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Abstract—An algorithm for coupling SPH with an external
solution is presented. The external solution can be either another
SPH solution (possibly with different discretization) or a different
numerical solver or an analytical solution.

The interaction between the SPH solver and the external
solution is achieved through an interface region. The interface
region is defined as a fixed portion of the computational domain
that provides a boundary condition for the SPH solver. A ghost
fluid, composed by fully lagrangian particles (i.e. ghost particles)
covering the interface region, is used to impose the boundary
condition. The ghost particle evolution, including its position, is
integrated in time according to the field of the external solution.
The physical quantities of the ghost particles needed in the
integration scheme are obtained through an MLS interpolation
on the field of the external solution. When a ghost particle crosses
the boundary of the interface region, entering in the SPH domain,
it evolves according to the SPH governing equation.

The spatial distribution of the ghost particles can become
largely non-uniform due to the forcing by the external solution.
Thus, a packing algorithm is applied on the ghost particles in
the interface region, to guarantee a particle distribution suitable
for SPH operators. Since the ghost particles can exit from the
interface region, a seeding algorithm is needed to introduce new
ghost-particles.

The algorithm is tested on several benchmarks and with the
external solutions given by other SPH solvers with different
discretizations and by analytical solutions. The technique is
deeply investigated in terms of accuracy, efficiency and possible
applications. Finally a coupled simulation involving a finite
volume solver is presented.

I. INTRODUCTION

Meshless methods and, among them, Smoothed Particle
Hydrodynamics (SPH) are nowadays well validated options in
order to tackle hydrodynamic problems. Some of their features
are equivalent to mesh based solvers, and the free surface
treatment results easier. One of the most important gaps to
bridge is the possibility to use different resolutions in the
same calculations. In mesh based methods, techniques as mesh
stretching or even multi-block techniques are widely used.
This concedes a consequent advantage to calculate boundary
layers or more generally in large computational domain.
Within the SPH framework, the equivalent to stretching, imple-
mented through a variable-h kernel formulation was introduced
by [1] (see also [2]). The kernel size evolves along the domain
together with the particle size. The technique is interesting
for short simulations where there is no strong mixing, but
can lead to stability problems for numerical evolutions over a

larger time. A recent achievement is the splitting coalescing
scheme presented in [3] following the initial idea of [4] and
later study of [5]. Another interesting topic is the coupling of
numerical methods, often known as domain decomposition.
SPH has been coupled with mechanical model [6], FEM for
fluid structure interaction [7], some attempts have also been
made to couple with shallow water solution [8].

In the present paper a complete procedure is presented
to permit the interfacing of SPH with another numerical
solution. It aims to show the capability to divide the numerical
domain in subdomains solved by different numerical solvers.
This external - from the point of view of the single SPH
domain - solution can be either an other SPH calculation or
a result obtained with a different technique. This approach
theoretically allows full coupling with the external solution
and several tests are performed in this goal. Among those
the results of the coupling with a finite volume solver are
presented.

II. MODELING MULTI-DOMAIN INTERACTION IN SPH

The aim of the present work is to provide a full coupling of
the SPH solver with an external numerical solver. This means
that the solution coming from the external solver has to be used
as boundary condition of the SPH solver, and viceversa. The
transfer of the external solution to the SPH solver is achieved
through an interface region. The interface is defined as a region
(area) of the computational domain that provides a boundary
condition for the SPH solver imposed by an external solution.
The boundary conditions are imposed through the ghost fluid,
that is composed by fully lagrangian particles. They cover the
whole interface region and evolve according to the field given
by the external solution. Then the SPH solution is transferred
to the external solver through interpolation of the particle data
in a specular manner. The imposition of a generic boundary
condition given by an external solver requires the definition
and development of specific algorithms that allow for a general
representation of the fluid field in the interface region. In the
following sections some dedicated procedures are described.

