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model problems are addressed. The resultingmethod combines the favorable properties of
isogeometric collocation and the geometrical and analytical problem-oriented advantages
of generalized B-splines.
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1. Introduction

Introduced nearly a decade ago in a seminal paper by Hughes et al. [1], isogeometric analysis (IgA) is now a well-
established paradigm for the analysis of problems governed by partial differential equations (PDEs), see, e.g., [2] and
references therein. It aims at improving the connection between numerical simulation and computer aided design (CAD)
systems. The main idea of IgA is to use the functions adopted in CAD systems not only to describe the domain geometry, but
also to represent the numerical solution of the differential problem, within an isoparametric framework. Tensor-product
B-splines and their rational extension, the so-called NURBS, are the dominant technology in CAD systems used in
engineering, and thus also in IgA. One of the interesting features of IgA, compared to high order finite element methods,
is that it allows for higher global regularity of the shape functions, up to Cp−1 inter-element continuity for p-degree
B-splines and NURBS. This leads to a higher accuracy per degree of freedom, as it has been shown in awide class of problems
and situations, ranging from solids and structures (see, e.g., [3–5]) to fluids (see, e.g., [6,7]). In addition, the high regularity of
the shape functions also opened the door to geometrically flexible primal formulations for higher order PDEs (see, e.g., [8,9]).

The Galerkin formulation has been intensively employed in this context. However, the efficiency of the Galerkin method
deeply depends on the numerical quadrature rules required in the construction of the corresponding linear systems. In
contrast with the finite element context, where elementwise Gauss quadrature is known to be optimal, it is not yet
completely understood how to construct efficient IgA quadrature rules, see, e.g., [10–12] and references therein.

The quadrature issuemotivated the idea of taking advantage of IgAhigh regularity to construct efficient and geometrically
flexible collocation methods, see [13] or the recent survey [14]. The major advantage of isogeometric collocation over
Galerkin-typemethods is theminimal computational effortwith respect to quadrature, since for eachdegree of freedomonly
one point evaluation at a so-called collocation point is required. This property leads to extremely easy and fast constructions
of the corresponding linear systems.

∗ Corresponding author at: Department of Civil Engineering and Architecture, University of Pavia, Italy.
E-mail addresses:manni@mat.uniroma2.it (C. Manni), alessandro.reali@unipv.it (A. Reali), speleers@mat.uniroma2.it (H. Speleers).

http://dx.doi.org/10.1016/j.camwa.2015.03.027
0898-1221/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2015.03.027
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2015.03.027&domain=pdf
mailto:manni@mat.uniroma2.it
mailto:alessandro.reali@unipv.it
mailto:speleers@mat.uniroma2.it
http://dx.doi.org/10.1016/j.camwa.2015.03.027


1660 C. Manni et al. / Computers and Mathematics with Applications 70 (2015) 1659–1675

In contrastwithGalerkin-type formulations, collocation is based on the discretization of the strong formof the underlying
PDE, which requires basis functions of sufficiently high order and smoothness. Consequently, the use of the IgA approach
for collocation arises in a natural way, since spline functions (such as B-splines and NURBS) can be readily adjusted to any
order of polynomial degree and continuity required by the differential operators at hand. It turns out that NURBS-based IgA
collocation is very competitivewith respect to Galerkin on the basis of an accuracy-to-computational-cost ratio, in particular
when high degrees are adopted. For more details we refer the reader to the comprehensive study reported in [15].

Within the IgA collocation framework, several promising significant studies have been recently published, ranging from
linear elastostatics and explicit dynamics [16] to phase-field modeling [17] and contact [18]. Moreover, IgA collocation
has been successful in the context of structural elements: Bernoulli–Euler beam and Kirchhoff plate elements have been
proposed in [19], while shear-deformable structural elements have been considered in a number of papers. In particular,
mixed formulations both for Timoshenko initially-straight planar beams and for curved spatial rods have been proposed
and studied in [20,21], respectively, while the extension to Reissner–Mindlin plate problems has been considered in [22].
A new single-parameter formulation for shear-deformable beams, recently introduced by [23], has been solved also via IgA
collocation. Finally, robust and optimal solvers for the linear systems coming from the IgA collocation discretization have
been proposed in [24].

Nonetheless, it is important to remark that the IgA paradigm is not confined to B-splines, NURBS and their
localized extensions like T-splines [25–27], hierarchical splines [15,28–30] and LR-splines [31,32]. Other discretization
spaces/techniques have also received some attention; for example, we can mention subdivision schemes [33], splines on
triangulations [34–36] and generalized splines [37,38].

The so-called generalized B-splines (GB-splines) are piecewise functions with sections in more general spaces than
algebraic polynomial spaces (like classical B-splines). Suitable selections of such spaces – typically including trigonometric
or exponential functions – allow for an exact representation of polynomial curves, conic sections, helices and other profiles
of salient interest in applications. In particular, conic sections are exactly parameterized by trigonometric/exponential
generalized splineswith respect to the arc length. GB-splines possess all fundamental properties of the classical (polynomial)
B-splines; we highlight their recurrence relation, compact minimum support, local linear independence, and (non-
stationary) subdivision rules. Moreover, contrarily to rational extensions like NURBS, they behave completely similar to
B-splines with respect to differentiation and integration. For an overview of their properties we refer the reader to [38]
and references therein. Finally, GB-splines support (locally refined) hierarchical structures in the same way as (polynomial)
B-splines, see [39], and T-spline structures based on trigonometric generalized splines have been addressed in [40].

Tensor-product GB-splines and their hierarchical counterpart have been applied in IgA following the Galerkin
formulation [37–39,41]. Thanks to their complete structural similarity with classical B-splines (which is based on a
Bernstein-like representation), GB-splines are plug-to-plug compatible with B-splines in IgA. On the other hand, when
dealingwith GB-splines, the section spaces can be selected according to a problem-oriented strategy taking into account the
geometrical and/or analytical peculiar issues of the specific addressed problem. The fine-tuning of the approximation spaces
generally results in a gain from the accuracy point of view. These two aspects make GB-splines a flexible and interesting
tool in IgA Galerkin approximation.

