching on subgraph H’ of H,
induced by the vertex set V'= {u: ue———v for some v#u}.Since graph H is
bipartite ([5]) and [’ is a subgraph of H, H’ is also bipartite, and a maximum
matching for A can be determined in O(N*logN) ([19]).
The set S is easily constructed in time O(N) by scanning the units.
In step 2, aggregates are identified in time O(NlogN) by determining the
connected components of subgraph H™’ of H induced by set S ([20]). Set FFC is
defined as the union set of all the aggregates of maximum cardinality.
In step 3, set FFC is augmented by inserting in queue Q units in set V-(FUFFC)
which are adjacent to units in the FFC. Units in the queue are removed one at a
time, and added to set FFC or F depending on the outcome of any test
performed by units in set FFC. In the former case, the neighbors of the unit
extracted which are in set V-(FUFFC) are also inserted in Q. Since every unit is
inserted in Q at most once, the time complexity of this operation is O(NlogN).
The augmentation of set F with units which are zero-ancestors of units in F is
also executed in time O(NIogN) using a similar technique, where queue Q is
used to contain units in set S which are neighbors of units in F.

EI

The complexity of the algorithm reported in Table 2, which is dominated by the
operation of determining a maximum matching on subgraph H’, could be reduced to



O(NlogN) by using a simple heuristic to define a (non maximum) bipartite matching. From
simulation, it was seen that this simplification would cause a negligible reduction of the
average of T,

Local Diagnosis;
begin

1 0
Fi= {v:3ueV such that vé———u };
0
while {({JueF) and (Jve V-F))such that v—u) do F:=Fu{v};

D:=;
1 1
Efi={{u, vI€E: us—Dv};
’:=SubGraphk(H, E’); {Given a graph H and a set E’ of edges, function SubGraphPB
returns the subgraph H’ of H of vertex set V/={ueV:(u,vieE’ for
some vi}r

D:=DualSet (H’}; {DualSet(H’} is a function which returns the set D of units incidents
to the edges belonging Lo a maximum matching of HY }

Si=V-{DUF)
end.
FFC identification;
begin
H’’:=SubGraphV(H,S); {Given a graph H and a set S of vertices, function 3ubGraphV
returns the subgraph H’’ of H of vertex set 5}
A, By o Ayt i=ConnComp (H77); {this function returns the vertex sets of the connected
components of graph B’}
o =MaximumCardinality (A, ..,A); {This function returns the maximum of cardinalities
fa,, ... EA}
FRC:= UAif
#Al-*—"a
T, =#F+#D/ 2+ {T, is the syndrome-dependent bound for correctness j
end.
Augmentation;
begin
{Given any unit v, function Agg(v) returns set A, if veA, for some i=1,..,k, set {v}

otherwise}
0

while due FFC, ve V- (FFCUF) such that o——>v do FIC:=FFCUAgg (v} ;
i

while Jue FFC, ve V- (FFOWF) such that o—— v do F:=FRJAgg{v):

while Fue V- (FFOUF), v I such that u"‘"“(l“év do F:=fJAgg ()}
Si1=V=-(FFCUF) ;
return (F, FFC, 5, a, T,)

end.

Table 2. The SVD diagnosis algorithm

3. Diagnosis Completeness

Given any syndrome o, the diagnosis returned by the SVD algorithm is incomplete if set S
is non-empty. This situation may occur if no units in set S is adjacent to units in the set FFC
and, consequently, cannot be reliably tested during Augmentation. More precisely, let S.S be
a connected component of /7 induced by vertex subset S, and B F-§; be the boundary of S;
defined as the set of units not in S; which are adjacent to units in S,. If B,CF, then units in FFC
are unable to test units in S, whose state cannot be identified unless some unit in §; tests some
neighbor in B; with outcome 0 (statement d) of Lemma 1). The most critical situation is
depicted in Figure 1, where S={#} and a boundary of » faulty units is sufficient to prevent the
testing of # from the FFC. For arbitrary syndromes, diagnosis returned by the SVDA is
guaranteed to be complete under the hypothesis of the following theorem, whose proof is
tmmediate from the preceding reasoning.



Theorem 3. The diagnosis returned by the SVD algorithm is always complete only if Ny is
less than n.