A. Definition of the domain components

Consider a generic fluid domain D, delimited by a closed
boundary ∂B (see figure 1). The generic boundary ∂B can be
split into several parts, depending on the condition applied
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on each section. Some boundaries correspond to physical
boundaries as in the case of solid surfaces, and some others
are artificial boundaries added for numerical purposes (for
example, the fluid domain can be divided into several sub-
domains, the solution being given by different solvers in each
subdomain).

Each boundary section is either penetrable or non-penetrable
(fluid can cross or not the boundary). Non-penetrable bound-
aries are typically a no-slip U∂B = 0 or a free-slip wall
~U∂B · ~n = 0 whereas a penetrable boundary means that
there exists an incoming and/or outcoming flow with imposed
characteristics. For example, if the domain is divided in two
subdomains solved by different numerical solvers or using
different numerical parameters, the boundary between the
two subdomains is generally penetrable (~UD1

∂B = f(x, t) and
pD1
∂B = g(x, t)).
Different difficulties arise when enforcing a boundary con-

dition in an Eulerian framework or in a Lagrangian one. For
example, boundary condition for a free-surface can be treated
in a more easy way in a Lagrangian context. Conversely No-
slip and free-slip wall condition are not easy to impose in the
SPH context. The ghost fluid technique is a possible solution
(i.e. an extension of the fluid over the boundary) (see e.g. [9],
[10], [11]). The ghost fluid technique can be used also for
penetrable boundary condition, for example when enforcing
periodic condition of inflow and outflow of flow currents (see
e.g. [12]).

The coupling with an external solution using ghost fluid is
the object of the investigation that follows. This is performed
through an interface that is conceptually a region dedicated to
receiving communication from an outer solution.

Domain 

Interface I

Fig. 1. A generic fluid domain with a generic interface

A sketch of a generic multi-domain decomposition is shown
in figure 2. Some boundaries are solid surfaces, some other
are artificial boundaries that split the whole fluid domain,
D, in different subdomain D1 ∪ D2 ∪ D3. As depicted in
figure 2, overlapping between subdomains can be considered;
for example, a part of the boundary of D1 is inside D2 and
viceversa. As shown later, overlapping may be useful for an
easier design of the computational domain or for numerical

reasons.

Solid

Solid

Body

Domain 1

Domain 2

Domain 3

Fig. 2. A domain divided in three different subdomains.

B. Description of the numerical interface

As stated above, the interface is composed by a continuous
boundary and the associated ghost fluid region. A sketch of a
generic interface is presented in figure 3 for generic boundary
from point A to point B (∂BAB). The width of the ghost region
has to be larger than the radius of the interpolation kernel (2h
or 3h depending by the kernel function choice). A point in
the ghost region, closer to the boundary ∂BAB than any other
boundary, belongs to the interface connected to the boundary
∂BAB .

The ghost fluid regions need to be discretized with particles,
whose position can be fixed in space when considering solid
surfaces (as shown in [13]). In this case, the flow quantities
in the ghost fluid region are set depending on the boundary
condition involved using specific rules, as shown in [13] and
in [11].

Conversely, when the boundary ∂BAB is crossed by a
flow, the ghost particles can move with a prescribed time
law. For example, in the simulation of open channel flow
with inlet and outlet interfaces (see [12]), the boundary is
penetrable and the ghost-fluid particles move with the imposed
values. This allows mass transfer across the boundary and the
ghost particles are transformed in fluid particles when crossing
∂BAB , as well as real fluid particles need to become ghost
particles when entering through the interface.

