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Abstract. We study the dynamical behavior of two initially entangled qubits,
each locally coupled to an environment embodied by an interacting spin
chain. We consider energy-exchange qubit–environment couplings resulting in
rich and highly non-trivial entanglement dynamics. We obtain exact results
for the time evolution of the concurrence between the two qubits and find
that, by tuning the interaction parameters, one can freeze the dynamics of
entanglement, therefore inhibiting their relaxation into the spin environments,
as well as activate a sudden-death phenomenon. We also discuss the effects
of an environmental quantum phase transition on the features of the two-qubit
entanglement dynamics.
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1. Introduction

The interplay between coherent and incoherent processes is key to the quantum mechanical
processing of information. Systems designed to perform a given communication or com-
putational task have to cope with the detrimental effects of the surrounding world, which can
affect an otherwise coherent process in many distinct ways [1]. In the context of distributed
quantum information processing (QIP), where networks of spatially remote quantum nodes are
used in order to process information in a delocalized way, a good assumption is that each local
processor is affected by its own environment. Such an architecture for a QIP device is currently
at the focus of extensive and multifaceted theoretical and experimental endeavors [2].

Extensive work has been performed on the incoherent dynamics resulting from the
coupling of QIP systems with baths weakly perturbed by the system-induced back-action.
The loss of quantum correlations due to the environment has recently received considerable
attention [3], with particular emphasis on the phenomenon of environment-induced
entanglement sudden death (ESD) [4] (i.e. complete disentanglement in a finite time), which
has also been experimentally tested for the case of electromagnetic environments [5]. And
yet, especially for solid-state implementations of quantum processors, the case of structured
environments is extremely relevant [6]. In this framework, the dynamics leading to complete
disentanglement of two qubits coupled with common spin environments (the so-called ‘central-
qubit model’) have been extensively studied [7]–[9]. Exponential decay of the concurrence [10]
between two qubits initially prepared in pure states has been observed, the decay rate
being enhanced for working points close to the quantum phase transition (QPT) of the
environment [8].

In this paper, we study the dynamical evolution of the entanglement between two remote
qubits coupled with mutually independent spin environments. The exact time dependence of
their reduced density matrix is obtained using an original approach [12]–[14] that allows us
to track the dynamics of quantum averages of one- and two-spin observables and entanglement
properties. In stark contrast with most of the available literature, here we consider a ‘transversal’
qubit–environment coupling that allows for energy transfer, resulting in a dissipative-like
behavior of the qubits and in a much richer entanglement dynamics.

The transversal nature of the qubit–environment coupling allows us to reveal the occurrence
of entanglement sudden death, even when starting from initially pure states of the qubits, which
included the maximally entangled ones that are extremely relevant for QIP. The above feature
cannot emerge in the case of longitudinal couplings, as reported in [7]–[9], [11].
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We show that, by setting the environment in different operating regimes, one can induce
either entanglement sudden death or a freezing effect. Moreover, we shed light on the differences
in behavior experienced by the parallel and antiparallel concurrences introduced in [16], whose
interplay is crucial in determining the properties of the quantum correlations within the two-
qubit state, in particular at the environmental quantum critical point where the antiparallel
entanglement appears to be better preserved than the parallel one.

This paper is organized as follows. In section 2, we define the physical system and the
relevant interactions. In section 3, we provide exact expressions for the dynamics of a single
qubit coupled with a spin–environment. These results are used in section 4 to obtain the
dynamics of the entanglement between two qubits, each coupled with a spin–environment
via a local isotropic (section 4.1) or anisotropic (section 4.2) exchange interaction. Finally, in
section 5, we draw some conclusions and suggest a possible scenario where the main features
of our physical model can be embodied.