It is clear that IgA Galerkin methods based on GB-splines also suffer from the above mentioned quadrature issue, and a
minimum number of point evaluations per degree of freedom is even more attractive in the context of GB-splines than for
classical polynomial B-splines/NURBS.Moreover, GB-splines present the same smoothness properties and can be adjusted to
any order (degree) as classical B-splines. Therefore, it is natural to consider IgA collocationmethods based onGB-splines, and
in this paper such a topic is addressed for the first time. Our aim is showing that discretization spaces consisting of suitable
GB-splines are an excellent match for IgA collocation. In particular, we focus on collocationmethods based on trigonometric
and exponential generalized spline spaces for their relevance in practical applications.

The results of our investigation can be summarized as follows. Similarly to the Galerkin context, it turns out that
isogeometric collocation methods based on generalized B-splines

• have a convergence behavior completely similar to isogeometric collocation methods based on polynomial B-splines;
• generally provide a gain from the accuracy point of view in comparison with polynomial B-splines and NURBS whenever

the section spaces can be selected according to a problem-oriented strategy.

The remaining of the paper is divided into four sections. In the next section we briefly give the definition and the main
properties of GB-splines of interest in the IgA collocation environment,with a special focus on trigonometric and exponential
generalized B-splines. Section 3 introduces IgA collocation methods based on GB-splines in a simple 1D setting; it discusses
the choice of the collocation points, and illustrates the performance of the presented approach in few numerical tests.
Section 4 is devoted to the multivariate setting and addresses scalar- and vector-valued problems. In particular, IgA
collocation methods based on GB-splines are described for advection–diffusion and linear elasticity problems, and they
are numerically analyzed. Finally, Section 5 collects some concluding remarks.

2. Generalized B-splines

To make the paper self contained, this section is devoted to the definition and basic properties of GB-splines. Further
details can be found in the cited references and, in particular, in [38, Section 3].
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2.1. Non-polynomial spline spaces

Let Ξ be a sequence of knots over the interval [0, 1],

Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξm+p+1}, m, p ∈ N, (1)

where we assume that the end points have a multiplicity p + 1, i.e.,

0 = ξ1 = · · · = ξp+1 < · · · < ξm+1 = · · · = ξm+p+1 = 1. (2)

Classical B-splines of degree p defined over (1) are a basis for piecewise polynomial functions with a suitable smoothness,
i.e., functions with sections in the space of algebraic polynomials of degree p,

Pp := ⟨1, t, . . . , tp−2, tp−1, tp⟩.

Functions with a given smoothness and belonging piecewisely to more general spaces like

PUi,Vi
p := ⟨1, t, . . . , tp−2,Ui(t), Vi(t)⟩, t ∈ [ξi, ξi+1), i = 1, . . . ,m + p, (3)

can be considered as well, see [42] and references therein. In the section spaces (3) the functions Ui, Vi can be selected such
that salient profiles of interest are exactly represented and/or special features are obtained. Popular choices for (3) are:

Ep,αi := ⟨1, t, . . . , tp−2, exp(αit), exp(−αit)⟩, 0 < αi ∈ R, (4)

Tp,αi := ⟨1, t, . . . , tp−2, cos(αit), sin(αit)⟩, 0 < αi(ξi+1 − ξi) < π, (5)

which lead to exponential and trigonometric splines, respectively. Exponential splines are often referred to as hyperbolic
splines because the space (4) coincides with the space

⟨1, t, . . . , tp−2, cosh(αit), sinh(αit)⟩.

This alternative formulation shows more clearly the connection between the spaces (4) and (5).
Exponential and trigonometric splines allow for an exact representation of conic sections as well as some transcendental

curves (helix, cycloid, . . . ). They are very attractive from the geometrical point of view. Indeed, in contrast with NURBS, they
are able to provide parameterizations of conic sections with respect to the arc length so that equally spaced points in the
parameter domain correspond to equally spaced points on the described curve.

For fixed values of the involved parameters, the spaces (4) and (5) have the same approximation power as Pp, see
[42, Section 3].

2.2. GB-splines: definition and properties

It is well known that it is possible to construct B-spline-like functions with sections in spaces as in (3), see [38,43,44] and
references therein. The so-called generalized B-splines (GB-splines) of degree p, defined over the knot sequence (1), will be
denoted by N (p)

i,Ξ . To simplify the notation we omit the reference to the section spaces (3), even though this would be more
appropriate. More precisely, we assume that

Ui, Vi ∈ Cp−1
[ξi, ξi+1],

and that any non-trivial element in ⟨U (p−1)
i , V (p−1)

i ⟩ has at most one zero in [ξi, ξi+1]. Thus, without loss of generality we
may assume that

U (p−1)
i (ξi) > 0, U (p−1)

i (ξi+1) = 0, V (p−1)
i (ξi) = 0, V (p−1)

i (ξi+1) > 0.

GB-splines can then be defined by means of the following recurrence relation:

N (1)
i,Ξ (t) :=



V (p−1)
i (t)

V (p−1)
i (ξi+1)

, if t ∈ [ξi, ξi+1),

U (p−1)
i+1 (t)

U (p−1)
i+1 (ξi+1)

, if t ∈ [ξi+1, ξi+2),

0, elsewhere,

and

N (p)
i,Ξ (t) := δ

(p−1)
i,Ξ

 t

−∞

N (p−1)
i,Ξ (s)ds − δ

(p−1)
i+1,Ξ

 t

−∞

N (p−1)
i+1,Ξ (s)ds, p ≥ 2,

where

δ
(p)
i,Ξ :=

1
+∞

−∞
N (p)

i,Ξ (s)ds
,
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Fig. 1. GB-splineN (1)
i,Ξ with knot sequence Ξ = {0, 1, 2}. Left: The classical polynomial case. Right: The exponential case with αi = 5.

Fig. 2. Examples of GB-splines of degree 3 defined on the knot sequence Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}. Top: Trigonometric B-splines with
αi =

2
3π (left) and αi = 3π (right). Bottom: Exponential B-splines with αi = 3 (left) and αi = 50 (right).

and fractions with zero denominators are considered to be zero. The knot sequence (1) allows us to define m GB-splines
of degree p, namely N (p)

1,Ξ , . . . ,N (p)
m,Ξ . Two GB-splines of degree 1 are depicted in Fig. 1, and some sets of cubic generalized

B-splines are illustrated in Fig. 2.
Generalized B-splines possess all desirable properties of classical polynomial B-splines [43,45]. We collect them in the

following proposition.

