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Image biomarkers and explainable AI:
handcrafted features versus deep learned
features
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Abstract
Feature extraction and selection from medical data are the basis of radiomics and image biomarker discovery for
various architectures, including convolutional neural networks (CNNs). We herein describe the typical radiomics steps
and the components of a CNN for both deep feature extraction and end-to-end approaches. We discuss the curse of
dimensionality, along with dimensionality reduction techniques. Despite the outstanding performance of deep
learning (DL) approaches, the use of handcrafted features instead of deep learned features needs to be considered for
each specific study. Dataset size is a key factor: large-scale datasets with low sample diversity could lead to overfitting;
limited sample sizes can provide unstable models. The dataset must be representative of all the “facets” of the clinical
phenomenon/disease investigated. The access to high-performance computational resources from graphics
processing units is another key factor, especially for the training phase of deep architectures. The advantages of multi-
institutional federated/collaborative learning are described. When large language models are used, high stability is
needed to avoid catastrophic forgetting in complex domain-specific tasks. We highlight that non-DL approaches
provide model explainability superior to that provided by DL approaches. To implement explainability, the need for
explainable AI arises, also through post hoc mechanisms.

Relevance statement This work aims to provide the key concepts for processing the imaging features to extract
reliable and robust image biomarkers.

Key Points
● The key concepts for processing the imaging features to extract reliable and robust image biomarkers are provided.
● The main differences between radiomics and representation learning approaches are highlighted.
● The advantages and disadvantages of handcrafted versus learned features are given without losing sight of the clinical
purpose of artificial intelligence models.

Keywords Biomarkers, Diagnostic imaging, Machine learning, Neural networks (computer), Radiomics

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

*Correspondence:
Leonardo Rundo
lrundo@unisa.it
1Department of Information and Electrical Engineering and Applied
Mathematics (DIEM), University of Salerno, Fisciano, Salerno, Italy
2High Performance Computing and Networking Institute (ICAR-CNR), Italian
National Research Council, Palermo, Italy

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0003-3341-5483
http://creativecommons.org/licenses/by/4.0/
mailto:lrundo@unisa.it


Graphical Abstract

• Advantages and 
disadvantages 
of handcrafted 
versus learned 
features.

• Main differences 
between 
radiomics and 
representation 
learning 
approaches.

KKey concepts for processing the imaging features 
to develop reliable and robust image biomarkers

Image biomarkers and explainable AI: 
handcrafted features versus deep learned features

Eur Radiol Exp (2024) Rundo L, Militello C. 
DOI: 10.1186/s41747-024-00529-y

Background
Feature extraction and selection, along with the most
recent approaches in representation learning, are key
steps in the image biomarker discovery process, in many
areas of clinical research: oncological imaging [1], cardi-
ovascular imaging [2], and neuroimaging [3]. The purpose
of this narrative review is to provide an outline of the
main types of methods used in the literature for imple-
menting feature selection. Considering that the literature
continuously proposes new methods or improvements of
existing methods, providing an exhaustive view would
have been impossible, as well as beyond the scope of this
paper; it is up to the reader, to investigate the different
versions/variants belonging to the specific method.
Moreover, an a priori assessment of the most suitable
feature selection method is difficult, and for this reason,
often a ‘trial-and-error’ approach is exploited [4, 5].
In precision oncology [6, 7], significant advances con-

cerning the definition/identification of new quantitative
biomarkers have been obtained through advanced mod-
eling [8] and multimodal data integration [9]. The inte-
gration of information coming from different sources
makes it possible to improve performance in machine
learning (ML). This aspect is particularly true in health-
care applications where clinical and imaging data can be

combined. This novel wealth of information that may now
be achieved offers unprecedented potential for imple-
menting precision medicine strategies [10] and optimizing
the healthcare workflow [11]. However, this type of bio-
medical image analysis poses unique challenges that must
be handled by specific computational approaches [12].
Artificial Intelligence (AI) is emerging as a transformative
force in biomedical imaging analysis and has the potential
to provide specific support in decision-making processes,
enabling strong cooperation between humans and
machines, along with performance assessment [13]
and clinical decision-making support [14]. Human and
machine perceptions are different and sometimes lead to
inconsistent results. The case study reported by Makino
et al [15] showed that although it is unclear whether
humans and deep neural networks (DNNs) use different
features to detect microcalcifications, for soft tissue
injuries, DNNs rely on high-frequency components
ignored by radiologists.
The extraction and computed analysis of imaging-

derived features are mandatory phases for proposing
accurate and reliable predictive models to be translated
and deployed into clinical environments [16]. In this
narrative review, we describe: the fundamentals for pro-
cessing imaging features to extract reliable and robust
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image biomarkers; the differences between radiomics
based on handcrafted features and representation learning
approaches based on learned features; and the advantages
and disadvantages of handcrafted versus learned features,
without losing sight of the clinical purpose of AI models.