2. The system

We consider two non-interacting subsystems, A and B, each consisting of a qubit Qκ (κ = A, B)
coupled with a chain 0κ of Nκ interacting S = 1/2 particles. Whenever useful, we will hereafter
use the index κ = A, B so as to generically refer to either of the two subsystems, A or B. As
usual, the qubits Qκ are described in terms of S = 1/2 spin operators, which we indicate as ŝ0κ .
Operator ŝnκ (nκ = 1, . . . , Nκ) corresponds to the spin located at site n of the chain 0κ . Note
that although the above notation suggests the spin describing Qκ to sit at site 0 of the respective
chain 0κ , this is just a useful convention; it has no implication about the physical nature of Q A

and Q B .
The intra-chain interaction is of XY -Heisenberg-type with local magnetic fields possibly

applied in the z-direction,

Ĥ0κ =−2
Nκ−1∑
nκ=1

(J x
nκ

ŝx
nκ

ŝx
nκ+1+J y

nκ
ŝ y

nκ
ŝ y

nκ+1)− 2
Nκ∑

nκ=1

hnκ ŝ
z
nκ
, (1)

where hnκ is the field applied at site nκ and J x,y
nκ

are the coupling strengths of the intra-chain
interactions. Each 0κ is open-ended, while neither the J x,y

nκ
s nor the magnetic fields hnκ need

to be uniform along the chains. Qubit Qκ is coupled with the first spin of its environment,
embodied by 0κ , via an exchange interaction of strengths J x,y

0κ and can be subjected to a local
magnetic field h0κ directed along the z-direction. The corresponding Hamiltonian reads

Ĥ0κ =−2(J x
0κ ŝ

x
0κ ŝ

x
1κ + J y

0κ ŝ
y
0κ ŝ

y
1κ )−2h0κ ŝ

z
0κ . (2)

The Hamiltonian of the total system κ is thus given by Ĥκ = Ĥ0κ + Ĥ0κ . In figure 1, we provide a
sketch of the model considered. As stated previously, although A and B do not interact directly,
they experience joint dynamics due to the possibility of sharing initial entanglement. Depending
on the choice of the local interaction parameters and magnetic fields in Ĥκ , the effort required
to tackle the model greatly changes. In section 3, we describe the approach used to achieve an
exact solution for the dynamics of local observables.
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Figure 1. Sketch of the physical model. Each of a pair of entangled qubits, Q A

and Q B , is locally coupled with a spin chain, 0A and 0B , via the Hamiltonians
Ĥ0A and Ĥ0B , respectively. The dynamics within each chain are ruled by the
intra-chain Hamiltonians, Ĥ0A and Ĥ0B . The wavy line indicates the initial
entanglement.

3. Exact single-qubit dynamics

We first concentrate on the dynamics of one subsystem only (thus dropping the index κ

throughout this section). In particular, we are interested in the evolution of a given initial state
of the qubit Q, as determined by its coupling with the chain 0 and under the influence of the
local magnetic field. We resort to the Heisenberg picture, which has recently been shown to
provide a convenient framework for the analysis of quantum many-body systems of interacting
particles [12]. The key step is the use of the Campbell–Baker–Hausdorff (CBH) formula in the
management of the time-evolution operator of the system. For an operator Ô associated with
an observable of a physical system with Hamiltonian Ĥ, the CBH formula reads (we set h̄ = 1
throughout the paper)

Ô(t)=

∞∑
p=0

(it)p

p!

[
Ĥ,

[
Ĥ, · · ·

[
Ĥ, Ô

]
· · ·

]]
. (3)

By virtue of the algebra satisfied by the Pauli matrices, we find that, upon application of
equation (3), the time evolution of the components of ŝ0 reads

ŝx
0 (t)=

1

2

N∑
n=0

[
5x

n(t)σ̂
x
n +1x

n(t)σ̂
y

n

]
P̂n,

ŝ y
0 (t)=

1

2

N∑
n=0

[
5y

n(t)σ̂
y

n −1y
n(t)σ̂

x
n

]
P̂n, (4)

ŝz
0(t) = − i2ŝx

0 (t)ŝ
y
0 (t),

where σ̂ αn (α = x, y, z) are the Pauli operators for the spin at site n and P̂n =
∏n−1

i=0 σ̂
z
i . The time-

dependent coefficients 5x
n(t) and 1x

n(t) are the components of the (N + 1)-dimensional vectors
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5x(t) and 1x(t) defined by

5x(t)=

∞∑
p=0

(−1)p t2p

(2p)!
(ττT)pv, (5)

1x(t)=

∞∑
p=0

(−1)p t2p+1

(2p + 1)!
τT(ττT)pv, (6)

where ‘T’ stands for transposition, the vector v has components vi = δi0 [15] and the tri-diagonal
matrix τ has elements

τi j = J y
i−1δi−1, j + J y

i δi+1, j − 2hiδi, j . (7)