Proposition 1. Let N (p)
i,Ξ , i = 1, . . . ,m, be generalized B-splines of degree p ≥ 2 associated with the knot sequence (1). Then, the

following properties hold:

• piecewise structure:N (p)
i,Ξ (t) ∈ P

Uj,Vj
p , t ∈ [ξj, ξj+1);

• positivity:N (p)
i,Ξ (t) ≥ 0;

• partition of unity:
m

i=1
N (p)

i,Ξ (t) ≡ 1, t ∈ [ξp+1, ξm+1);

• compact support:N (p)
i,Ξ (t) = 0, t ∉ [ξi, ξi+p+1];

• smoothness:N (p)
i,Ξ (t) is p − ρj times continuously differentiable at ξj being ρj the multiplicity of ξj in the knot sequence;

• local linear independence:N (p)
i−p,Ξ (t), . . . ,N (p)

i−1,Ξ (t),N (p)
i,Ξ (t) are linearly independent on [ξi, ξi+1).

In addition, a knot insertion procedure is also available, see [44], and the spaces (3) support a degree-raising process.
Therefore, refinement strategies of common use in IgA based on NURBS (h, p, and k-refinement [2]) can be easily extended
to IgA based on GB-splines.

In what follows we assume that, for p ≥ 3, each internal knot has at most multiplicity ρj, with

ρj ≤ p − 2, j = p + 2, . . . ,m. (6)
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Therefore, the corresponding GB-splines are at least C2 continuous in

(ξp+1, ξm+1) = (0, 1),

as required for the discretization of a second-order differential problem in strong form via a collocation approach. In the case
p = 2, we assume that each internal knot has multiplicity 1 and Ui, Vi ∈ Cp

[ξi, ξi+1], so that the corresponding GB-splines
are C1 continuous in (ξp+1, ξm+1) = (0, 1) but of class C2 in (ξi, ξi+1). Similarly to the polynomial case with p = 2, such a
configuration ensures a sufficient smoothness of the basis functions because the collocation points will be selected in the
interior of the knot intervals (see later).

The space spanned by a fixed set of GB-splines will be referred to as generalized spline space and denoted by GSp
Ξ , i.e.,

GSp
Ξ := ⟨N (p)

i,Ξ , i = 1, . . . ,m⟩.

For a given degree p and a fixed knot sequence Ξ , GB-splines with section spaces as in (4) and (5) will be referred to as
exponential and trigonometric B-splines of degree p, respectively. We will denote by

ESp
Ξ ,α, TSp

Ξ ,α, Sp
Ξ

the spaces spanned by exponential, trigonometric and classical (polynomial) B-splines of degree p, respectively. Here
α = {. . . , αi, . . .} stands for the set of real parameters in (4) and (5). The spaces ESp

Ξ ,α, TSp
Ξ ,α are called exponential and

trigonometric spline spaces, respectively. For notational convenience we will denote by

{N (p)
i,Ξ ,E, i = 1, . . . ,m}, {N (p)

i,Ξ ,T, i = 1, . . . ,m}, {N (p)
i,Ξ , i = 1, . . . ,m}

the corresponding (generalized) B-spline bases.
It is interesting to notice that

d
dt

⟨1, t, . . . , tp−2, exp(αit), exp(−αit)⟩ = ⟨1, t, . . . , tp−3, exp(αit), exp(−αit)⟩,

d
dt

⟨1, t, . . . , tp−2, cos(αit), sin(αit)⟩ = ⟨1, t, . . . , tp−3, cos(αit), sin(αit)⟩,

so the differential operator acts on trigonometric and exponential splines in the sameway as on classical polynomial splines.
Hence, by taking into account (6) we have

d
dt

ESp
Ξ ,α = ESp−1

Ξ ,α,
d
dt

TSp
Ξ ,α = TSp−1

Ξ ,α,
d
dt

Sp
Ξ ,α = Sp−1

Ξ ,α, p ≥ 2. (7)

NURBS do not possess a property like (7). This property makes the structural similarity between exponential, trigonometric
and polynomial splines even stronger.

Exponential and trigonometric B-splines approach polynomial B-splines as the parameters αi tend to zero. The same is
true if, for fixed values of αi, the length of the intervals ξi+1 − ξi tends to zero.

The section spaces in (3) may be different on each interval. Thus, GB-splines allow for an exact representation of profiles
composed by a sequence of curve segments of different kind: Arcs of ellipses, hyperbolas, polynomial curves, etc.

Multivariate versions of the above spaces can be obtained straightforwardly by the usual tensor-product approach. Of
course, univariate spaces of different kind can be considered in the different directions.

3. IgA collocation in 1D

In this section, following the presentation of [13], we introduce the basic ideas of IgA collocation in a very simple 1D
setting. The presentation is general and any approximation space guaranteeing theminimumrequired regularity can be used
in principle. However, we herein focus only on GB-splines. In this framework, we discuss three different possible choices of
collocation points. We then conclude the section presenting some numerical tests.

3.1. Formulation

Let f , β, γ be real functions in C0
[a, b], with a < b given real numbers. Let g0, g1 ∈ R be scalars and BC0, BC1 : C1

[a, b]
→ R be linear operators. The following simple 1D model problem is considered: Find a real function u ∈ C2

[a, b] such that
−u′′(x) + β(x)u′(x) + γ (x)u(x) = f (x), ∀x ∈ (a, b),
BC i(u) = gi, i = 0, 1, (8)

where u′, u′′ represent the first and second derivatives of u, respectively. We assume that (8) has one and only one solution
u, and that the boundary condition operators BC i are linearly independent on P1, i.e., on the space of linear functions.
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Wenowwant to discretize the problem in (8) via IgA collocation. Given n ∈ N, letVM
⊂ C2

[a, b] be a spline space (which
could be, e.g., a space of GB-splines or NURBS) of dimensionM := n+ 2 on the interval [a, b]. Given n+ 2 collocation points
in [a, b], a = τ1 < τ2 < · · · < τn+2 = b, we obtain the following discrete problem: Find uM ∈ VM such that

−u′′

M(τj) + β(τj)u′

M(τj) + γ (τj)uM(τj) = f (τj), j = 2, . . . , n + 1,
BC i(uM) = gi, i = 0, 1. (9)

In this work we consider VM
⊂ C2

[a, b] to be a proper GB-spline space GSp
Ξ of dimensionM = n + 2.1

3.2. Collocation points and theoretical results

The discrete problem (9) is defined once a strategy for the selection of the collocation points is set. Such a selection is of
paramount importance, because it directly influences the stability and convergence properties of the collocation scheme. In
this section we summarize themain results concerning the selection of the collocation points in NURBS-based IgA, and then
we briefly discuss the choice of the collocation points in the generalized B-spline context.