Handcrafted features versus learned features
Concerning feature extraction and selection, the main
issues to consider are the following:

● All extracted features might be dependent on the data
source (clinical or imaging data acquisition centers),
thus requiring a harmonization step for dealing with
distribution shifts in multicenter studies;

● Handcrafted features are strongly dependent on
annotations and may not represent the best choice in
complex scenarios;

● Learned features, which are directly extracted from
deep learning (DL) architectures, generally maximize
performance but are affected by the lack of
interpretability in clinical practice, thus requiring
explanation methods.

When the problem at hand involves an image classifi-
cation task, the devised classifier has to take as input some
data of interest and provide the output. In the setup phase
to define the classifier input, there are two options
[17, 18]: (1) using the raw data, as the original pixel/voxel
values; (2) extracting features from the image employing
well-defined mathematical formulations. Choosing the
second approach (extracted features), it is possible to:

● Arbitrarily and manually define a set of features,
even though we do not know a priori if the selected
features are appropriate for the specific classification
task (this approach has been used for many years by
using classic ML techniques after the feature
extraction step);

● Train an ML model to extract and identify useful
features for the specific classification task: this
approach has become predominant with the advent
of DL, which can learn the optimal set of features
[19].

More precisely, since the learned features are extracted
automatically to solve a specific task, they are extremely
effective at it, typically allowing DL models to outperform
classic ML models based on handcrafted features manu-
ally extracted by the data scientist or AI engineer [20].
This trend is most often observed when comparing ML
and DL, but we note that, depending on the scenario and
data, classical ML allows for comparable performance to
DL architectures.
Regardless of the approach used (ML or DL), the type

and distribution variability of input/output data can affect

the operation and, consequently, the model performance.
ML techniques used in computer-aided medical image
analysis usually suffer from the domain shift problem,
caused by the different distributions between the source/
reference data and the target data. This aspect, which is
very evident in multicenter studies, must be considered.
To this end, domain adaptation has attracted considerable
attention in recent years [21].
While there is the advantage of obtaining features

learned automatically by the classifier and being able to
develop effective models, there is no control over which
features the model will extract from the data and their
meaning. Deep features, another way learned features are
called because they are intrinsically related to the con-
volutional layers of convolutional neural network (CNN)
architectures [22], are effective for the task under con-
sideration. However, they do not always provide a direct
real-world interpretation while the scientific and medical
community is devoting its attention to explainable
approaches [23].
It is generally difficult to identify the most suitable

approach (handcrafted versus deep features), and
researchers often experimentally compare both alter-
natives [17].
For the sake of completeness, we highlight that ML

algorithms can be categorized into two fundamental
types: (1) supervised learning; and (2) unsupervised
learning. In supervised learning, there is always a specific
measure to be predicted: the target, which represents the
dependent variable. All other variables—the ones used to
predict what the target will be—are called features and are
the independent variables given as input to the model.
Depending on the nature of the target variable, you can
identify two scenarios of learning that require different
learning algorithms within the supervised family: (1) when
the target variable is a numeric measure, you need a
regression algorithm; (2) when the target variable is a
categorical measure, you will need a classification algo-
rithm. In unsupervised learning, the objective is not to
make a prediction but to unveil some hidden structure in
your data. Unsupervised ML algorithms are capable of
exploring your data to find some interesting patterns, a
finality that is often called clustering [24].