The result stated by Theorem 3 agrees with [6], in which it is proved that » is the
diagnosability of an hypercube of dimension ». In fact, in the worst case depicted in Figure 1,
wnit #, with S={#} and #B=n, could still be identified as non-faulty, since otherwise would be
FoBU{u} and thus #F>n. However, this resuit is very pessimistic, as confirmed by the
simulation results reported in the next section.

i

O Suspect unit

@ Faulty unit

Figure 1. A boundary of faully units encloses a suspect unit

4. Experimental evaluation

The expected value of T , the percentage of complete diagnoses and the average number of
units left unidentified by the algorithm SVD were evaluated by means of simulation. Results
reported in this Section refer to hypercubes of different sizes and to fault sets of different
cardinalities distributed uniformly over the vertex set. Table 3 reports the averages of the
syndrome-dependent bound T, denoted E(T_). The averages were calculated over a sample of
1000 fault sets of cardinality ranging from 0,1V to 0,5N. For every entry, the variance v and
the confidence interval® 7 are reported in parentheses. As seen from Table 3, the average of T,
remains very close to &, irrespective of the size of the system, even when the fraction of faulty
units reaches 0,5. In all cases, the confidence interval is very narrow and the variance is quite
small.

N Ne=0,1N Np=0,2N Ne=0,3N Ne=0.4 N Ne=0,5N
EE 63.0(v=013,-0.05)]  638(v=0321-007)]  63.7(1=0.25,-006)]  63.2 (v=1.60,i=0.16) 62.7 (v=2.04,i=0.18)
28| E(To) | 127.8(w=0.07,=003)| 1278 (v=0.29,=0.07)|  127.7(v=0.63,i=010)]  127.4 {v=0.87,i0.12) 126.9 (v=167,i=0.17)

256| EfTo) | 2559 (1=012,-005) 2558 (v=0.11,=004)| 255 (v=040,-008)| 2555 {v=0.45,0.09) 254.9 (v=1.72,1=0.17)

} ) )
} )

1024| E{To 1023.9 {v=0,11,<004}| 10238 (v=0.14,=0,05)| 1023.6 (v=0.86,0.12)) 1023.5 (v=0.48 =0.09 1023.0 {v=1.01,=0.13)
16384] E{To) [ 16382.9 (v=0.07,=0.04)| 18383.9 (v=0.14,i=0.05)| 16383.7 {v=0.30,i=0.07)| 163836 {v=0.35,0.08 16383.1 {v=0.89,£0.12)

Table 3. Evaluation of diagnosis correctness: E(T ) is the average of T over a sample of 1000
fault sets. The variance v and the confidence intervali are reported in parentheses.

Based on results reported in Table 3, it can be concluded that SVDA is able to provide a
reliable diagnosis in all circumstances of practical interest.

“ The confidence intcrval, calculated with precision p, is defined as the number ;i such that the probability
P( | B(T )-L(T,) | <i) is greater than or cqual to p, where 11(T,) is the average of T, calculated over the universe
of all possible fanlt sets of given cardinality. In Table 3 p was set 1o (1,98,



Simulation results related to diagnosis completeness, which are reported in Table 4, are also
excellent. Here, the percentages of complete diagnosis were calculated over samples of 1000
fault sets and the average number of units which remained not diagnosed was calculated over
samples of at least 100 fault sets which led to incomplete diagnosis. For every entry E(ng), the
variance and the confidence interval (calculated with a precision p=0.98) are reported in
parentheses.

N Ne=0,1N Ne=0,2N Ne=0,3N Ne=04N Ne=0,6N
84 ¢ 100% 99.9% 97.2% 90.7% 6551%
Eing) 0 {v=0,0) 1.0 (v=0,=0) 1.04 (v=0.04 i=005) 1.04 (v=0.04,=0.03) | 1.38 {v=0.56,i=0.10)

128] ¢, 100% 99 5% 99.0% 90.7% 64.67%
E(ng) 0 (v=0,i=0) 1.0 (v=0,i=0) 1.0 (v=0,i=0) 1.08 (v=0.00,=0.04) § 1,20 (v=0.20,i-0,07)

26| o 100% 99.0% 09.4% 92.4% 81.64%
E{ny) 0 {v=0,i=0) 1.0 (10,0 1.0 {v=0,i0) 1.03 (v=0.03,0.02) f  1.37 {v=0.50,=0.10}

1024 ¢, 100% 100% 99.6% 95.4% £60.83%
E{ng} 0 [v=0,i=0) 0 (1=0,i=0) 1.0 (v=0,i=0) 1.04 (v=0.04,=0.04) 1 1.20 {v=0.40,:-0.00)

BaBL] o 106% 100% 100% 96.3% £0.94%
E{ny) 0 {v=0,i=0) 0 {v=0,i=0) 0 (v=0,i0) 1.0 (v=0,=0) 1 134 (v=0.25,i-0,08)

Table 4. Evaluation of diagnosis completencss. ¢, is the percentage of complete diagnoses.
E(n,) is the average number of unidentified unit over a sample of 100 fault sets
which provided incomplete diagnosis. The variance v and the confidence interval 7
are reported in parcntheses.