3.2.1. Collocation points in the NURBS context
In NURBS-based IgA collocation literature, (the images of)2 the so-called Greville abscissae have been widely adopted as

the default choice, given their simple definition and good results from a practical point of view in virtually every situation.
The Greville abscissae corresponding to the space Sp

Ξ , p ≥ 1, are defined from the knot vector Ξ in (1) as averages of
consecutive knots, namely [45]

ξ
(p)
i,∗ :=

ξi+1 + · · · + ξi+p

p
, i = 1, . . . ,m. (10)

They are well known in the CAD and approximation literature for a number of properties. In particular, they typically give
a stable interpolation, except in some cases where high degrees are combined with particular non-uniform meshes. On the
other hand, the so-called Demko abscissae are instead proven to be always stable [46]. The (images of the) second derivative
Demko abscissae have been proven to be the best choice as collocation points [13]. Nevertheless, they are not used in practice
because they do not possess a simple explicit expression but they have to be computed by an iterative algorithm.

The selection of points guaranteeing a stable interpolation is a fundamental issue for a collocation scheme, since it
is proven in [13] that this implies optimal convergence (i.e., of order p − 1) in the W 2,∞-norm (or, equivalently, in the
H2-norm). Such a proof is valid only in 1D and cannot be extended to higher dimensions. However, extensive numerical
testing has shown that the convergence rates obtained in 1D are attained also in higher dimensions.

Moreover, optimal convergence rates are not recovered in the L∞- and W 1,∞-norms (or, equivalently, in the L2- and
H1-norms), where it has been numerically shown that, in the context of NURBS-based IgA collocation, orders of convergence
p and p − 1 for even and odd degrees, respectively, are attained. We remark that, despite not being optimal in the L2- and
H1-norms, the obtained orders of convergence are increasing with p, and the cost of collocation is much lower than that of
Galerkin approaches of the same order, especially as p increases. This makes IgA collocation very competitive with respect
to Galerkin on the basis of an accuracy-to-computational-cost ratio, in particular when higher degrees (e.g., p > 3) are
adopted. For more details we refer the reader to the comprehensive study reported in [15].

3.2.2. Collocation points in the GB-spline context
Moving from NURBS-based IgA collocation results to the framework of GB-splines, we consider three sets of points as

possible candidates to be collocation sites, namely standard B-spline Greville, GB-spline Greville, and GB-spline Demko
abscissae. The two latter choices are discussed in the following.

We first recall that the Greville abscissae corresponding to Sp
Ξ , p ≥ 1, are determined as the coefficients of the identity

function when expressed in terms of the B-spline basis {N (p)
i,Ξ , i = 1, . . . ,m} on the interval [ξp+1, ξm+1). From this, relation

(10) is easily derived [45].
Greville abscissae can be also defined in generalized spline spaces as the coefficients of the identity function t represented

in the GB-spline basis {N (p)
i,Ξ , i = 1, . . . ,m} on the interval [ξp+1, ξm+1). From (3) it follows that, in general, t ∈ GSp

Ξ on the
interval [ξp+1, ξm+1) only if p ≥ 3. Therefore, it makes sense to look for Greville abscissae in the space of generalized splines
only if p ≥ 3. The expression of the Greville abscissae related to cubic generalized B-splines (i.e., p = 3) with general section
spaces can be found in [47, Section 3]. More precisely, they are given by the values of the first component of the vector in

1 In some numerical tests we will also consider quadratic spaces (p = 2), namely GS2
Ξ . The elements in these spaces are not C2 but possess a sufficient

smoothness at the collocation points whenever the collocation points are selected in the interior of each knot interval, see Section 2.
2 The general IgA approach involves a geometry map G (see Section 4), and we are referring to the image through this map. In the 1D setting, however,

the geometry map is not so crucial, so we postpone some details to the multivariate setting.
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Eq. (22) in the mentioned paper. For trigonometric and exponential B-splines defined on the (extended) equally spaced
knots

ξ1 = · · · = ξp+1 < ξp+2 < · · · < ξm < ξm+1 = · · · = ξm+p+1,

ξk+1 := ξk + h, k = p + 1, . . . ,m,
(11)

with p = 3, the abovementioned formulas can be simplified as follows. For the cubic trigonometric spline space TS3
Ξ ,α with

αi = α and knots as in (11), the corresponding Greville abscissae are

ξ
(3)
1,∗,T := ξ4,

ξ
(3)
2,∗,T := ξ4 +

hα − sin(hα)

hα(1 − cos(hα))
h,

ξ
(3)
k,∗,T := ξk+2, k = 3, . . . ,m − 2,

ξ
(3)
m−1,∗,T := ξm+1 −

hα − sin(hα)

hα(1 − cos(hα))
h,

ξ
(3)
m,∗,T := ξm+1.

(12)

For the cubic exponential spline space ES3
Ξ ,α with αi = α and knots as in (11), the corresponding Greville abscissae are

ξ
(3)
1,∗,E := ξ4,

ξ
(3)
2,∗,E := ξ4 +

hα − sinh(hα)

hα(1 − cosh(hα))
h,

ξ
(3)
k,∗,E := ξk+2, k = 3, . . . ,m − 2,

ξ
(3)
m−1,∗,E := ξm+1 −

hα − sinh(hα)

hα(1 − cosh(hα))
h,

ξ
(3)
m,∗,E := ξm+1.

(13)

Explicit expressions for the Greville abscissae related to exponential or trigonometric spline spaces of higher degree can be
computed aswell. However, asmentioned in Section 2.2, it follows that they approach (10)when themeshsize tends to zero.
Therefore, the Greville abscissae related to (polynomial) B-splines can be also used as collocation points for exponential or
trigonometric splines of the same degree whenever sufficiently fine grids are considered.

