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Abstract

This paper falls into the area of database support for
configuration management. It is concerned with the
definition of the data model, in particular, the schema
(i.e. the static properties of the data model) for a
Kernel Configuration Environment (KCE) that has to
be general, i.e. not concerned with a particular kind of
existing programming environment or with a
particular programming language. Since data
modelling, in the application area of configuration
environments, requires to define the relevant concepts
of that activity, the paper has also an impact on the
area of system modelling.

We consider the KCE as a tool to be integrated in
existing programming environments after a
specialization of its data model: The schema we have
defined is general enocugh to meet different
requirements; it defines the semantics of already known
concepts and notions and of new concepts that have
been suggested by specification languages.

1. Introduction

Logic has recently been used, by the authors
of this paper, to define two different
environments to handle configuration
activities. One environment was the Unix one,
for which the Make facility was defined
[Asirelli 87a]. The other one was an Ada-
environment for which logic was used to
define the Ada configuration facilities [Asirelli
87b]. To make that experience the authors
have used as implementation support a
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prototype logic DBMS, EDBLOG, running on
a SUN machine [Asirelli 88a].

The aim of those two working examples was
to see whether logic was suitable and how it
could be used in programming environments
and, furthermore, what advantages logic could
bring in this area of computer science.

Once logic proved to bring many advantages,
especially in the configuration area, as shown
in [Asirelli 88b], notably formalization and
rapid prototyping, the authors have
concentrated on the definition of a Kernel
Configuration Environment that was not
influenced by particular, existing,
programming environments or disciplines,
and abstract enough to cope with the many
different activities in software production, e.g.
the design, implementation and code
generation activities. Furthermore, a KCE has
to be abstract, in the sense of providing
general relations among objects thus allowing
the definition of concepts that can be further
specialized when using the KCE to define a
specific one.

Quoting from [Tichy 88] “Configuration
management is the discipline of controlling the
evolution of complex systems; sw
configuration management is its specialization
for sw systems”. Thus, the Configuration
Manager is the tool responsible for gathering
modules together according to strategies that
depend on the phase in which configuration
has to be performed.

The authors have not found in the literature
any explicit definition of data models,
underlying existing database-oriented sw
configuration environment systems, although
in [Tichy 88] a systematization of concepts is
given as a glossary for the area.

Quoting from [Brodie 84], data modelling
concerns the construction of “a representation
of the application that captures the static and
dynamic properties needed to support the
desired processes”, furthermore: “A data
model is a collection of mathematically well




defined concepts” and consists of two
components: the static and the dynamic
properties; the schema “consists of a
definition of all application object types,
including their attributes, relationships and
static constraints”; dynamic properties deal
with the specification of operations
(transactions).

Thus, facing the problem of configuration
activities according to the approach we have
taken, i.e. data modelling, reflects a database
approach to configuration issues.

We have till now concentrated on the
definition of a schema for a kernel
configuration environment data base, (that is:
the objects, their relationships and the static
constraints), while the dynamic component of
the data model is at present being studied, and
it is concerned with the definition of strategies
to collect modules together, i.e.the definition
of the Configuration Manager.

The work we present is funded by the
National Research Council, as part of a
national project that aims at defining and
developing integrated software development
environments (AASS).

The schema we propose is very general and
the design focussed on the definition of a
kernel data structure that maintain the
information, relevant to configuration
activities, produced during the various phases
of the software life cycle, namely during the
design phase, the implementation phase and
the coding phase.

The goal is, in fact, to have a configuration
system based on such a data base that is able
to consistently support information at the
three levels. The level structure of objects in
the data model has been provided to this
purpose and it is new, as well as the notions
of horizontal and vertical relations, that have
been first introduced in the area of
specification languages [Burstall 80], and do
not exist in already defined and/or working

configuration environments such as,
e.g.[Estublier 86].