Radiomics
Leveraging medical imaging, radiomics is a technique
allowing the extraction of features [25] that can be mined
to noninvasively assess the in vivo phenotype of lesions or
even just certain tissue parts (e.g., the normal tissue sur-
rounding a tumor) [26–28]. The segmentation of the
regions of interest (ROIs) or volumes of interest (VOIs)
containing the area/volume from which to extract radio-
mic features—a process that can be performed through
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manual or computer-assisted (automatic/semiautomatic)
procedures. The predictive models using traditional ML
techniques begin with the extraction of large-scale
handmade radiomic characteristics: morphometric fea-
tures (e.g., size, shape, diameter measurements) and
function quantifying tissue textures (e.g., first-order, sec-
ond-order, higher-order, and transformed domain
descriptors). Starting from an input ROI/VOI, the radio-
mic features can be calculated in two ways: (1) voxel-
based extraction (for each feature, a value is computed for
each voxel, thus yielding feature maps as output); (2)
segment-based extraction (a single, aggregated value per
feature is computed for each ROI/VOI). The main classes
of handcrafted features are listed in Table 1.
Although radiomic features are well-known among

handcrafted features in the Computer Vision community
[25, 29], there are still serious concerns about their sta-
bility and robustness [30, 31]. Indeed, radiomic features
suffer from a lack of robustness against imaging para-
meters (e.g., spatial resolution) [32] and image extraction
settings (e.g., quantization levels, resampling) [33–35].
Furthermore, also the software used to extract radiomic
characteristics may have an impact on them [36].
The Image Biomarker Standardisation Initiative (IBSI)

[29], which provides definitions and nomenclature of
radiomics characteristics and defines computation and
normalization procedures, tries to resolve/alleviate out-
standing challenges in this area. The IBSI also offers

implementation recommendations for the various steps of
a radiomic workflow, such as intensity discretization, re-
segmentation, postacquisition image processing, seg-
mentation, data interpolation, and data conversion in
standardized units [37]. Furthermore, for every feature in
a model based on binary classifiers, at least ten samples
(i.e., patients) would be required, according to a well-
known rule of thumb [25]. Consequently, adding more
features could exacerbate the curse of dimensionality
issue by adding redundancy to the features, particularly
when there are not enough samples available.
To establish robust imaging biomarkers, feature selection

procedures specific to the radiomics domain must be
developed once features have been calculated and normal-
ized [1]. To achieve this, the selection process should
remove: (1) unreliable features (using the intraclass corre-
lation coefficient, for example); (2) features that are not
informative based on zero or nearly zero variance; and (3)
redundant features (such as those that have a high correla-
tion with one another). Figure 1 outlines the typical pre-
processing and calibration steps required by a robust
radiomics pipeline as outlined in the following paragraphs.

Feature robustness analysis
It is aimed at identifying robust features, for example,
considering the effect of variability of the ROIs, i.e., the
natural situation due to intra- and inter-reader dependence
during manual contouring [38]. Moreover, also the optimal

Table 1 Classes of handcrafted features along with their types and descriptions

Class of handcrafted features Types and details

First-order Histogram-derived features [93]: describe the distribution of voxel intensities within the image ROI

Second-order Gray-level co-occurrence matrix (GLCM) features: quantify the spatial relationship between pixels, revealing

homogeneity, uniformity, linear dependencies, and randomness [94, 95]

Higher-order Gray-level run-length matrix (GLRLM) features: quantifies gray-level runs, which are defined as the length in number

of pixels, of consecutive pixels that have the same gray-level value [67, 96, 97]

Neighboring gray-level dependence matrix (NGLDM): quantify pixel properties invariant under rotation; and linear

gray-level transformation, useful for texture description and classification [98]

Neighborhood gray-tone difference matrix (NGTDM): quantifies the difference between a gray value and the average

gray value of its neighbors within a specific distance, able to approach human perception [99]

Gray-level size zone matrix (GLSZM): quantifies gray-level variations and homogeneity of image zones

Gray-level distance zone matrix (GLDZM): assesses zones of neighboring pixels or voxels with the same gray level and

at the same distance from the ROI boundary [100]

Gray-level dependence matrix (GLDM): quantification of gray-level dependencies [98]

Transformed domain Absolute gradient matrix (AGM): texture extraction and analysis

Histograms of oriented gradients (HOG): considering the occurrences of gradient orientation in localized portions of

an image [101]

Local binary patterns (LBP): assign binary numbers to each pixel in an image by thresholding its surrounding pixels

[102]

Gabor transform [103]

Wavelet transform [104]
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quantization setting can be evaluated by extracting the
radiomic features considering different quantization levels
in terms of either number of bins or bin width. According
to the IBSI guidelines, the former (the number of bins) is
recommended for calibrated imaging ranges (e.g., Houns-
field units in computed tomography, standardized uptake
value in positron emission tomography), while the latter
(the bin width) is generally used in non-standardized ran-
ges (e.g., images obtained through common non-
quantitative magnetic resonance imaging sequences). The
intraclass correlation coefficient analysis can be used to
take into account the extracted features and allows us to
determine which are more robust as the perturbations vary
and the number of bins varies [39].