The coefficients 5y(t) and 1y(t) are obtained from equations (5) and (6) by replacing τ with
τT. As ττT is real and symmetric, there is an orthogonal matrix U that diagonalizes it, so
that (ττT)p

= U32pUT, with 3 being the diagonal matrix whose elements λi j = λiδi, j are the
(positive) square roots of the eigenvalues of ττT. Similarly, there is an orthogonal matrix V that
diagonalizes τTτ such that (τTτ )p

= V32pV T with the same diagonal matrix 3 as above. As a
consequence, after straightforward matrix algebra, one can sum up the time-dependent series in
equations (5) and (6) to obtain

5x(t)= U�(t)UTv, 1x(t)= V6(t)UTv,
(8)

5y(t)= V�(t)V Tv, 1y(t)= U6(t)V Tv,

where �(t) and 6(t) are diagonal matrices with elements �i j(t)= cos(λi t)δi j and 6i j(t)=

sin(λi t)δi j . The above equations hold regardless of the local magnetic fields or the couplings
J x,y

n and J x,y
0 . Adopting the language of [12]–[14], the components of 5x,y(t) and 1x,y(t)

embody the fluxes of information from the qubit Q to the spin chain 0.
By means of equations (4), one can determine the time evolution of the single-qubit density

matrix,

ρ̂0(t)=
1

2
1̂ +

∑
α

〈ŝα0 (t)〉σ̂
α
0 , (9)

where 1̂ is the identity operator and 〈 · 〉 indicates the expectation value over the initial state of
the system. Once the diagonalizations required for determining the vectors 5x(y)(t) and 1x(y)(t)
are performed, we need to evaluate the expectation values entering equation (9). Such a task can
be performed within two different scenarios. In the first, 0 has a small number of spins, so
that one can design the precise structure of its initial state. In the second, 0 consists of a large
number of spins, which puts the analysis in the thermodynamic limit, where we can benefit from
specific symmetry properties of Ĥ0. Here, we concentrate on the latter situation, which has been
the subject of several recent papers, due to the fact that it can be used for describing a proper
qubit–environment system.

We assume that Q and 0 are initially uncorrelated and set the former in an arbitrary single-
qubit state ρ̂0 and the latter in an eigenstate |90〉 of Ĥ0. The initial state of the total system
will thus be ρ̂ = ρ̂0 ⊗ |90〉 〈90|. Under such conditions, the procedure described in the above
section is most conveniently implemented, as equations (4) greatly simplify due to the properties
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of Ĥ0. In particular, the conservation rule [Ĥ,
⊗N

n=0 σ̂
z
n ] = 0, which states parity invariance of

the Hamiltonian, together with the property 〈σ̂ αn σ̂
β
m 〉 = 0 for α 6= β and n 6= m, implies9

〈ŝx
0 (t)〉 =

1

2

N∑
n=0

[
5x

n(t)〈P̂nσ̂
x
n 〉 +1x

n(t)〈P̂nσ
y

n 〉

]
, (10)

〈ŝ y
0 (t)〉 =

1

2

N∑
n=0

[
5y

n(t)〈P̂nσ̂
y

n 〉 −1y
n(t)〈P̂nσ̂

x
n 〉

]
, (11)

〈ŝz
0(t)〉 =

1

2

N∑
n=0

[
5x

n(t)5
y
n(t)+1x

n(t)1
y
n(t)

]
〈σ̂ z

n 〉

−
1

2

N∑
n<m

[
5y

n(t)5
x
m(t)+1x

n(t)1
y
m(t)

]
〈P̂n+1 P̂m σ̂

x
n σ̂

x
m〉

−
1

2

N∑
n<m

[
5x

n(t)5
y
m(t)+1y

n(t)1
x
m(t)

]
〈P̂n+1 P̂m σ̂

y
n σ̂

y
m〉. (12)

Using equations (9)–(12), one can finally evaluate the single-qubit density matrix ρ̂0(t).

4. Exact two-qubit dynamics

We now consider the complete system A ∪ B. Under the assumption of non-interacting
subsystems, the time propagator generated by ĤA + ĤB factorizes as Û A(t)⊗ Û B(t) with
Ûκ(t)= exp[−iĤκ t]. Despite the absence of interaction, A and B might still display dynamical
correlations depending on the initial state of the total system. In fact, if A ∪ B is prepared in
an entangled state, its dynamical properties will depend on the structure of such an initial state
and the entanglement evolution will follow from the interactions ruling A and B separately. The
values of the parameters entering Ĥκ might thus be considered as knobs for the entanglement
dynamics.