Interface width 
>

Kernel radius 

Fluid Domain

A

B

Kernel radius

Ghost fluid

D

C

Fig. 3. Sketch of the interface
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C. Initialization of the computation

For each particle, a signed distance φk is evaluated from
each section of the k-th boundary (including the free surface).
All the boundaries are oriented in such a way that the fluid
region belongs to the right side; this allows to define a sign
to the φk function. When all the distance φk are positive,
the particle is assigned to the fluid. If one or more φk is
negative, the particle is associated to the interface connected to
the closest boundary. For those associated with an interface, if
their distance to the boundary is less than the width originally
set for the interface, Sk, they belong to the ghost fluid region;
conversely, they are kept as frozen particles. The particles
whose distance is larger than the sum of width Sk plus the
kernel radius are eliminated. This initial procedure allows also
to count the ghost particles that fill each interface region. The
frozen particles are kept attached to the interface during all the
calculation, but they are used only during the regularization
procedure (see section III-A). The sketch of a typical interface
is shown in figure 4.

Fluid Domain

A

B
Ghost fluid

D

C

Frozen 
particles

Fig. 4. Sketch of the interface with frozen particles used during the
regularization procedure (see section III-A)

III. DESCRIPTION OF THE COUPLING ALGORITHM

As described previously, the interfaces are characterized
by artificial boundary ∂BAB crossed by fluid when different
domains are coupled. In such a condition, the conservation
of mass and momentum (which is intrinsically satisfied in
the SPH scheme) need to be handled in a suitable manner,
as the fluxes of mass and momentum across the artificial
boundary are calculated accurately only if the sum of the
particle volumes matches exactly the volume of the interface
region. Furthermore, the ghost particles have to be distribuited
in a regular way to avoid depletions in the SPH interpolation
and inaccuracies of the differential operators. These two
requirements (correct mass/volume in the interface and an
homogeneous distribution of the particles) are not naturally
fulfilled in presence of mass fluxes. If more ghost particles
are transformed in fluid particles than viceversa, it leads
necessarily to a lack of particles in the interface (see figure
5).

In some specific cases, when fluxes across the artificial
boundary k have a periodic behaviour in time, it can be
sufficient to set the width of the k-th interface, Sk, large
enough to ensure that at least a strip of width equal to the

Fig. 5. Example where particles are missing in the interface because of the
lagrangian evolution.

kernel radius is always filled. In this way the particles would
go in and out the fluid domain without the need of performing
any operation on the ghost particles.

A. Control of the particle distribution in the interface through
seeding, removing and packing procedures

At each time step the distribution of particles is checked at
the different interfaces, and only when the spatial distribution
is correct, the scheme can advance to the interpolation and
integration procedure. The verification is achieved simply
by counting the ghost particles populating the interface and
comparing it to the number obtained originally during the
initialization procedure. If the variation of the particle number
is below a threshold of 2 − 5%, the interface is considered
correctly filled. More accurate criteria could be used (e.g. local
check of lack of mass through kernel summation) but it is
leaved for further investigation. In the general case, lack of
mass at the interfaces and spatial disorder develop in time
(as shown in figure 5) and three operations are needed to
recover particle distribution. The first operation is the seeding
of particles in the interface in case of lack of particles, the
second is the removing of particles when they leave the area of
interest behind the interface and the third is the regularization
of the updated set of ghost particles. For the seeding procedure,
if particles are missing, the number that has to be inserted in
the interface is evaluated. To this purpose, when the interface
is created, the whole interface region is filled with seed points
with spacing equal to the ghost particle size and distributed
on a cartesian lattice. Through the kernel based interpolation,
the density is calculated on the seed points and then they
are sorted by their density value. If n-particles are missing at
the interface, the first n-seed points are inserted as new ghost
particles. In figure 6, the interface is depicted after the seeding.
The particle removal is straightforward: at each time step if
any ghost particle in the interface move away to a distance
from the boundary larger than Sk, it is eliminated. After the
seeding/removal procedure the number of filling particles is
correct but their spatial distribution is not.