Intrinsic dependency analysis
Imaging characteristics, and consequently the extracted
features, can vary as a function, for example, of magnetic
resonance imaging acquisition parameters, such as scanner
type, scanner setting, and imaging protocols [40]. For this
reason, a correlation analysis (e.g., using the Spearman
correlation coefficient) allows us to evaluate which features
are correlated with, and perhaps dependent on, the imaging
acquisition parameters and to select only those features
that do not appear to be dependent on them.

Near-zero variance analysis
Its goal is to eliminate characteristics that do not convey
high information content. This procedure takes into
account a cutoff for the percentage of distinct values
across all samples as well as a cutoff for the ratio of the
most frequent value to the second most common value.

Redundant feature analysis
It is aimed at removing highly correlated features to
reduce the redundancy among the features. In the case of
a correlation value (e.g., Spearman correlation coefficient)
higher than a threshold (0.90 is a widely used value), the
feature with the highest predictive power is selected. A
simple skimming approach can be performed by a uni-
variate logistic regression for predicting the lesion char-
acterization, by removing the feature that achieved the
lowest area under the receiver operating characteristic. A
more sophisticated approach might rely upon dendro-
grams for identifying groups (i.e., clusters) of highly cor-
related features.
More recently, the dependence on acquisition and

reconstruction parameters, such as different reconstruc-
tion kernels in computed tomography, has been very
recently addressed by using generative adversarial net-
works (GANs) for image-to-image translation [41, 42]. By
doing so, the heterogeneity of the dataset can be miti-
gated, or even missing data can be generated across
sequences or modalities [43, 44]. GAN-based image
synthesis has been also combined with diffusion models
[45], which represent the latest developments for unsu-
pervised generative approaches in medical imaging [46].
Data harmonization, which allows for the adjustment of
variations in imaging methods that generally produce
noise in non-AI imaging research, is also crucial in the
context of multicentric and multi-institutional studies.
With more details, these techniques maintain the infor-
mation content of images by normalizing the statistical
distributions of the same attributes when they are
acquired from other systems, such as in the case of
ComBat [47], able to combat the batch effect, and its
generalizations [48].

Near-zero Variance 
Analysis

Redundant Feature 
Analysis

Intrinsic 
Dependency 

Analysis

Radiomic features that 
are robust against ROI 

variations (e.g., 
according to ICC), 

useful for inter-reader 
annotation agreement 

and choice of 
quantization settings 

Identification of 
radiomic features that 

do not show any 
variability

(no predictive power)

Pairwise correlation 
analysis (e.g., using 

Spearman correlation 
coefficient) and 

selection of the most 
predictive feature for 
each identified group

Exclusion of radiomic 
features dependent on 

imaging parameters 
and characteristics 
(e.g., by means of 

Spearman correlation 
coefficient)

Feature Robustness 
Analysis

Pre-processing and Calibration

Fig. 1 Preprocessing and calibration of radiomic features is a mandatory step to obtain a subset of features that are independent of the region/volume
of interest segmentation and the imaging acquisition and reconstruction parameters, which are relevant from the point of view of information content,
and nonredundant features. ICC, Intraclass correlation coefficient
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Attempts in pictorial interpretation [49], as well as bio-
logical and validation, of the radiomic signatures [50], have
been carried out. The main characteristic is the intellig-
ibility of radiomic features. Indeed, shallow learning and
explainable methods provide insights into the features
driving their decisions, allowing clinicians to validate the
reasoning behind the recommendation of the system.
Finally, radiomic feature extraction has shown several

advantages over deep feature extraction. It is possible to
perform an accurate feature extraction also on moderate
sample sizes, while deep feature extraction requires a
large database to avoid the overfitting issue [51].