We prepare the total system at time t = 0 in

ρ̂(0)= ρ̂Q A Q B (0)⊗ ρ̂0A(0)⊗ ρ̂0B (0), (13)

so that we can use the results of section 3 and write the two-qubit density matrix at time t in
terms of the time-evolved single-qubit one. In fact, using the results of Bellomo et al [15], we
have

ρ
Qκ

i j (t)=

∑
p,r

K pr
i j (t)ρ

Qκ

pr (0), (κ, K = A, B), (14)

with ρQκ

i j (t) being the elements of the single-qubit density matrix at time t and K a tensor of
time-dependent coefficients. The two-qubit state can then be written as

ρ
Q A Q B
I J (t)=

∑
pA,rA

∑
pB ,rB

ApArA
i A jA

(t)B pBrB
iB jB

(t)ρQ A Q B
P R (0), (15)

9 In order to establish a clear relation with the site-ordering in the physical model at hand, we label columns
and rows of (N + 1)× (N + 1) matrices and (N + 1)-dimensional vectors involved in our formalism using indices
ranging from 0 to N .
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where lower-case indices take values 1 and 2, while capital ones are defined according to
L = lA + lB − lA mod 2 = 1, . . . , 4 (with L = I, J, P, R and l = i, j, p, r ). By setting ρ̂0κ (0)=∣∣90κ

〉 〈
90κ

∣∣, i.e. by preparing both the chains in any of the eigenstates of their respective
Hamiltonians, we can explicitly evaluate equations (10)–(12) and hence equation (9). By
comparing the latter with equation (14), we finally determine the coefficients K pr

i j (t), thus fully
specifying the dynamics of the two-qubit state ρ̂Q A Q B (t).

Our approach is fully general and can be used in a variety of different situations. Here we
concentrate on the case where the initial state of the two qubits is one of the Bell states,

|φ±〉 =
1

√
2
(|00〉 ± |11〉) , |ψ±〉 =

1
√

2
(|01〉 ± |10〉) , (16)

which we dub parallel (|φ±〉) and antiparallel (|ψ±〉) Bell states [16]. By virtue of the
symmetries of such states, the concurrence of the two-qubit state can be written as C(t)=

2 max{0,C↑↑(t),C↑↓(t)}, where we have introduced

C↑↓(t)= |ρ̃23|−
√
ρ̃11ρ̃44, (17)

C↑↑(t)= |ρ̃14|−
√
ρ̃22ρ̃33, (18)

with C↑↑(0)= 1 for ρ̂Q A Q B
0 (0)= |φ±〉 〈φ±| and C↑↓(0)= 1 for ρ̂Q A Q B

0 (0)= |ψ±〉 〈ψ±|. Here the
notation ρ̃I J is used, for the sake of clarity, to indicate the matrix elements ρQ A Q B

I J (t) defined
in equation (15). In what follows, Ca(t) [C p(t)] is the concurrence corresponding to the case
where the qubits are initially prepared in an antiparallel [parallel] Bell state.

As for the environments, we take two identical chains of an (equal) even number of
spins N with homogeneous intra-chain couplings and field, i.e. J x,y

nκ
= J and hnκ = h. Both

chains are prepared in the ground state of H0κ , which is found via Jordan–Wigner and Fourier
transformations [17, 18]. Straightforward calculations yield the relevant mean values entering
equations (4) as

〈σ̂ z
n 〉 = 1 −

2

N + 1

(
kF −

cos[(kF + 1)ϑn] sin[kFϑn]

sinϑn

)
,

(19)

gnm ≡ 〈P̂n P̂m σ̂
x
n σ̂

x
m〉 =

ϕn,kF+1ϕm,kF −ϕn,kFϕm,kF+1

2 (cosϑn − cosϑm)
,

where, for convenience of notation, we omit the index κ . We have introduced ϕ j,k =
√

2/(N + 1) sin(jϑk), ϑk = kπ/(N + 1), k ∈ [1, N ] and the Fermi wave number kF is determined
by the magnetic field [18]. Moreover, due to the absence of symmetry breaking in |90κ 〉, it is
〈σ̂ x,y

nκ
〉 = 0. We consider N finite but large enough to avoid finite-size effects to influence our

results. For the range of parameters considered here, N = 50 is found to fulfill such a condition
and it is then chosen to set the length of both chains. Finally, we take the same coupling strength
between each qubit and its chain, i.e. J α0κ = J α0 .