Let us now focus on the Demko abscissae. We recall from [13] that the only collocation choice in the B-spline case which
is proven to be stable for any mesh and degree is the one proposed by Demko [46]. The so-called Demko abscissae are the
points where the Chebyshev spline attains its extrema. The Chebyshev spline is the (polynomial) spline with the maximum
number of oscillations, for which the extrema take the values ±1 (see, e.g., [45, Chapter XIII]). Demko abscissae can be also
defined for generalized spline spaces in the same way, and for their computation one can use a similar iterative algorithm
as the one proposed for B-splines in [45, Chapter XIII]. The arguments used in [13] to prove the stability of the collocation
method can be easily extended from the B-spline to the GB-spline context. If we consider the trigonometric spline space
TSp

Ξ ,α or the exponential spline space ESp
Ξ ,α as discretization space to solve problem (9), then we obtain a stable set of

collocation points by taking the Demko points related to the space TSp−2
Ξ ,α or ESp−2

Ξ ,α of second derivatives of TSp
Ξ ,α or ESp

Ξ ,α,
respectively (see (7)).

In Fig. 3 we illustrate different choices of point sets in the GB-spline context. In particular, for the GB-spline bases given
in Fig. 2, we show the corresponding Greville abscissae (△) and the Demko abscissae (▽). For comparison purposes, we also
depict the standard B-splineGreville abscissae (�).We see that the different sets of points behave very similarly. The B-spline
Greville abscissae are the easiest to compute, whereas the GB-spline Demko abscissae have the highest computational cost.
Finally, the Chebyshev splines in the corresponding GB-spline spaces are shown in Fig. 4.

3.3. Numerical results

We now present some numerical experiments in 1D where we employ IgA collocation methods based on trigonometric
B-splines of different degrees. Our aim is to verify the performance of the methods in terms of convergence rates and
compare the behavior of the three sets of collocation points presented in the previous section, i.e., standard B-spline Greville,
GB-spline Greville, and GB-spline second-derivative Demko abscissae.3

3 Following [13], in our 1D numerical tests we have not included results for p = 2, since this case is not covered by the theory presented in that paper.
Moreover, we note that p = 2 could be chosen only in the case of standard B-spline Greville abscissae, while, in the other cases, p ≥ 3 is indeed needed (see
the discussion in Section 3.2.2). On the other hand, in the 2D numerical tests presented in the following section, where we choose to collocate at standard
B-spline Greville abscissae, we show results for p ≥ 2.
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Fig. 3. Examples of sets of collocation points related to GB-splines of degree 3 defined on the knot sequence Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}. We
compare the B-spline Greville abscissae, the GB-spline Greville abscissae, and the GB-spline Demko abscissae. Top: Trigonometric B-splines with αi =

2
3π

(left) and αi = 3π (right). Bottom: Exponential B-splines with αi = 3 (left) and αi = 50 (right).

Fig. 4. Chebyshev splines related to GB-spline spaces of degree 3 defined on the knot sequence Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}. Top:
Trigonometric splines with αi =

2
3π (left) and αi = 3π (right). Bottom: Exponential splines with αi = 3 (left) and αi = 50 (right).

3.3.1. 1D model problem
We consider the following model problem defined on [0, 1]:

−u′′
+ u′

+ u = (1 + 4π2) sin(2πx) − 2π cos(2πx), ∀x ∈ (0, 1),
u(0) = u(1) = 0, (14)

with exact solution:

u(x) = sin(2πx). (15)

This problem is numerically solved using the collocation method outlined in the previous sections in the space TSp
Ξ ,α

of trigonometric splines with αi = 3π and knots as in (11), for different degrees and different choices of the collocation
points. In Fig. 5, we report log-scale plots of the relative errors, for the different sets of collocation points, in both L∞- and
W 1,∞-norms. The obtained results show that – just like with NURBS-based IgA collocation – in both norms, an order of
convergence p is attained for even degrees, while an order p − 1 is attained for odd degrees.
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Fig. 5. 1D model problem. Relative error in L∞-norm (left) and W 1,∞-norm (right) using trigonometric B-splines with αi = 3π and p = 3, . . . , 7. Top:
Collocation at standard B-spline Greville abscissae. Middle: Collocation at GB-spline Greville abscissae. Bottom: Collocation at GB-spline second-derivative
Demko abscissae.

In theW 2,∞-norm (see Fig. 6), instead,we observe the expected optimal order of convergence, i.e., p−1, for all considered
approximation degrees in agreement with the theoretical predictions of [13].

3.3.2. 1D eigenvalue problem
A remarkable result of Galerkin-based IgA is its capability of approximating higher modes, without introducing spurious

‘‘optical branches’’ in the numerical spectrum (see, e.g., [48–51]). The same feature is present also in IgA collocation, as it
has been shown in [13] in the context of NURBS-based approximations. Wewant to show that this feature also occurs in the
case of GB-splines. To this end, we consider the following 1D eigenvalue problem:

u′′
+ ω2u = 0, ∀x ∈ (0, 1),

u(0) = u(1) = 0, (16)

for which the exact frequencies ωl are given by

ωl = π l, with l = 1, 2, 3, . . . (17)

The problem in (16) is solved using IgA collocation in the space of trigonometric B-splines with knots as in (11) and
considering standard B-spline Greville abscissae as collocation points. In Fig. 7, we report the results in terms of normalized
discrete spectra in the space TSp

Ξ ,α with αi = 3π , obtained by considering a linear parameterization and using different
degrees of approximation (we have used n = 1000, see Section 3.1, to produce each spectrum).We clearly observe the good
behavior of all spectra, which converge for an increasing degree. Similarly to IgA Galerkin/collocation based on polynomial
B-splines, few ‘‘outlier frequencies’’ can be seen at the end of the spectrum. For more details on this and other aspects of
spectrum analysis via IgA Galerkin or collocation methods, the reader is referred to [13,48–51].

Since we are using a quite fine discretization (the length of any knot span is about 10−3), trigonometric B-splines with
αi = 3π basically behave like classical polynomial B-splines (see Section 2.2). This is in a perfect agreement with the
numerical results shown in Fig. 7, which are completely analogous to those obtained in the polynomial B-spline case (see
[13, Figure 14] for a comparison).
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Fig. 6. 1D model problem. Relative error in W 2,∞-norm using trigonometric B-splines with αi = 3π and p = 3, . . . , 7. Top: Collocation at standard
B-spline Greville abscissae. Middle: Collocation at GB-spline Greville abscissae. Bottom: Collocation at GB-spline second-derivative Demko abscissae.

Fig. 7. 1D eigenvalue problem. Normalized spectra using trigonometric B-splines with αi = 3π and p = 3, . . . , 7. Collocation is performed at standard
B-spline Greville abscissae.