Deep learning models
With DL models, it is possible to optimize the model’s
performance for the given task by automatically extracting
image features. DL is a particular sub-field of ML that
uses artificial neural networks to interpret raw data
directly [52]. To provide the deep architecture with
appropriate input, some preprocessing steps must be
implemented to condition the data appropriately, and to
make the images suitable for deep learning models to
process (e.g., intensity scaling, resizing, patching, etc). All
these processes can impact the performance of the DL
model and, for this reason, should be carefully dimen-
sioned and defined case-by-case, depending on the sce-
nario’s data. DNNs make it possible to create end-to-end
prediction models by handling every processing step—
including feature extraction and learning—that is often
required to create a traditional ML model (Fig. 2).
DNNs provide representation learning techniques based

on a stack of processing layers with a finite number of
nonlinear units (i.e., artificial neurons) [53, 54]. Input and
output layers are the top and bottom levels of the net-
work, respectively, and the layers in the middle are called
hidden layers [55]. DNNs can act as nonlinear function

approximators because of their multilayered structure,
which allows them to learn many representations of the
input data at different levels of abstraction [54]. In con-
trast, a single neuron acts as a linear classifier.
A DL model can quickly reach millions of trainable

parameters to estimate during the training phase, depending
on the number of layers and units per layer. As a result, DL
models need datasets containing thousands of images, as
they are prone to overfitting, especially when working with
relatively small training sets [56]. Applications specific to the
field of medical imaging encompass both small and big
imaging databases, albeit with different consequences. Since
DL can predict incredibly complex relationships within large
datasets, it has found widespread application in radiation
oncology and medical imaging [57].
Although ROI/VOI segmentation is not needed for

extracting these features (depending on the task at hand),
the effectiveness of CNN-based classification might be
affected by the different image or patch sizes for including
the whole ROI. Importantly, CNNs allow for a hier-
archical abstraction of the input data, thus resulting in
highly effective signals characterized by a strong spatial/
temporal continuity, such as in the case of multi-
dimensional images: CNNs work hierarchically so that the
output of one convolution layer is used as input in the
next convolution layer. CNN is a type of artificial neural
network in which the pattern of connectivity between
neurons is inspired by the organization of the human
visual cortex, whose individual neurons are arranged in
such a way as to respond to the overlapping regions that
tessellate the visual field [55]. A typical CNN-based
architecture is represented in Fig. 3. According to the
architecture shown in Fig. 3, the main components of
CNNs are reported in Table 2.
Tuning the hyperparameters is a nontrivial step after

choosing the best network architecture. Structural

Classic Machine Learning (Radiomics)

Hand-crafted
Feature 

Extraction

Deep
Feature 

Extraction

End-to-End Learning

Feature 
Robustness 

Analysis

Predictive 
Modeling

Feature 
Selection

Extraction
by a pre-trained 

CNN
ML models or 

CNN fine-tuning

Predictive 
Modeling

Segmented
Medical 
Images

Medical 
Images

Medical 
Images

Prediction

Prediction

Prediction

Pre-processing 
and Calibration

Deep Learning (Representation Learning)

a

b

Fig. 2 Typical processing pipelines of AI systems for the implementation of predictive models. a Classic ML, including the various steps that process
handcrafted features. b DL exploits representation learning by relying upon deep image feature extraction or end-to-end learning. AI, Artificial
intelligence; CNN, Convolutional neural network; DL, Deep learning; ML, Machine learning
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hyperparameters that can greatly affect model perfor-
mance include the number of layers/neuronal units, the
activation functions, and the receptive field size (the area
of the input space that a particular CNN’s feature is
interested in). This makes designing the optimal archi-
tecture challenging [53].

Representation learning
Representation learning was introduced to represent the
information efficiently and learn the abstract features
from the raw data [58]. These techniques, based on
DNNs, are different from handcrafted feature extraction
and selection and allow the raw input data to be converted
into meaningful intermediate features and outputs [59].
Transfer learning—an ML technique in which a pre-

trained model on a task is tuned to a new, related task—
can play a crucial role in feature learning, by allowing also
for domain adaptation across different institutions [60].
The simplest approach for transfer learning involves
“freezing” the first hidden layers (i.e., the weights will not
be trained, but will keep the values from the previous
training procedure) and then applying fine-tuning [61].
Interestingly, shared factors across tasks may also exist,
such as in the case of joint segmentation and classification
tasks. With many inter-related tasks of interest or many
learning tasks in general, each task can be explained by
factors that are shared with other tasks, thus allowing for
the sharing of statistical strengths across inter-related
tasks [58].
CNNs have also been used in conjunction with recurrent

neural networks to extract temporal and spatial informa-
tion from imaging data series. These networks allow the
processing of new data (such as longitudinal image series
of arbitrary length) while keeping track of previous inputs

and outputs since they share node weights throughout
time. However, because model complexity is directly cor-
related with the amount of input data, recurrent neural
networks are challenging to train and prone to overfitting.