4.1. Isotropic coupling between the qubit and the chain

We now consider an isotropic coupling between each qubit and its respective environment,
defined by J x

0κ = J y
0κ = J0 in equation (2). In the theory of open quantum systems, such coupling
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typically corresponds to a dissipative interaction treated in the rotating wave approximation [19].
For isotropic coupling, the total Hamiltonians Ĥκ have rotational invariance along the
z-axis. This implies that τ = τT and thus 5x

n(t)=5y
n(t)≡5n(t), 1x

n(t)=1y
n(t)≡1n(t),

which allows us to write

〈ŝx
0 (t)〉 =

1
2(50(t)〈σ̂ x

0 〉 +10(t)〈σ̂
y

0 〉),

〈ŝ y
0 (t)〉 =

1
2(50(t)〈σ̂

y
0 〉 −10(t)〈σ̂ x

0 〉), (20)

〈ŝz
0(t)〉 =

1

2

N∑
n=0

[52
n(t)+12

n(t)]〈σ̂
z
n 〉 −

1

4

N∑
n 6=m=1

[5n(t)5m(t)+1n(t)1m(t)]gnm.

From the above expressions, we see that single-qubit states initially directed along the z-axis
of the Bloch sphere maintain such alignment regardless of the Hamiltonian parameters. On
the other hand, initial ‘equatorial’ states with 〈ŝz

0(0)〉 = 0 evolve in time and remain on the
equatorial plane only for zero overall magnetic field. The rotational invariance around the
z-axis of the total Hamiltonians ĤA and ĤB has relevant consequences also on the evolution
of the entanglement, as shown in section 4.2.

In the fully homogeneous case, i.e. for h0 = h and J0 = J , it is λq = −2(h − cos qπ
N+2) and

the j th component of the corresponding eigenvector has the same form as ϕ j,q with N + 1
replaced by N + 2. Hereafter, time will be measured in units of J −1. In the thermodynamic
limit where N → ∞, the summations can be replaced by integrals yielding

〈ŝx
0 (t)〉 =

J1(2t)

2t

[
cos(2ht)〈σ̂ x

0 〉 − sin(2ht)〈σ̂ y
0 〉

]
,

(21)

〈ŝ y
0 (t)〉 =

J1(2t)

2t

[
cos(2ht)〈σ̂ y

0 〉 + sin(2ht)〈σ̂ x
0 〉

]
,

and, for the z component,

〈ŝz
0(t)〉 =

N∑
n=0

(n + 1)2

2t2
J 2

n+1(2t)〈σ̂ z
n 〉

−

n,m even∑
n 6=m

(−1)(n+m)/2 (n + 1)(m + 1)

4t2
Jn+1(2t)Jm+1(2t)gnm

+
n,m odd∑

n 6=m

(−1)(n+m)/2 (n + 1)(m + 1)

4t2
Jn+1(2t)Jm+1(2t)gnm, (22)

where Jn(x) are the Bessel functions. Long-time expansions show that the mean value of the
single-spin x(y) component decays as t−3/2. If h0 = h = 0, equation (22) reduces to 〈sz

0(t)〉 =

γ (t)〈σ̂ z
0 〉 with γ (t)= J 2

1 (2t)/2t2, yielding a t−3 scaling at long times. Equations (21) and (22)
give an excellent approximation also for finite N (. 50) within a time range where finite-size
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Figure 2. Concurrence between Q A and Q B for isotropic and weak coupling,
J0/J = 0.5, 0.4, 0.2 and 0.125 (going from the left-most to the right-most
curve). No magnetic field is applied.

effects have not yet occurred. As the latter are caused by the reflection of propagating excitations
at the boundary of the chain, we can neglect finite-size effects for times up to ∼ N . In fact, as
the maximum one-excitation group velocity is 2, it takes at least a time N for an excitation to
leave Q and travel back to it.