In section 2, a logic description of the
proposed schema is given; the description is
given directly using first order logic but it
would be straighforward to give it in a more
conventional model, e. g. entity-relationship,
and then translate it into logic; in section 3, a
notion of correct development of a software
product is induced by the definition of
integrity constraints on each level and among
different levels. Such notion is related to the
structure of the data model and it is supposed
to be used in order to guarantee the correct
interactions between the data base and any
external tool; section 4, concludes the paper.
Finally, in the Appendix a summary of the
data model is provided.

2. The configuration schema

In this section we present the schema using
Horn Logic clauses for facts and rules while
integrity constraints are first order clauses
Al,..., Am — B1,....Bn with nm >0 whose
informal interpretation is that whenever A1
and ... and Am are true then B1 and ... and Bn
must also be true.

We assume that sw objects are identified by
unique names within the same project library.
In the schema, three types of software
objects are considered: design, source and
derived. The above three types of objects
represent the vertical layered structure of the
model, they denote the objects at the design,
implementation and coding levels respectively.
The goal is to integrate in the same DB, design
and implementation modules, while
maintaining all the relevant relations between
them. Relations among objects are then
considered as belonging to two groups:
vertical relations that connect objects on
distinct layers and horizontal relations that
connect objects on the same layer.

The terminology here used for modules is




generally taken from [Tichy 88]. Thus, design
objects may denote modules at the
specification level, while source objects may
denote modules that are implemented in some
specific application language, say Pascal, C
etc. We consider derived modules as
representing both the “derived” and the
“manually derived” modules defined in [Tichy
88]. In both cases, the DB is updated by
inserting the object together with all the
relations that bind it with other objects already
existing in the DB, like the source module
from which the given object was derived.

2.1 The representation of objects
Objects (e.g.modules) are supposed to be
introduced as the result of an external
interaction (users, tools etc.) and are
represented by means of assertions like:

design( obj(namey )) «
source( obj(name, )) «
derived( obj(namey )) ¢

where “obj” is a function symbol used to
build up terms of the DB; “design”, “source”
and “derived” are unary predicates, provided
by the KCE, that are used to type the objects
in the DB.

Thus, objects in the DB are defined as
follows:

obiect (X) « design (X)
object (X) « source (X)
object (X) « derived (X)

2.2 Relations among objects
A dependency relation among objects can be
either vertical or horizontal:

depend_on (X,Y) « depend_on_ver (X,Y)
depend_on (X,Y) « depend_on_hor (X,Y)

A vertical relation binds objects on the
different levels (layers):

depend_on_ver (X,Y) « implem_of (X,Y)

depend_on_ver (X,Y) « compiled_from (X,Y)

Thus, the relations implem_of and
compiled_from are used to set up a
correspondence between objects at the
specification level, at the implementation and
at the coding level, respectively.

Horizontal relations bind together objects
that: i) are alternatives in the sw development,
or ii) depend “structurally” one from each
other.

depend_on_hor (X,Y) « variat_of (X,Y)
depend_on_hor (X,Y) « depend_on_rel (X,Y)

depend_on_rel (X,Y) < combine (X,Y)
depend_on_rel (X,Y) « import (X,Y)

The relation “variat_of” is of the first kind, (i)
above, while “combine” and “import” are of
the second kind, (ii) above.

The relation variat-of (i.e. variation of)
groups together the representation of variants,
revisions, versions etc. We have decided to
make no distinction among these notions
because we believe that they have the same
semantics with respect to configuration
management; i.e. they connect sw objects that
can be considered alternatives with respect to a
certain choice. That choice can be made by
means of attributes, that will be discussed later
on. Thus, we provide for a general notion that
could be further specialized by the user,
depending on the context he is using, or on
the system he is modelling.