On the other hand, an improvement of the normalized discrete spectra can be obtained by using high frequency values
for α in the approximating trigonometric space TSp

Ξ ,α, mainly for large degrees. In Fig. 8 we compare, for p = 7, . . . , 10,
the normalized discrete spectra obtained by using polynomial splines with those provided by trigonometric splines with
parameters αi selected according to the following heuristic rule:

αi =
p

p + 4
πn. (18)

Again, we have used n = 1000 to produce each spectrum.We observe that the gain obtained by using high frequency section
spaces is twofold. First, a larger subset of the exact spectrum is approximated in a very goodway. Second, the peak of the error
in the approximation is reduced, while the number of outliers remains the same. This can be roughly explained by the fact
that when considering trigonometric splines with very high frequencies there is a better match between the approximation
and the real solution of the problem, exactly in those regions (high frequencies)where classical polynomial B-splines present
less appealing performance.



C. Manni et al. / Computers and Mathematics with Applications 70 (2015) 1659–1675 1669

Fig. 8. 1D eigenvalue problem. Normalized spectra using polynomial B-splines (red) and trigonometric B-splines (blue) with αi selected according to (18).
Top: p = 7 (left) and p = 8 (right); bottom: p = 9 (left) and p = 10 (right). Collocation is performed at standard B-spline Greville abscissae.

We finally remark that, when collocation is performed at GB-spline Greville or Demko abscissae, completely similar
spectral results are obtained. The corresponding plots are not reported here for the sake of brevity.

4. IgA collocation for multi-dimensional scalar- and vector-valued problems

In this section, we extend the previously introduced IgA collocation methods to the multi-dimensional case, considering
first advection–diffusion as a scalar-valued model problem, and then resorting to linear elasticity as a vector-valued model
problem. Accordingly, in the following, we present the basic equations of both model problems and we approximate them
via IgA collocation methods. In both cases, we implement IgA collocation using GB-splines and standard Greville abscissae,
and we solve some numerical examples in 2D showing the good overall behavior, as well as some clear advantages, of
GB-splines in the context of IgA collocation.

4.1. IgA collocation for advection–diffusion: formulation

Let us consider the following advection–diffusion problem defined on a domain Ω ⊂ Rd:

− ∇ · (κ∇u) + β · ∇u = f , in Ω, (19)

complemented by the Dirichlet boundary conditions

u = gD, on ΓD, (20)

and by the Neumann boundary conditions

κ∇u · n = gN , on ΓN . (21)

In the equations above, u(x) is the unknown field (x being the position vector), ∇ is the standard nabla operator, Γ =

ΓD


ΓN is the boundary of the domain, with ΓD


ΓN = ∅, and n is the unit outward normal to Γ . Moreover, κ and β are a
scalar and a vector parameter function, respectively. Finally, suitable regularity requirements are assumed to hold for f , gD,
and gN .

Isogeometric collocation emanates from the combination of the isogeometric technology and the classical collocation
method. More precisely, let

{ϕ̂1, . . . , ϕ̂M} (22)

be a set of basis functions defined on Ω := [0, 1]d, such that the physical domain Ω in (19) can be described by a global
geometry function,

G : Ω → Ω, G(t) :=

M
i=1

ϕ̂i(t) ci, ci ∈ Rd, t ∈ Ω. (23)
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We assume that the map G is invertible in Ω and G(∂Ω) = ∂Ω .
Following the isoparametric approach, we consider the approximation space VM spanned by

ϕi(x) := ϕ̂i(G−1(x)) = ϕ̂i(t), i = 1, . . . ,M, x = G(t). (24)

In the original formulation of IgA the functions ϕ̂i in (24) are chosen to be tensor-product NURBS. Here, we consider as dis-
cretization spaces the tensor-product generalized spline spaces described in Section 2. Therefore, we seek an approximation
uM to the unknown exact solution field u of the advection–diffusion problem in the form

uM =

M
i=1

ϕi(x)ūi =

M
i=1

ϕ̂i

G−1(x)


ūi, (25)

where ϕ̂i, i = 1, . . . ,M , are tensor-product GB-splines and ū1, . . . , ūM are the unknown coefficients. Expression (25) has to
be substituted into Eqs. (19)–(21).

Let us assume that d = 2.We denote bym1 andm2 the number of degrees of freedom in the two parametric directions, so
thatM := m1m2 is the total number of degrees of freedom. Thus,M scalar equations are needed to determine the unknown
coefficients. We chooseM collocation points τkl, k = {1, . . . ,m1} , l = {1, . . . ,m2} given by

τkl := G(τ̂kl), (26)

where τ̂kl are a set of M collocation points in the parametric domain Ω; for example, tensor-products of B-spline Greville
abscissae in both directions as defined in (10). The collocation points for k = 1,m1 and l = 1,m2 are assumed to be located
at the boundary Γ . Separate sets of equations are taken for the patch interior and for the boundaries.

In the patch interior Ω , we obtain (m1 − 2) (m2 − 2) scalar equations by collocating equation (32) at the points τkl, k =

{2, . . . ,m1 − 1} , l = {2, . . . ,m2 − 1}:

[−∇ · (κ∇uM) + β · ∇uM − f ] (τkl) = 0, τkl ∈ Ω. (27)

At the Dirichlet boundary ΓD we impose

uM (τkl) = gD (τkl) , τkl ∈ ΓD. (28)

Thanks to the properties of the (G)B-splines associated with the knot sequence (2), the above equations can be separated
from the rest of the resulting linear system.4

To enforce Neumann boundary conditions, Eq. (21) is collocated at the points τkl ∈ ΓN . A distinction is necessary between
the collocation points located at the edges (k = 1,m1 and l = 2, . . . ,m2 − 1, or l = 1,m2 and k = 2, . . . ,m1 − 1), and
those located at the corners of the domain (k = 1,m1 and l = 1,m2). For collocation points located on edges within the
Neumann boundary, the equations are

[κ∇uM · n − gN ] (τkl) = 0, τkl ∈ edge ⊂ ΓN . (29)

Instead, for collocation points located at corners where two Neumann boundaries meet, it has been proven in [16] (in the
context of elasticity) that the appropriate equations are

κ∇uM · nL
− gL

N


(τkl) +


κ∇uM · nR

− gR
N


(τkl) = 0, τkl ≡ corner ⊂ ΓN , (30)

where nL and nR are the unit outward normals of the edges meeting at the corner, and gL
N and gR

N are the respective values
of the Neumann boundary conditions.