5. Comparison with previous algorithms

In this section, performance and cost of the SVD algorithm are compared with similar
parameters of some previously known diagnosis algorithms for hypercube systems.

The performance measure considered are the degree of diagnosability, i.e. the maximum
number of faults which would not impair the correctness of diagnosis, and the degree of
completeness, defined as the expected percentage of complete diagnoses (in those cases where
the diagnosis is not guaranteed to be complete). _

To main cost parameter is related to the time needed to execute all the tests and to collect
their outcomes (syndrome generation and collection time). Considering that tests involving
different units can be performed in parallel, the cost is evaluated as the number of festing
rounds needed to generate and collect the syndrome. In every testing round the largest possible
number of tests are performed in parallel, with the constraint that any unit cannot act as a
testing and a tested unit within the same testing round. In the case of sequential diagnosis
another cost parameter is the number of fest and repair phases, defined as the number of
sessions, each of which aims at identifying and replacing at least one faulty unit, which are
needed in order to remove all faulty units in the system. In general, every test and repair phase
requires one or more testing round, but the replacement of units identified as faulty contributes
to the cost. Another cost parameter could account for the time needed to execute the diagnosis
algorithm on the external diagnoser. However, this time is usually negligible as compared to
the syndrome generation and collection time; for this reason, this parameter is omitted in the
following evaluations.

In [7] and [8], Kavianpour and Kim introduced four different strategies for the diagnosis of
hypercubes. The first two strategies are based on the one-step approach, the latter on the

10



sequential approach. The first strategy, called precise one-step diagnosis, provides correct and
complete diagnosis, with degree of diagnosability JogN. The strategy uses all the possible tests
in the system; hence the number of testing rounds is 2-logN. The second strategy, called
pessimistic one-step diagnosis, tolerates the erroneous identification as faulty of at most one
non-faulty unit. This is the price to be paid to increase the degree of diagnosability, which,
however, refers to the ability of obtaining a weakly correct diagnosis, where one non-faulty
unit could possibly be diagnosed as faulty. Under the pessimistic one-step diagnosis, the weak
degree of diagnosability is raised to 2-logN -2. Again, the diagnosis uses all the possible tests in
the system, which means that the number of testing rounds is 2-JogN. As an alternative,
pessimistic diagnosis may be used to reduce the total number of required tests to N - (LIogN/ZJ
+1), while keeping the weak degree of diagnosability to logN. Although the authors do not
give a detailed diagnosis algorithm, it appears that the number of testing rounds is at least
Z(LlogN/ZJ +1). The third strategy performs precise sequential diagnosis with a degree of
diagnosability ¢ < Te &N log N ). This approach achieves correct and complete diagnosis
using R test and repair phases, with R< JoghN. Although a detailed algorithm is not provided, it
is clear that the total number of testing rounds needed to complete the diagnosis must be at
least R. Finally, a trivial strategy which raises the degree of diagnosability to N-2 is given for
the sequential diagnosis under the pessimistic assumption. The strategy needs R’ test and repair
phases to complete diagnosis, with ® <R’< log N. The number of testing rounds needed to
diagnose all the unit in the system is at least R’. The strategies proposed by Kavianpour and
Kim are appropriate for application to massively parallel systems, but they appear not to be
suitable for wafer-scale testing. In fact, the degree of diagnosability of both the precise and
pessimistic one-step strategies is too small for the latter application, and sequential diagnosis
strategies are not feasible in wafer-scale testing.

In [9], Feng, Bhuyan and Lombardi introduced two algorithms (called HADA and IHADA)
for the adaptive diagnosis of hypercubes. In the adaptive diagnosis approach, special attention
is deserved at reducing the total number of tests needed to perform diagnosis. IHHIADA has
lower performance but is easier to analyze than IHADA. It is shown that the number of tests
and testing rounds needed by HADA to perform diagnosis is O(N) and 4+/ogN respectively
with degree of diagnosability /ogN. IHADA has a degree of diagnosability fe O(N ) and its
cost, which was evaluated by means of simulation, is significantly below the cost of HADA,
However, diagnosis returned by IHADA is not guaranteed to be complete and no evaluation is
given about diagnosis completeness. Again, both algorithms are not suitable for wafer-scale
testing, because degrees of diagnosability of /ogh or O(m ) are inadequate for this
application.