Let us now analyze the evolution of the entanglement between the two qubits. We first
notice that in the present case of isotropic coupling between Qκ and 0κ , and given that the
exchange interaction along the chain is set to be of XX type, both Hamiltonians Ĥκ have
rotational invariance around the z-axis. This enforces disjoint dynamics of the off-diagonal
matrix elements (ρ̃23 and ρ̃14) entering equation (17) and (18). As a consequence, if C↑↓(0)= 0
it is C↑↓(t)= 0 at any time (the same holds for C↑↑(t)). Moreover, we find that Ca(t)> C p(t)
for any symmetric τ , irrespective of the Hamiltonian parameters. This means that antiparallel
entanglement is more resilient to the effects of the spin environment. Using the analytical
solutions given above, we finally obtain the time evolution of the concurrence. For h = 0 and in
the fully homogeneous case of J0 = J , we find

C(t)= 2 max
{
0, γ 2(t)+ γ (t)− 1

2

}
, (23)

from which, by using the definition of γ (t) in terms of Bessel functions, we infer that at
tESD ' 0.9037, ESD occurs. In fact, our results show that sudden death occurs also for J0 6= J ,
exhibiting coupling-dependent characteristics. It is remarkable that disentanglement at finite
time occurs, here, for pure initial states of the two qubits, a feature due to the specific form of
qubit–environment coupling considered here.

In the weak coupling regime J0 � J , figure 2 shows that the concurrence relaxation time
grows as J0 decreases. On the other hand, for strong coupling J0 � J , the non-Markovian
character of the environments becomes evident (as shown in figure 3), and entanglement
revivals occur due to the finite memory time of the spin chain. These revivals can be intuitively
understood as the result of the strong coupling between the two-qubit system and the spins at
the first site of each chain. A large J0 gives rise to almost perfectly coherent interactions within
such a qubit-spin pair, only weakly damped by leakage into the rest of the chains. A revival
time (the time after which the revival exhibits a maximum) of about π/J0 is inferred from
figure 3, for J0/J � 1. In figure 4(a), such findings are summarized in terms of the dependence
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Figure 3. Concurrence between Q A and Q B for isotropic and strong
couplings, J0/J = 3.5, 4, 4.5 and 5 (solid, dashed, dot-dashed and dotted curves,
respectively). No magnetic field is applied. We also show the case of J0/J = 1.
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0.50

0.70

10.0

Figure 4. (a) Time tESD after which the concurrence between Q A and Q B first
exactly vanishes (entanglement sudden death), as a function of the coupling
J0/J (double logarithmic scale). No magnetic field is applied. (b) Entanglement
revival time against log10[J 0/J ]. No magnetic field is applied.

of log10[tESD] on log10[J 0/J ]. The quasi-linear trend shown there reveals that the growing rate
of tESD for J0/J < 1 is slightly larger than the decreasing rate at J0/J > 1. In figure 4(b), we
show the behavior of the revival time against log10[J 0/J ], which also exhibits a quasi-linear
trend.

The presence of finite magnetic fields significantly changes the dynamics of the
entanglement. If h0 > 0 and h = 0, i.e. if the field is only applied to the qubits, then we expect
an effective decoupling of each qubit from the dynamics of its environment, such that both ŝ0κ
precess with a Larmor frequency that depends mostly on h0, although it is subjected to small
quantitative corrections due to the interaction with 0κ at rate J0. In fact, in figure 5, we see that
a larger amount of entanglement is maintained for considerably longer times as h0 grows. Due
to the above decoupling, as well as the condition h0A = h0B , correlations between Q A and Q B

are preserved and so is their concurrence.
In figure 5(b), the same effect is illustrated by the time-averaged concurrence

C̄a,p = (1/δt)
∫
δt Ca,p(t ′)dt ′ (the average is calculated over a time window δt that excludes

the oscillatory transients observed in figure 5(a) for J t . 10 and J t & 45). The average
entanglement grows with h0. We further note that parallel and antiparallel concurrences are
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Figure 5. (a) Ca(t) versus t , for isotropic and homogenous couplings (J0 = J )
on the chains with hκ = 0 and h0/J = 0.8, 0.9, 1, 1.1, 1.2, 1.5 and 2 (from the
bottom to the top curve). (b) Average parallel and anti-parallel concurrences and
their difference plotted against h0 with the same parameters as in (a). The lines
joining the data points are simply a guide to the eye.
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Figure 6. (a) Ca(t) versus t , for isotropic and homogenous couplings (J0 = J ),
with no field applied on the qubits (h0κ = 0) and h/J = 0.8, 0.9, 1, 1.1, 1.5 and
2 and 5 (from the bottom to the top curve). (b) Average parallel and anti-parallel
concurrences and their difference plotted against h/J with the same parameters
as in (a). The lines joining the data points are simply a guide to the eye.