The variat_of relation is defined as follow:

variat_of (X,X) « object(X).

variat_of_tran (X,Y) « variat_of (X,Y)
variat_of_tran(X,Y }¢variat_of (X,Z),
X=\=Z, variat_of_tran (Z,Y)

The transitivity of the variat_of relation is
guaranteed by the definition of variat_of_tran,
that will be used from now on. In order to
define more precisely the semantics of the




variat_of relation an integrity constraint is
given:

variat_of_tran(X,Y), X=\=Y — attr(X,Z,Vx),
attr(Y,Z,Vy), attrname(Z),Vx /==Vy,
valueset (Z,Vx),valueset(Z,Vy).

The above integrity constraint establishes that
an object is the variation of an other object
only if the same attribute with a different value
is defined for each object.

Note that the definition of variat_of has been
given using both rules and integrity
constraints.

The general purpose of integrity constraints is
to establish a minimal semantics while
maintaining the definition in the DB as general
as possible. Note that, whenever an attribute
is defined for two objects, it does not mean
that the two objects are variat_of each other,
i.e. the right part of the integrity, does not
contribute to the definition of variat-of in the
generative sense, on the contrary, it expresses
a condition that has to be verified for the
objects that are in the relation.

The relation depend_on_rel expresses a
hierarchical structuring of a sw object in a
specific phase of its life cycle.

The relation combine (X,Y) applies when a
module Y is part of the decomposition of a
another module X; this relation has to be used
when an object is defined as the union of other
objects; it is defined as a binary relation since
a fixed arity cannot be defined a priori.
Hierarchical relations imply that a new
information in the DB, with respect to a sw
object, must exist, e.g. if an object is atomic
or structured. This additional information
about a sw object is expressed using
attributes, e.g.

combine (X,Y) — attr(X, atn(type), structured)

The horizontality of this relation is guaranteed
by the following integrity constraints:

combine (X,Y), design(X) — design(Y)
combine (X,Y), source(X) — source(Y)

combine (X,Y), derived(X) — derived(Y)

The relation import (X,Y) expresses the
dependency between a module Y that imports
a module X. The same constraints apply also
for the import relation:

import (X,Y), design(X) — design(Y)
import (X,Y), source(X) — source(Y)
import (X,Y), derived(X) — derived(Y)

2.3 Attributes of objects
Attributes are denoted by the unary predicate
attrname:

attmame(atn(language)) <
attrname(atn(revision)) <

attrname(atn(type) «—

Attribute values are taken from the
corresponding value set that has to be
defined, either in an enumerative way or else
by means of facts and rules:

valueset(atn(language), pascal) «
valueset(atn(language), ¢) ¢
valueset(atn(type), atomic) <«
valueset(atn(type), structured) <
valueset(atn(revision), N) < integer(N)
integer(Q)e—

integer(N)<— integer(N-1)

A ternary predicate is used to connect an
attribute with an object:

attr({obj(veronica)), atn(language), pascal) «

Integrity constraints are defined for attributes,
1oo:
= valueset (X,Y) — attrname(X)

In this way it is possible to constraint the
existence of a value set to the existence of the
corresponding attribute; and it is possible to
check it independently from the existence of
objects on which the attribute X is defined.

The following integrity constraint, instead,
holds only in the opposite situation: i.e. it




applies only after the introduction of objects
for which a value for the attribute X is
defined.

s attr(X,Z,V) —» attrname(Z), object(X), valueset(Z,V)

Furthermore the value of a certain attribute
for a sw object must be unique:

e attrname(Z), attr(X,Z,V1), atr(X,Z,V2) —» V1=V2

The presence in our model of three different
levels put some questions on the inheritance of
part of the horizontal relations from one level
to another, usually lower, level. Such a
problem 1is well known in Artificial
Intelligence with the name of “structured
inheritance problem”, and it will be discussed
in the next section.

One last remark on the data model concerns
the notion of configuration of a software
product. We have, deliberately, not provided
any explicit notion of configurated product as
the result of a configuration activity. Since
several approaches can be taken, an explicit
representation of a configurated product as an
object, either atomic or structured, in the data
model is premature. In other words, to
provide a notion of configurated product we
would also have forced the definition of a
configuration strategy (dynamic aspect of the
model).