In [10], Khanna and Fuchs introduced an algorithm (KF algorithm in the following) for the
sequential diagnosis of hypercubes. The algorithm is based upon a partitioning of the set of
units of the system into m clusters of size p (N=nrp). A simple cycle is embedded in each
cluster, and the syndromes associated to each cluster are considered. Only clusters associated
to 0_syndromes (i.e. syndromes where all test outcomes are Os) are considered in the following
step of the algorithm. The algorithm achieves a &(m) degree of diagnosability. The testing and
repair phases needed to complete the diagnosis are O(JogN), and the number of required tests
is 2N-+2ps, where s is a parameter that depends on the number of O_syndromes which actually
occur. The number of testing rounds needed to perform diagnosis is 3+2s+logm. Since
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m—1
§< L‘"ﬁ)ﬂ and m has to be @(\/N log N ) in order to maximize the degree of diagnosability,

it follows that the total number of testing rounds needed to complete the diagnosis is O(logh).
However, it was observed that the actual degree of diagnosability of algorithm KF is
significantly larger than VN only if N is very large. Furthermore, the KF algorithm performs
quite poorly if the number of actual faults is above the degree of diagnosability. In fact,
observe that if every cluster contains at least one faulty unit, then either the algorithm is unable
to provide a diagnosis (because no _syndrome is generated) or the diagnosis provided by the
algorithm is incorrect (because all the clusters generating a (_syndrome are entirely composed
by faulty units). Assuming uniform distribution of faults, the probability that every cluster
contains at least one faulty unit has been calculated using the Poincare formula ([18]), from

which we derive:
1
_—”—‘1_ G mimp Y ((m—h)p
o= S T("0)

where k is the number of faulty units and 7¢k) is the probability that every cluster contains at
least one faulty unit when Np= 4. It follows that the probability that the algorithm provides a
correct diagnosis is at most than 1-P(k). An upper bound b¢%k) to 1-P(k) is reported in Table 5
for N=64, m=p=8 and fault sets of different cardinalities: it is seen that b(k) decreases
dramatically as the percentage of faulty units approaches 50%. This implies that KF algorithm
is not suitable for wafer-scale testing, where the expected fraction of faulty units may approach
50% and sequentiai-diagnosis is not feasible.

k percentage of b{k)
faulty units (k/N)
7 11% 1
19 30% 0.3584
26 40% 0.0884
32 50% 0.0190

Tahle 5. Vatues of the bound b(k) for N=64, m=p=8
and fault sets of different cardinalities.

The SVD algorithm introduced in this paper outperforms all the previous algorithms in
terms of degree of diagnosability. In fact, the diagnosis provided by SVD algorithm is correct
if Np<T . Although the bound T_ is related to individual syndromes, it is almost certain that this
inequality always holds if Ny<N/2. Moreover, the diagnosis correctness can be validated
deterministically by individually probing a small number of units which were diagnosed as non-
faulty. Simulation reveals that the average of this number is 1 or 2 as long as Ng<AN/2. More
noticeable, the diagnosis provided by the SVDA is almost complete. Although the occurrence
of incomplete diagnoses increases as N increases, even when Np=0,4N the percentage of
complete diagnoses is above 90%. Moreover, when diagnosis is incomplete, the average
number #, of units left unidentified by the SVD algorithm is very small. Simulation shows that
when Np=0,5N, 74 is between 1 and 2, irrespective of the dimension of the hypercube. This
means that the SVD algorithm is suitable for the application to wafer-scale testing, because it
provides diagnosis which is almost complete and can be expected to be always correct, even
when the percentage of faulty chips approaches 50%, with the additional feature that the
correctness can be easily checked. The number of testing rounds needed by the SVD algorithm
to perform diagnosis is 2/ogh, since the algorithm executes all possible tests.
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6. Concluding remarks

A new diagnosis algorithm for hypercube systems, called Self-Validating Diagnosis
Algorithm (SVDA), has been introduced.

The SVDA, which runs on an external reliable processor, performs the diagnosis in a single
step, using a syndrome consisting of the binary outcomes of all the mutual tests of units which
are adjacent in the hypercube. The diagnosis can be expected to be complete or almost
complete even if the percentage of faulty units approaches 50%.

The most notable feature of SVDA is that, together with the diagnosts, it returns a
syndrome-dependent bound (T_), with the property that the diagnosis is correct if the
cardinality N of the actual fault set is less than T,. This implies that it should be assumed (as it
is usual in the so called deterministic diagnosis) that the expected number of faults can be
reliably upper bounded. In the case of SVDA this bound can be very rough, since the average
of T, which was evaluated by means of simulation, is far above Np even if this number
approaches (.5N. Furthermore, the diagnosis provided by the SVDA can be validated
deterministically by individually probing a small number of units (at most 2 on the average) that
were declared non-faulty. This is a significant improvement over most probabilistic and
deterministic algorithms where the cost of validating the diagnosis by individually probing
individual units would be intolerable.

Because of the preceding properties, the SVDA appears to be a strong candidate for
application to wafer-scale testing, where the percentage of faulty units may be large and
correctness and completeness of diagnosis are vital requirements, in order to avoid the bonding
and packaging of faulty chips, which would cause a serious economic loss.
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