almost identical (with C̄a > C̄ p as expected), although their difference vanishes only as
h0 → ∞. We have also found that for h0A 6= h0B the phase relation between individual
precessions is lost and no entanglement preservation is consequently observed.

We now switch off the magnetic field on both qubits (i.e. we take h0 = 0) and apply a finite
field h > 0 on the environments. In this case, a particularly interesting effect is observed as h
becomes larger than the saturation value h = J and the dynamics of both chains slow down.
As a consequence, after the transient, the dynamics of the correlations between the two qubits
are considerably suppressed, due to the difficulty faced by the qubits to exchange excitations
with saturated environments. A long-time entanglement memory effect results from this, which
is evident in figure 6(a). There, we also notice a reduction of the wiggling, which further
witnesses the freezing of the entanglement dynamics. It should be noted that such an effect is
profoundly different from the decoupling mechanism highlighted previously, where C̄a−C̄ p was
a monotonic function of the magnetic field. Here, in fact, a peak occurs in the difference between
time-averaged concurrence components when h = J , as shown in figure 6(b), revealing a drastic
change in the entanglement behavior at the onset of an environmental QPT [20]. Clearly, at the
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environmental critical point, the antiparallel entanglement is favored against the parallel one,
which is at the origin of the peculiar behavior observed in figure 6(b) for the dashed line. The
drastic change in the behavior of the average concurrence observed at h/J = 1 is unique for
the mechanism discussed here and, as already stressed, clearly distinguished from the freezing
effect due to mismatched frequencies at each qubit–environment subsystem. For h > J , the
effect is fully established and the average concurrence increases, while Ca and C p get closer
to each other. Moreover, by defining Z(t)= (1/2t2)

∑N
n=1 (n + 1)2J 2

n+1(2t) and using the exact
analytical expressions (valid for h > J ),

Ca(t) = 2 max

0, γ (t)−

√
1

16
−

[
γ 2(t)+Z2(t)

]
2

+
[
γ 2(t)−Z2(t)

]2

,
(24)

C p(t)= 2 max
{
0, γ (t)+ γ 2(t)+Z2(t)− 1

4

}
,

we see that when the environments are saturated (i.e. all the spins of the chains are aligned along
the z-axis), the concurrence dynamics do not depend on the magnetic field.

4.2. Anisotropic coupling

We finally consider the case of anisotropic coupling J x
0 6= J y

0 between each qubit and its
respective environment (the chain). Differently from the case of isotropic coupling studied in
section 4.1, and as a direct consequence of the fact that the total magnetization of A and B is
not conserved, the off-diagonal elements ρ̃23 and ρ̃14 of the two-qubit reduced density matrix
are not dynamically disjoint. This implies the possibility for the concurrence of the two-qubit
state to switch from the parallel to the antiparallel type and vice versa.

For the sake of clarity, we consider extremely anisotropic conditions, setting J y
0κ = 0. In the

case of no magnetic field on both qubits, h0 = 0, a very simple expression for the concurrence
is found, due to the fact that 〈ŝx

0κ (t)〉 is a constant of motion. In particular, if the two qubits
are initially prepared in a combination of the two antiparallel Bell states, their concurrence
will evolve as C↑↓(t)= −C↑↑(t)=5

y
0A
(t)5y

0B
(t). On the other hand, if parallel Bell states

are used to build up the initial entangled state, it is C↑↑(t)= −C↑↓(t)=5
y
0A
(t)5y

0B
(t). As a

consequence, if 5y
0A
(t)=5

y
0B
(t) (holding when ĤA = ĤB), the two-qubit concurrence cannot

switch between C↑↑ and C↑↓. On the contrary, if 5y
0A
(t) 6=5

y
0B
(t), one can drive the two-qubit

system from parallel-type to antiparallel and vice versa. In fact, the switching between parallel
and antiparallel entanglements is observed when ŝ0A and ŝ0B are flipped, under the effect of the
coupling with the first spin of their respective chain, at different frequencies (for instance, when
J x