Feature selection and dimensionality reduction
In ML, we often incur the so-called problem of the curse of
dimensionality, where the number of data samples (e.g.,
patients) is substantially lower than the number of features
processed. This could cause problems because it calls for
training a large number of parameters on a sparse dataset,
which increases the risk of overfitting and suboptimal
generalization. However, high dimensionality also leads to
extremely long training durations. Therefore, to solve these
problems, dimensionality reduction techniques are often
used in addition to feature selection. Moreover, while
residing in an initial high-dimensionality space, the final
space of features has a lower-dimensional structure.
Dimensionality reduction is the transformation from a

high-dimensional space (i.e., the dataset space) into a low-
dimensional space so that the low-dimensional repre-
sentation retains only meaningful properties of the ori-
ginal dataset. In radiomic-based approaches, after the
preprocessing and calibration steps described in Fig. 1, a
subsequent selection step is carried out aimed at identi-
fying the most relevant predictive features [62, 63]. In
quantitative imaging and radiomics, this approach is
preferred to dimensionality reduction since the input
features are preserved and are not involved in any trans-
formation process [64]. This aspect is crucial in the
development of interpretable models that rely upon the
meaning of handcrafted radiomic features.
The high dimensionality of datasets in radiomic inves-

tigations is a significant issue, resulting from limited

Severe
Mild
Moderate

Softmax
activation
function

Input
(Chest X-Ray image) Pooling Pooling Pooling

Convolution
+ ReLU

Flatten
Layer

Fully Connected Layer

Output
(Covid-19 prognosis)

Feature Maps

Kernel

Feature Learning Classification Probabilistic
Distribution

Convolution
+ ReLU

Convolution
+ ReLU

Fig. 3 Typical architecture of a CNN for an image classification task. The layers of a CNN learn the features and the final classification is performed via a
fully connected layer, which processes the feature maps after a flattening operation. In this case, an example of COVID-19 prognosis (i.e., three-class
classification) based on the analysis of chest x-ray images is depicted [105]. CNN, Convolutional neural network; ReLU, Rectified linear unit
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sample numbers and a large number of generic features
retrieved from the VOI. To eliminate unnecessary and
redundant features, feature selection techniques are
applied. Given the abundance of feature selection algo-
rithms available, it is critical to comprehend each one’s
effectiveness in the context of radiomics [65].
All of these methods can address the “curse of dimen-

sionality” and decrease overfitting in the model, improv-
ing the model’s capacity for generalization. Three classes
of feature selection techniques exist:

(i) Filter methods, which evaluate a feature subset’s
usefulness using information theory-based metrics
or statistical correlation;

(ii) Wrapper methods, which use a search method
(such as recursive feature elimination, sequential

feature selection, or metaheuristics) to evaluate
feature combinations and maximize the predictive
model’s performance;

(iii) Embedded methods, which enable feature selection
during the model’s training, as in the cases of
Elastic net regularization techniques (ElasticNet)
and Least Absolute Shrinkage and Selection
Operator (LASSO).

Among these, wrapper methods are powerful but
computationally demanding [66]. To find the best feature
subset, they rely on the evaluation of classification per-
formance. Since exhaustive search methods are compu-
tationally intensive and impractical for large-scale
datasets, search methods and metaheuristics are typically

Table 2 Main components of a CNN architecture, describing functioning details and processing output

CNN component Details Output

Convolutional layers Kernel size, striding, padding, receptive field.

Smaller kernels (3 × 3) with many convolutional layers (~ 1 K)

imply fewer parameters than fully connected nets.

Convolutional layers extract features. In general, more than one

kernel is applied, thus obtaining a different feature map.

Given a square image as input composed of Win ×Win pixels, N

different kernels with dimension K × K, stride S, and padding P,

the output will have dimensions Wout ×Wout × N, where

Wout= [(Win –K+ 2 P)/S] + 1.

Pooling layers Translation-invariant (preserving important information in

local patches).

• Max pool (preferable in middle layers)

• Average pool (most used in the final layers)

Pooling layers perform a downsampling by dividing the input

into regions (i.e., pooling windows) and performing an

aggregation operation, such as taking the maximum or average

value, within each window. This aggregation reduces the size of

the feature maps, resulting in a compressed representation of

the input data.

Dropout Destroy/preserve connections with output neurons randomly

(with probability pdropout, which is a hyperparameter used

also at test time).