The spatial distribution of the particles has to be as homoge-
neous as possible. To this aim a packing procedure developed
in [14] is applied inside the interface when the particles have
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Fig. 6. Seeding of missing particles on carthesian grid. Packing will follow
for regularization.

to be regularized. This procedure requires the use of frozen
particles in order to enforce the boundary conditions. That
is the reason of keeping frozen particles (subsection II-C) in
each interface and, for the same reason, also the real fluid as
well as the ghost fluid particles of the neighbouring interfaces
are frozen during the packing procedure. An example of the
distribution of the particles after the packing procedure is
presented in figure 7. The packing procedure can implies a non
negligible increase of the computational cost. However, the
relative time with respect to the whole simulation reduces with
the resolution since this procedure involve only the boundaries
of the fluid domain. However, time optimisation of the packing
operation should be object of future investigation.

Fig. 7. Particles distribution after the seeding and packing. Interpolation and
time intergration will follow.

B. Data Interpolation for communication with an external
solution

With the procedure precedently described, the interfaces
are always filled with ghost particles regularly spaced. The
physical values of the ghost particles has to be set as function
of the solutions defined in the other subdomains.

2D Domain 1

2D Domain 2

Interface D1

Interface D2

Fig. 8. Two domains communicating through their two interfaces

For example, in sketch 8 a fluid domain divided in two
subdomains D1 and D2 is depicted. The two subdomains are
connected to each other by two interfaces, whoses boundaries
in general can be different (overlapped subdomains). In D1

the problem is solved by an SPH scheme, while in the second
subdomain, D2, the solution is given by a generic second
solver not specified here. The values on the SPH particles
at the interface of the D1 are interpolated from the values
inside D2 with a technique depending on the topological
characteristics of the solution. For example, if in D2 the
solution if given by an analytic solution, the set [p, ~u] on the
ghost particles will be given by its evaluation at the particle
positions. If solution in D2 is given on a mesh, [p, ~u] will
be evaluated through an interpolation technique depending by
the mesh topology used (e.g. cartesian grid, unstructured grids,
etc.). The solution in D2 can be also given by another SPH
scheme with different numerical characteristics with respect
the one adopted in D1. In such a case, the set [p, ~u] on
the ghost particles will be interpolated using the SPH kernel
adopted in D2 through an MLS (moving least square) [15]
interpolation on the D2 field.

C. Time integration

The time integration for the SPH sheme is performed
with a Runge Kutta 4-th order scheme and the values of
the ghost particles in the interfaces are then updated each
substep (similarly to what is shown in [12] for an inflow
outflow problem and in [16] for fluid/body interaction). In the
interfaces the ghost particle evolution, including its position,
is integrated in time according to the field of the external
solution.

IV. TAYLOR-GREEN VORTEX

The Taylor Green vortex is an unsteady flow of a decay-
ing vortex, which has an exact closed form solution of the
incompressible Navier Stokes equations. The fluid domain is
a square [0, 2πL] × [0, 2πL], defined the Reynold number
as Re= U 2πLν. Periodic boundary condition are enforced
on domain boundary and the solution is given, for the non-
dimensional variables, by:

u = sinx cos y e(−8π2/Re) t

v = cosx sin y e(−8π2/Re) t

p = 1
2

[
cos(2x) + cos(2 y)

]
e−16π2/Re t

(1)

where the reference length and time are respectively L,
2πL/U , being U the maximum velocity in the initial con-
ditions while the pressure is made non-dimensional through
ρU2/2.

Simulations are done within two setups presented in figure
9. In the first, the SPH is used in the whole fluid domain
[0, 2π L] × [0, 2π L] enforcing the periodic boundary condi-
tions. In the second simulation the fluid domain is divided in
two subdomains D1 and D2. In the first subdomain the SPH
is used while the solution in D2 is known analytically through
equation (1). The value of [p, u, v] for the ghost particles of the
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interfaces of D1 are therefore given also analytically. With this
second numerical setup the artificial boundaries can be drawn
arbitrarily. For example the simulation is here done with five
boundaries associated with five interfaces.