4.2. IgA collocation for advection–diffusion: numerical results

To numerically test the formulation described above, we consider two advection–diffusion problems, one featuring a
manufactured smooth solution over amapped geometry, and the other presenting sharp boundary layers. The first example
aims at showing that the convergence rates observed in 1D are attained also in higher dimensions, as it was presented in
the context of B-splines and NURBS in previous works on IgA collocation (see, e.g., [13,15,16]). The second example aims at
showing that, aswe stressed in the introduction, GB-splines can provide a gain from the accuracy point of view in comparison
with polynomial B-splines andNURBSwhenever the section spaces canbe selected according to a problem-oriented strategy.

4 The coefficients in (25) not determined by (28) will be referred to as the ‘‘internal coefficients’’ and the corresponding number of degrees of freedom as
the ‘‘internal degrees of freedom’’. We wish to highlight that, like in the case of Galerkin-based IgA, Dirichlet boundary conditions can be strongly enforced
exactly, only when gD can be exactly represented in terms of the shape functions (i.e., GB-splines here). Fortunately, this happens to be the case in many
engineering applications, where constant or linear Dirichlet conditions are typically enforced. We also remark that, for homogeneous Dirichlet boundary
conditions, isogeometric elements have double zeros at the domain corners.
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Fig. 9. Problem domain: Quarter of an annulus.

Fig. 10. Advection–diffusion on a quarter of an annulus. Relative errors in L2-norm versus the square root of the number of degrees of freedom n =
√
M

for different degrees. Collocation is performed at standard tensor-product B-spline Greville abscissae, using a tensor-product of polynomial B-splines and
trigonometric B-splines with αi = π/2 and p = q = 2, . . . , 7.

4.2.1. IgA collocation for an advection–diffusion problem on a quarter of an annulus
In this example we consider a 2D domain constituted by a quarter of an annulus, as sketched in Fig. 9, with internal

and external radii equal to R1 = 1 and R2 = 4, respectively. The domain can be exactly represented by a single tensor-
product spline patch, using a polynomial spline of degree p ≥ 1 in one parametric direction and a trigonometric spline of
degree q ≥ 2 with αi = π/2 in the other parametric direction. The whole domain boundary is assumed to be subjected to
homogeneous Dirichlet boundary conditions, and we assign a manufactured solution, namely

u(x, y) = exxy(x2 + y2 − 1)(x2 + y2 − 16). (31)

Such a manufactured solution satisfies the prescribed boundary conditions, and the right-hand side f is computed from it
using Eq. (19). The parameters are assumed to be κ = 1 and β = [1, 1]T .

The problem is solved by IgA collocation using, within a classical isoparametric framework, a tensor-product of poly-
nomial B-splines of degree p and trigonometric B-splines of degree q, with αi = π/2 and equally spaced knots as in (11).
Standard tensor-product B-spline Greville abscissae are considered as collocation points. In Fig. 10 we present the results
for degrees p = q = 2, . . . , 7 in terms of relative errors of u in the L2-norm versus the square root of the total number of
degrees of freedom n =

√
M . It can be seen that the convergence rates already observed in the 1D case (i.e., p and p − 1 for

even and odd degree p, respectively) are attained.

4.2.2. IgA collocation for an advection–diffusion problem on the unit square with boundary layers
As a second test we consider a 2D advection–diffusion problem described in [10]. We consider problem (19) where

the parameters are assumed to be κ = 10−3 and β = [1, 0]T , while the right-hand side has a constant value f = 1.
Homogeneous Dirichlet boundary conditions are applied to the entire boundary of the problem domain, which is the unit
square [0, 1]2. The exact solution of such a problem is a ramp of unit slope along the x-axis, showing two layers at y = 0
and y = 1, and a third, sharper layer at x = 1.

This problem is solved by IgA collocation considering both tensor-product polynomial B-splines and tensor-product
exponential B-splines. In both cases we use standard tensor-product B-spline Greville abscissae as collocation points and
we consider a uniform knot distribution as in (11). For the exponential B-splines we choose the parameter αi to be equal to
the global Péclet number, i.e., αi = Peg = ∥β∥/κ = 103. In Figs. 11 and 12 we present some results for degrees p = q = 4
and different choices of uniform knot distributions. We can see that, as expected, classical (polynomial) B-splines lead to
spurious oscillations until the discretization is fine enough to resolve the boundary layers. A discretization consisting of
300×300 internal degrees of freedom (i.e., 302×302 in total) is needed to get a solution where the oscillations (indeed still
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Fig. 11. Advection–diffusion on the unit square. Contour plots of the numerical solution field uM . Collocation is performed at standard tensor-product
B-spline Greville abscissae, using p = q = 4 and standard tensor-product B-splines (top, left: 10 × 10 internal degrees of freedom; top, right: 50 × 50;
bottom, left: 100 × 100; bottom, right: 300 × 300).

Fig. 12. Advection–diffusion on the unit square. Contour plots of the numerical solution field uM . Collocation is performed at standard tensor-product
B-spline Greville abscissae, using p = q = 4 and tensor-product exponential B-splines with αi = Peg = ∥β∥/κ = 103 (left: 10 × 10 internal degrees of
freedom; right: 50 × 50).

present) are negligible in the ‘‘eyeball norm’’. Instead, with exponential B-splines and the adopted selection of the parameter
αi, already a very coarse discretization (with 10× 10 internal degrees of freedom) leads to acceptable results. However, we
notice that in this case the two boundary layers at y = 0 and y = 1 appear to be too sharp, as comparedwith the behavior of
the B-spline case with 300× 300 internal degrees of freedom. A less coarse discretization (with 50× 50 internal degrees of
freedom) gives a solution that, in practice, cannot be distinguished from the 300× 300 B-spline case. Moreover, we remark
that, in contrast with the 300 × 300 B-spline discretization, no oscillations (not even very small) are observed in this case.

4.3. IgA collocation for linear elasticity: formulation

Let now Ω ⊂ Rd represent an elastic body subjected to body forces f, to prescribed displacements gD on a portion of the
boundary ΓD, and to (possibly zero) prescribed tractions gN on the remaining portion ΓN , being Γ = ΓD


ΓN the boundary

of the domain, with ΓD


ΓN = ∅. Suitable regularity requirements are assumed to hold for f, gD, and gN .
The small-strain linear elastostatic problem in strong form is then defined as

− ∇ ·

C∇

Su


= f, in Ω, (32)

complemented by the Dirichlet boundary conditions

u = gD, on ΓD, (33)

and by the Neumann boundary conditions
C∇

Su

· n = gN , on ΓN , (34)
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where u(x) is the unknown displacement field (x being the position vector), ∇S is the symmetric part of the standard nabla
operator, C is the fourth-order elasticity tensor, and n is the unit outward normal to the boundary of the domain.