• This does not increase the number of parameters and acts

as a regularizer

• Equivalent to training several smaller networks (in terms of

average features from smaller nets)

• Training time increases, but it is reduced compared to a

multi-expert approach

Dropout performs a regularization for reducing overfitting and

improving the generalization of CNNs. Connections are dropped

out with a rate pdropout at each step during training time.

Activation functions Sigmoid, softmax, linear, rectified linear unit (ReLU),

hyperbolic tangent (Tanh), leaky ReLU

Activation function is used to determine the output of neural

network (e.g., yes/no, class A/class B, …). The function maps the

resulting values in between 0 and 1 or -1 and 1, etc. (depending

the used function).

Output layers Typically fully connected (like in traditional multilayer

perceptrons), also called dense layers

• Binary classification: one node, sigmoid activation

• Multiclass classification: one node per class, softmax

activation

• Multilabel classification: one node per class, sigmoid

activation

• Regression: one node, linear activation

Output layers are typically fully connected (FC) layer, called that

because each neuron from the previous layer is connected to

each neuron of the current layer. FC layers—typically found

towards the end of a neural network architecture—are

responsible for producing final output predictions.
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used to find suboptimal solutions in the search space [67].
Most importantly, repetitive statistical comparisons may
create overfitting in the feature subset space as a result of
the repeated accuracy estimation utilized in feature subset
selection, which would hinder generalization skills [68].
The quality, diversity, and quantity of the data used can
directly impact the reliability of the results obtained and
can limit the model’s generalization ability. Indeed,
medical imaging tasks are typically affected by noise,
missing data, and class imbalance since pathological
samples represent the minority class compared to healthy
samples [69]. Therefore, resampling methods are funda-
mental for handling missing data during the data curation
phase, as well as for dealing with highly unbalanced data
during the ML-based modeling phase (i.e., data augmen-
tation via minority class oversampling) [70].
The output of the selection processes is a set containing

relevant, nonredundant, and robust features. The next
step of the pipeline is the definition of the predictive
model. Depending on the specific clinical topic at hand,
multivariable classification or regression techniques can
be used to do this [71], usually in supervised learning
environments. Interestingly, unsupervised feature selec-
tion methods [72] are effective and robust in radiomics
applications [73].
The training durations, stability, and similarity of feature

selection techniques varied significantly [65]: no single pre-
diction technique was able to consistently outperform the
others. According to these findings, less complicated tech-
niques outperform more complicated ones in terms of the
area under the receiver operating characteristic curve [74].
They are also more stable. In terms of predictive perfor-
mance, analysis of variance, LASSO, minimum redundancy,
and maximum relevance ensemble seem well-suited for
radiomic research, as they outperformed the majority of
other feature selection techniques.

Principal component analysis
To acquire lower-dimensional data while retaining as
much of the variation in the data as feasible, the principal
component analysis is frequently employed for dimen-
sionality reduction [75]. This is achieved by projecting
each data point onto the first principle components only.
A direction that optimizes the projected data’s variance
can be used to define the first main component. Generally
speaking, the direction orthogonal to the first (i–1) main
components that maximizes the variance of the projected
data is the principal (i-th) component.
To summarize, principal component analysis learns a

linear transformation by projecting the input data onto
another space. By limiting dimensionality to some com-
ponents according to the explained variance of the data-
set, dimensionality reduction can be achieved.

t-distributed stochastic neighbor embedding (t-SNE)
The t-SNE is a nonlinear dimensionality reduction tech-
nique designed to effectively embed high-dimensional
data for visualization in a two- or three-dimensional low-
dimensional environment [76, 77]. To be more specific,
every high-dimensional object is represented by t-SNE as
a two- or three-dimensional point, with a high probability
of representing related objects by nearby points and dis-
similar objects by distant points. There are two primary
steps in the t-SNE algorithm: (1) creation of a probability
distribution between pairs of high-dimensional objects in
which the likelihood of similar objects is higher and the
probability of different points is lower; (2) establishment
of an equivalent probability distribution on the low-
dimensional map points and reduction of the Kullback-
Leibler divergence between the two distributions con-
cerning the map points’ locations.
The original algorithm bases its similarity metric on the

Euclidean distance between objects, although this can be
changed as needed.

Uniform manifold approximation and projection (UMAP)
Similar to t-SNE, the UMAP technique [78] reduces
nonlinear dimensionality and can also be applied to
generic nonlinear dimension reduction. The three basic
assumptions of the UMAP algorithm (concerning data
within the Riemannian geometry) are (1) uniform dis-
tribution of the data; (2) locally constant Riemannian
metric (or approximable); and (iii) locally connected
manifold.