3. A notion of correct development

In this section we discuss the consistency of
our schema with respect to the software
development process. In order to do that we
will consider its first order logic
representation. Each level is a logic theory,
now we have to consistently relate the three
theories, one for each level, (design level: Ts,
implementation level: Ti, code level: Tc) in
order to get the theory for the whole data
model.

The three theories are related by means of the

vertical relations that permit passing from one
theory to another one.

Ts

4 implem_of

Tj

U compiled from
Te

A graphical representation of the vertical and
horizontal structure of the schema is depicted
below (fig.1).

design

source

derived

O dbjects

variat—of

fig. 1

Now we can define our notion of correctness
for a software development process by means
of the following integrity constraints:

1. variat_of_tran(X,Y), implem_of(X,X"),
implem_of(Y,Y"), X'=\=Y" —» variat_of_tran(X',Y")

This constraint says (see fig.2) i) that the
variat_of relation is inherited at lower levels;
ii) that different implementations of the same
object must be in the variat_of relation. Note




that, two objects in the variat_of relation may
have the same implementation.

implem-of

fig.2

2. variat_of_tran(X,Y), implem_of(Z,X),
implem_of(Z',Y), Z=\=Z' — variat_of_tran(Z,Z")

This constraint works the opposite direction
(lower to higher level, fig.3): it says that if
two implementations are in variat_of then their
sources must also be in variat_of. The same
applies when there is only one implementation
for two different sources.

inmplem—of

fig.3

The same couple of constraints is defined for
the compiled_from relation (see Appendix).

3. import(X,W), variat_of_tran(X,Y),
implem_of(Y,Y", variat_of_tran(W,Z),
implem_of(Z,Z"
- variat_of_tran(R,Y",
variat_of_tran(S,Z"), import(R,S).

This constraints says that the horizontal
relation import has to be inherited at a lower
level whenever it holds at the upper level
among objects or their variations (fig.4).

import
fig.4

A similar constraint, working in the opposite
direction, did not seem to reflect the way
software is generally developed. In fact, while
itis correct to preserve at least the same grain
of modularity from a higher level to a lower
one; it is usually the case that the granularity is
higher at a lower level (top-down
development).

The same kind of constraint is defined for the
combine relation, too (see Appendix).

Thus we can now express what we meant
with correct development of a software
product: that is when, at any stage of its
evolution, the set of integrity constraint (both
system and user defined) are satisfied.

4. Conclusions

In this paper we have presented a logic
schema for a kernel data base to support
configuration management at various stages of
the software life cycle. In defining the schema
we have been inspired by a number of well
known models and systems, even if
developed in different contexts. The idea of a
consistent vertical and horizontal structure
stems from the algebraic specification world,
in particular from the Clear language [Goguen
77] and the CAT system [Burstall 80], the
same applies also for the structure of the
design level, i.e. the relation combine exists in




Clear as well as in Act one [Ehrig 86]. The
selection of the relevant relations, wrt
configuration management, to be represented
at the implementation and at the coding level
has greatly benefitted from the clarifying
systematization concerning configuration
activities presented by Tichy in [Tichy 88].

We concentrated on the definition, of a
schema that had to balance between
maintaining a certain flexibility of the system
while providing the user with non primitive
configuration capabilities.

We believe that the use of a tool that forces
formalization gives a valid contribution to the
definition of the data model; in our case, in
fact, it was possible to clarify the different role
horizontal relations play with respect to the
vertical structure of the model.

The notion of correctness seems to be quite
useful since it provides a framework to
validate the correctness of the programming
in the large development process in terms of
the modification on the data base content it
provokes.