(a) Case I (b) Case II

Fig. 9. Sketches of the two simulations of the Taylor-Green flow (right:
square domain with periodic boundaries, left: domain with analytical bound-
aries)

The results from the two simulations are compared in terms
of vorticity and velocity. An instant color map of the vorticity,
obtained in the simulation with squared domain, is depicted
in figure 10, whereas the same data for the asymetric domain
is presented in figure 11. The differences are very limited.
A second comparison is done with the horizontal velocity
interpolated on a horizontal cut, and the vertical velocity
interpolated on a vertical cut. The results shown in figure 12
confirm that the two calculations are almost identical.

Fig. 10. Simulation results of the Taylor-Green flow (square domain with
periodic boundaries)

V. POISEUILLE FLOW

The Poiseuille flow was chosen as a test case for the
validation of the splitting/coalescing scheme in [3]. The tests
are reproduced in order to validate the present procedure. The
Reynolds number set for this calculation is Re =U0d

ν = 20 and
initial particle distribution is given by the packing procedure.

A. Single domain with periodic condition or interface with
analytical solution

The first tested issue is the capability to reproduce with
the analytic interface the results obtained with a periodic

Fig. 11. Simulation results of the Taylor-Green flow (domain with analytical
boundaries )

Fig. 12. Taylor green. Periodic and Analytic boundary condition, comparison
of the horizontal and vertical velocities.

simulation. With the analytic procedure, the seeding and
packing process is performed frequently and, a priori, this
could cause some errors in the solution. This test case is set up
in order to evaluate the numerical noise possibly introduced in
the field by the successive operations of seeding and packing.
The time history of the transversal velocity is plotted in figure
13. The results for both longitudinal and transversal velocities
are summarized in table V-A.

Fig. 13. Poiseuille flow. Periodic b.c and interface with analytical solution.
Time evolution of the spurious transversal velocity at y = 0.5
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Value at y=0.5 Mean U
U0

Std V
U0

Mean U
U0

Std V
U0

tU0/2d [5:20] [5:20] [40:50] [40:50]

Periodic b.c d/∆x : 50 1.02 0.0009 1.013 0.0012

Interface d/∆x : 50 0.99 0.0019 0.992 0.0019

TABLE I
PERIODIC AND ANALYTIC IN/OUTFLOW. MEAN VALUE OF LONGITUDINAL
VELOCITY AND STANDARD DEVIATION OF THE TRANSVERSAL VELOCITY.

B. Periodic boundary condition with a second SPH internal
domain

In this case, a second SPH domain is inserted in the middle
of the fluid domain. The domain are designed as shown in the
sketches 14 and 15. The resolution of the internal domain is
changed as described in column 2 and 3 of table V-B.

The longitudinal velocity is plotted in figure 16. The values
are taken from the internal domain at x = 0.5d and y = 0.5d.
The time evolution in different from the one obtained in the
previous case. In particular the results are poor in the case of
the lower resolution d/∆x = 25, but the agreement with the
theoretical value U = U0 increases as ∆x decreases.

The results are summarized in table V-B. As in the first
setup, the standard deviation of the transversal velocity is taken
as a measurement of the numerical noise. It is observed that

Fig. 14. Sketch of the double domain simulation of the Poiseuille flow.

Fig. 15. Simulation of the Poiseuille flow with double SPH domain. Particles
are colored accroding to their longitudinal velocity.

Fig. 16. Double domain Poiseuille flow. Time evolution of the velocity at
y = 0.5

y=0.5 d/∆x ext d/∆x int Mean U Std V

A 25 25 0.90 0.0021

B 50 50 0.97 0.0015

C 50 100 0.99 0.0012

D 50 200 0.99 0.0010

TABLE II
MEAN VALUE OF LONGITUDINAL VELOCITY AND STANDARD DEVIATION

VALUE OF THE TRANSVERSAL VELOCITY, 5 < tU0/2d < 20

the latter diminishes with the increasing resolution and remains
always limited.