Autoencoders
Autoencoders are an important kind of DL architecture
that may be used to reduce the input into a low-
dimensional latent space [79, 80]. These networks use
progressively smaller hidden layers in the encoder path,
regularization, and sparsity constraints to enable learning
a lower-dimensional representation of the data, prevent-
ing the network from learning the identity transformation,
which copies the source data into the destination data
without alteration (i.e., the trivial solution) [57].
By stacking several nonlinear transformations, each

autoencoder layer handles a different transformation.
Their design consists of an encoder-decoder, in which the
input is mapped to latent space by the encoder and then
reconstructed by the decoder. The back-propagation
process is used to train them so they can correctly reas-
semble the input. Autoencoders can be used for dimen-
sionality reduction when the latent space has smaller
dimensions than the input. It makes sense that the most
significant characteristics of the particular application are
encoded by these low-dimensional latent variables, which
are discovered during the reconstruction process.
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Conclusions
We summarized and discussed the main aspects of feature
extraction and selection with a particular interest in the
extraction of reliable and robust biomarkers. We have
shown that there is no unifying technique yet. Therefore,
despite the outstanding performance of DL methods in
many medical image analysis tasks, the use of either
handcrafted or learned features needs to be carefully
considered for each different study. Radiomics-powered
analyses still play a key role in clinically feasible and
interpretable applications, allowing for studies that rely on
datasets with a limited number of cases.
The size of the dataset is a key aspect: obtaining datasets

with too many or too few cases does not represent an
optimal situation for model setup. In fact, large-scale
datasets (with low sample diversity) could lead to model
overfitting; conversely, datasets with limited sample sizes
can provide unstable models. Each application scenario
must be evaluated in-depth to define the amount of data
needed to obtain a well-trained and reliable model.
Undoubtedly, the dataset must be representative of all the
‘facets’ of the clinical phenomenon (i.e., disease) under
investigation.
The access to the computational resources (i.e., hard-

ware and software) needed for methods requiring high
computational performance hardware—which only gra-
phics processing units can provide—could be a limitation
for rapid and broad implementation of the studies (and
for the proposed methodologies). This problem is mostly
evident in the training phase (once trained, computational
demands decrease significantly) and for solutions that rely
on deep architectures. However, it must be pointed out
that the market now offers very high-performance gra-
phics processing units at affordable prices and program-
mable with different software, many of them open-source.
Data engineering of large-scale datasets will be funda-

mental to developing accurate, generalizable DL-powered
methods in the near future. A new perspective to avoid
data sharing and privacy protection is the federated
learning paradigm, also known as collaborative learning,
an ML technique allowing an algorithm to be trained
through the use of decentralized devices or servers that
store data [81, 82]. It enables multi-institutional and
reliable studies, along with appropriate data harmoniza-
tion techniques for information fusion [83]. This aspect
has to be taken into account. In fact, it could be very
useful in healthcare applications where, because of the
sensitive data used, data managers (e.g., hospitals) put
constraints on data transfer [84]. Moreover, features that
are peculiar and well-established for image biomarkers
might be effectively supported by large language models
(LLMs) [85] in the case of interactive diagnostic tasks
powered by AI tools [86, 87].

Indeed, the introduction of LLMs could effectively sup-
port diagnostic tasks in quantitative imaging, such as
radiology reporting [88], after careful evaluation [89]. LLMs
exhibit great performance in language understanding and
generation. However, when LLMs are fine-tuned on com-
plex domain-specific tasks, their inference performance on
past/historical tasks decreases dramatically [90]. This
drawback—called catastrophic forgetting—refers to a
phenomenon where an LLM tends to lose previously
acquired knowledge as it learns new information. This
aspect represents a ‘drift’ for the model and must be
addressed to have LLM with stable performance [91, 92].
In conclusion, shallow-learning approaches can provide

model explainability that is difficult to achieve with deep
architectures. This criticality stems from two different
aspects: (1) the lack of interpretability of learned features
and (2) the cryptic operation mechanism of deep archi-
tectures. So, in DL models, in the face of better perfor-
mance, we go to a loss of explainability. From this issue,
the need for explainable AI arises, which aims to imple-
ment explainability (e.g., through post hoc mechanism)
within ML models.
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