Concluding, we can say that our schema
seems to be adequate in supporting a kernel
configuration environments at least for what
concerns the information representation; to
become practical it has to be extensively
checked when introducing tools, future work,
in fact, concerns the introduction of tools and
strategies (not only for configuration
management purposes) to check the data
model effectiveness.
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APPENDIX
The KCE data model

object (X)) « design (X)
object (X) « source (X)
object (X) « derived (X)

depend_on (X,Y) ¢ depend_on_ver (X,Y)
depend_on (X,Y) « depend_on_hor (X,Y)

depend_on_ver (X,Y) < implem_of (X,Y)
depend_on_ver (X,Y) « compiled_from (X,Y)

depend_on_hor (X,Y) « variat_of (X,Y)
depend_on_hor (X,Y) « depend_on_rel (X,Y)

depend_on_rel (X,Y) ¢« combine (X,Y)
depend_on_rel (X,Y) « import (X,Y)

variat_of (X,X) « object(X).

variat_of_tran (X,Y) « variat_of (X,Y)
variat_of_tran(X,Y)«—variat_of (X,Z),

X=\=Z, variat_of_tran (Z,Y)
attrname(atm(type) ¢~

valueset(atn(type), atomic) <
valueset(atn(type), structured) <

+ application dependent information
design( obj(nameq ))
source( obj(names )) <

derived( obj(names )) <

attrname(atn(language))
attmame(am(revision)) «
attrname(am(type) <

valueset(atn(language), pascal) <
valueset(atn(language), ¢) «

attr({obj(veronica)), atn{language), pascal) «
Integrity Constraints
variat_of_tran(X,Y), X=\=Y — attr(X,Z,Vx),

attr(Y,Z,Vy), attrname(Z),Vx [==Vy,
valueset (Z,Vx),valueset(Z,Vy).

combine (X,Y) — atr(X, atm(type), structured)
combine (X,Y), design(X) — design(Y)

combine (X,Y), source(X) — source(Y)

combine (X,Y), derived(X) — derived(Y)

import (X,Y), design(X) — design(Y)

import (X,Y), source(X) — source(Y)

import (X,Y), derived(X) — derived(Y)

valueset (X,Y) — attrname(X)

attr(X,Z,V) — attrname(Z), object(X), valueset(Z,V)
attrname(Z), atte(X,Z,V1), attr(X,Z,V2) — V1=V2

variat_of_tran(X,Y), implem_of(X,X"),
implem_of(Y,Y"), X'=\=Y"' — variat_of_tran(X',Y")

variat_of_tran(X,Y), implem_of(Z,X),
implem_of(Z',Y), Z=\=Z" — variat_of_tran(Z,Z")

variat_of_tran(X,Y), compiled_from(X,X",

compiled_from(Y,Y"), X'=\=Y' -

variat_of_tran(X',Y")

variat_of_tran(X,Y), compiled_from(Z,X),
compiled_from(Z',Y), Z=\=27" -

variat_of_tran(Z,Z")

import(X,W), variat_of_tran(X,Y),
implem_of(Y,Y"), variat_of_tran(W,Z),
implem_of(Z,Z")
— variat_of_tran(R,Y"),
variat_of_tran(S,Z"), import(R,S).

import(X,W), variat_of_tran(X,Y),
compiled_from(Y,Y"), variat_of_tran(W,Z),
compiled_from(Z,Z")
— variat_of_tran(R,Y",
variat_of_tran(S,Z"), import(R,S).

combine(X, W), variat_of_tran(X,Y),

implem_of(Y,Y"), variat_of_tran(W,Z),

implem_of(Z,Z")

- variat_of_tran(R,Y"),
variat_of_tran(S,Z"), combine(R,S).

combine(X,W), variat_of_tran(X,Y),

compiled_from(Y,Y"), variat_of_tran(W,Z),

compiled_from(Z,Z")

— variat_of_tran(R,Y"),
variat_of_tran(S,Z"), combine(R,S).