A 6= J x
B), or when the dynamics of one subsystem are slowed down with respect to the other (for

instance, due to the fact that the field on one of the two chains is larger than the saturation value,
as seen in section 4.1). However, as discussed in [3], a two-channel entanglement evolution
has an upper bound given by the product of the one-channel dynamics. Therefore, for such an
‘entanglement switching’ to occur, the Hamiltonian parameters of subsystems A and B should
be set so as to retain high entanglement values. By fixing J x

B , while setting h A � J x
A in order

to slow down the entanglement relaxation in the corresponding channel, the efficiency of the
switching increases. This is clearly seen in figure 7. On the other hand, we can decrease J x

A so
that channel B is far more responsible for the entanglement evolution. In this case too, a very
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Figure 7. Concurrence between Q A and Q B for anisotropic coupling, J x
0A

=

J x
0B

= J . The magnetic fields are set to zero everywhere but on the chain 0A,
where the field is allowed to change within the saturation region, h A = 1, 2 and
10 (bottom to top). Solid (dashed) lines are for C↑↑ (C↑↓). All quantities are
dimensionless.

efficient switching mechanism is achieved, suggesting that the saturation region of the chain
is associated with an effective decoupling of the qubit from its corresponding environment.
Finally, we note that, the coefficients defined by equations (8) being regular oscillating functions
of time, the concurrence can only vanish on a countable number of points on the temporal axis
and cannot remain null for finite intervals of time. Therefore, entanglement sudden death is not
observed.

5. Conclusions

We have analyzed the dynamics of an entangled qubit pair connected to two structured
environments composed of open-ended and finite interacting spin chains. The intra-chain
interaction has been modeled by an XX Heisenberg-like Hamiltonian, while the coupling
between each qubit and its respective environment has been realized via an XY exchange term
with the first spin of the chain. Application of uniform magnetic fields has also been considered.
We have exactly determined the time-dependent two-qubit density matrix, starting from the
information gathered on the single-qubit dynamics.

We have then provided analytical solutions both for the case of finite even N and in
the thermodynamic limit, thus getting access to a comprehensive and general analysis of
entanglement evolution. Particular emphasis has been given to the relaxation-like dynamics
implied by the specific type of coupling considered, which gives rise, under suitable conditions,
to a sudden death of the entanglement that we have analyzed. Interestingly, we have unveiled
the occurrence of ESD also when starting from initially pure two-qubit states, a peculiarity of
our model that does not emerge under ‘longitudinal’ qubit–environment couplings.

By manipulating the transverse magnetic field on the initially entangled qubits, we have
shown the possibility of decoupling their dynamics from those of their respective environments,
thereby allowing for a dynamical entanglement protection. On the other hand, when the
magnetic fields applied to both chains are larger than the saturation value, the dynamics of the
environments slow down and entanglement sudden death is not observed. Interesting features
are observed when the environments undergo a quantum phase transition, which in this case
happens when the field applied to the chain obtains the saturation value, in particular as far as
the behavior of parallel and antiparallel concurrences is concerned.
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Our work provides an analytical characterization of the transverse (i.e. energy exchanging)
coupling between a simple and yet interesting out-of-equilibrium system (the two qubits)
and a nontrivial spin environment (the two chains). As spin models are now understood as
effective descriptions of many different physical systems, our results hold the promise to
find fertile applications to a variety of cases. As a particularly interesting situation, one can
think about the engineering of an effective spin environment by using unidimensional arrays
of small-capacitance superconducting Josephson junctions [21], which show a sharp phase
transition from Josephson-type behavior to Cooper-pair tunneling Coulomb blockade analogous
to that of an XY model. This implementation thus constitutes a nearly ideal test for our
predictions, since the effective environmental parameters can be modified through the use of
gate voltages and external magnetic fluxes. It would be very interesting to investigate the
applicability and relevance of a study such as the one performed here to the investigation of
the properties of intrinsically open systems in quantum chemistry and biology exposed to finite-
sized environments. In this context, it is particularly significant that the mathematical model
used to describe the radical pair mechanism [22] bears some analogies with the central-qubit
model.
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