VI. STANDING WAVE

A. Double SPH Domain

An extensive analysis about the SPH calculation of a
standing wave is treated in [17]. This test case is partic-
ularly appropriate to measure the numerical dissipation of
a numerical procedure. The Reynolds number is fixed at
Re=1500. The simulation is performed with two SPH domains
at different resolutions. The reference solution is given by
[18]. Firstly, the simulation is performed without removal nor
seeding of ghost particles. As a consequence, the packing
procedure is not performed. As mentioned in section III, this
is possible because the flow crossing the interface is periodic.
A conservative choice for the interface width is the amplitude
a = 0.1λ of the standing wave that, for the considered cases,
is set equal to 0.1. Figure 18 shows the kinetic energy decay
for the case without seeding and packing. A second test case
is performed with removal and seeding of ghost particles (and,
consequently, packing procedure). The same results are shown
in figure 19. In both configurations, the convergence towards
the analytical solution in very good; this proves the very
low dissipation introduced by the interpolation procedure (first
case) and the seed and packing procedure (second case).
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Fig. 17. Standing wave. Sketch of the numerical domain
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Fig. 18. Standing wave. Time evolution of the kinetic energy for the case
without packing and seeding
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Fig. 19. Standing wave. Time evolution of the kinetic energy for the case
with packing and seeding

B. Coupling with a Finite Volume Solver

The standing wave test case is finally used in order to test
the coupling between SPH and a finite volume solver ( [19],
[20]). This case represents a quite demanding test since the
considered solvers are radically different, the finite volume
solver (FVS in the following) relies on an incompressible
implicit scheme written in Eulerian formalism while the SPH
solver is lagrangian, weakly-compressible and explicit in time.
The numerical domain is depicted in figure 20. The geometry

λ/∆x Dom1 λ/∆x Dom2 Error

25 25 1.1

50 50 0.5

100 100 0.3

200 200 0.3

100 200 0.2

TABLE III
ERROR OBTAINED FOR THE RESULTS WITHOUT SEED AND PACKING IN

THE INTERFACE, 0 < t < 10

λ/∆x Dom1 λ/∆x Dom2 Error

25 25 1.2

50 50 0.5

100 100 0.4

200 200 0.3

100 200 0.3

TABLE IV
ERROR OBTAINED FOR THE RESULTS WITH SEED AND PACKING IN THE

INTERFACE, 0 < t < 10

of the mesh used for the FVS is on the left. The coloured
part (bottom) corresponds to the flow calculated by the FVS
whereas the grey is interpolated from the SPH solver. The
same convention is used for the SPH domain. The CHIMERA
multi-block features of the the FVS makes easy to have a
low resoluted mesh over the whole fluid domain. Differently
to what was shown in the double domain SPH-SPH of the
precedent section, the FVS mesh and the SPH particles are
slightly overlapped in order to increase the numerical stability.

Fig. 20. Standing wave. Right: FV mesh, left: SPH particles, the colored
part is calculated, grey is obtained from other domain.

Some convergence tests are performed on the Kinetic En-
ergy decay and on the Enstrophy time evolution for the case
Re=500. The results depicted in figure 21 and figure 22 show
a convergence of the two quantities.
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Fig. 21. Standing wave. Time evolution of the enstrophy for the case with
coupling with FVM solver

Fig. 22. Standing wave. Time evolution of the enstrophy for the case with
coupling with FVM solver

VII. CONCLUSION

A complete procedure aiming to couple SPH domain with
external solution is shown. The complexities related to the
lagrangian features are overcome by using numerical inter-
faces. Great care is necessary to maintain the distribution of
ghost particles in the interface always uniform. The packing
algorithm precedently described shows to be effective to this
aim. The numerical error given by the procedure is carefully
evaluated for simple well-controlled test cases. Globally the
results obtained with multi domain converge on the single
domain solution. The technique is satisfactorily applied for
SPH multi-resolution, and finally a more complex coupling is
done with a finite volume solver.
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