The construction of the IgA collocationmethod is completely analogous to the one described in Section 4.1, in the context
of scalar-valued problems. Using the isoparametric approach, we seek an approximation uM to the unknown exact solution
field u of the elastic problem in the form

uM =

M
i=1

ϕ̂i

G−1(x)


ūi, (35)

where ϕ̂i, i = 1, . . . ,M , are the tensor-product GB-splines which, following the isoparametric paradigm, are also used to
represent the geometry of the problem. The unknown vectors ūi ∈ Rd will be referred to as displacement coefficients. Then,
expression (35) has to be substituted into Eqs. (32)–(34).

Let us assume that d = 2. We denote bym1 andm2 the number of basis functions in the two parametric directions. Then
M = m1m2 is the total number of unknown coefficients per displacement component. Analogously to Section 4.1, we choose
M collocation points τkl, k = {1, . . . ,m1} , l = {1, . . . ,m2} located at the images of the tensor-product Greville abscissae
of the knot vectors. In this case, 2M scalar equations are needed to determine the displacement coefficients.

In the patch interior Ω , we obtain 2 (m1 − 2) (m2 − 2) scalar equations by collocating equation (32) at the points
τkl, k = {2, . . . ,m1 − 1} , l = {2, . . . ,m2 − 1}:

∇ ·

C∇

SuM

+ f


(τkl) = 0, τkl ∈ Ω. (36)

The Dirichlet and the Neumann boundaries are treated as in the scalar-valued case. In particular, to enforce Neumann
boundary conditions, equation (34) is collocated at the points τkl ∈ ΓN according to the following strategy, see [16]:

C∇
SuM


· n − gN


(τkl) = 0, τkl ∈ edge ⊂ ΓN . (37)

C∇
SuM


· nL

− gL
N


(τkl) +


C∇

SuM

· nR

− gR
N


(τkl) = 0, τkl ≡ corner ⊂ ΓN , (38)

where, again, nL and nR are the unit outward normals of the edges meeting at the corner, and gL
N and gR

N are the respective
imposed tractions. In addition, we refer the reader to [16] for a detailed discussion on the conditions to be imposed in more
complicate situations like at the interfaces of multi-patch geometries.

We highlight that, as it has been shown in [18], the above approach to impose Neumann boundary conditions may lead
to spurious oscillations in situations implying solutions of reduced regularity, when non-uniform meshes are adopted. In
such cases, alternative methods for imposing Neumann boundary conditions should be considered, and in the same paper
two simple strategies to cure this have been presented.

4.4. IgA collocation for linear elasticity: numerical results

To numerically test the formulation above, we consider a plane strain problem, defined on the same quarter of an annulus
as described in Section 4.2.1 and sketched in Fig. 9. Thewhole domain boundary is assumed to be clamped (i.e., homogeneous
Dirichlet boundary conditions are considered) and we assign the following manufactured solution in terms of displacement
components

u(x, y) = v(x, y) = exxy(x2 + y2 − 1)(x2 + y2 − 16). (39)

The manufactured solution satisfies the prescribed boundary conditions, and the load is computed from it by imposing
equilibrium.

The problem is solved by IgA collocation based on a tensor-product of polynomial B-splines of degree p and trigonometric
B-splines of degree q, with αi = π/2 and uniform knots as in (11). Standard tensor-product B-spline Greville abscissae are
taken as collocation points. Fig. 13 depicts the results for degrees p = q = 2, . . . , 7 in terms of the relative errors of the
first component of the displacement and of one component (σ11) of the stress in the L2-norm versus the square root of the
total number of control points n =

√
M . Similar convergence behaviors are obtained also for the other components. It can

be seen that, also here, the convergence rates already observed in the 1D case (Section 3.3) and in the advection–diffusion
case (Section 4.2) are attained.

5. Conclusions

We have introduced isogeometric collocation methods based on GB-splines and we have analyzed their performance
through numerical examples for univariate and multivariate scalar- and vector-valued problems. In particular, we have
focused on isogeometric collocation methods based on trigonometric and exponential generalized spline spaces because of
their relevance in practical applications.

As already pointed out for the isogeometric Galerkin approach, GB-splines can be a useful tool in isogeometric collocation
methods due to the following three main reasons:
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Fig. 13. Plane strain clamped quarter of an annulus. Error plots for the first component of the displacement (left) and for the stress σ11 (right) versus
n =

√
M , i.e., the square root of the total number of displacement coefficients. Collocation is performed at standard tensor-product B-spline Greville

abscissae, using a tensor-product of polynomial B-splines and trigonometric B-splines with αi = π/2 and p = q = 2, . . . , 7.

• GB-splines allow for exact and optimal (i.e., with respect to the arc length) parameterizations of geometries of salient
interest in applications. This deeply and positively affects the behavior of the geometry map constructed according to
the isoparametric approach.

• Section spaces of GB-splines can be selected according to a problem-oriented strategy. For example, exponential
generalized B-splines can be profitably used whenever the solution presents particular features like sharp layers.

• GB-splines have a structure which is completely similar to classical (polynomial) B-splines: This makes generalized
B-splines and (polynomial) B-splines plug-to-plug compatible from the implementation point of view.

According to the performed numerical experiments, IgA collocation methods based on trigonometric and exponential
B-splines show a convergence behavior similar to classical (polynomial) B-splines and NURBS whenever the section spaces
are selected without a specific relation with the problem to be solved. On the other hand, a gain from the accuracy point
of view is generally achieved whenever the section spaces can be selected according to a problem-oriented strategy, taking
into account the geometrical and/or analytical peculiar issues of the specific addressed problem.We finally highlight that in
this paper we focused only on single-patch geometries; however, extensions to conforming multi-patch geometries can be
easily implemented following [16]. Extensions tomore complex situations, involving, e.g., non-conformingmultiple patches
and/or trimming surfaces is a topic still to be addressed in the isogeometric collocation literature, and will be the topic of
future research in the context of both classical and generalized B-splines.
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