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Abstract

An important problem in Fuzzy OWL 2 ontology building is the definition of fuzzy member-
ship functions for real-valued fuzzy sets (so-called fuzzy datatypes in Fuzzy OWL 2 terminology).
In this paper, we present a tool, called Fudge, whose aim is to support the consensual creation
of fuzzy datatypes by aggregating the specifications given by a group of experts. Fudge is open-
source and currently supports several linguistic aggregation strategies, including the convex
combination, linguistic OWA, weighted mean and fuzzy OWA, and easily allows to build others
in. We also propose and have implemented two novel linguistic aggregation operators, based on
a right recursive form of the convex combination and of the linguistic OWA.

1 Introduction

OWL 2 ontologies are nowadays widely used to represent and share knowledge representation. In
summary, an ontology is a formal, explicit specification of a shared conceptualization [45]. They
allow the specification of the concepts (viz. classes), individuals, and relationships (viz. roles) that
exist in an application domain. As ontologies were born to provide a shared representation, it is
quite common, especially in multidisciplinary application domains, that the ontology building phase
involves some kind of consensus between the ontology developers. For example, the latitude and the
longitude of a mountain could be represented as classes or properties, and an agreement is necessary.

In many real-world applications, there is a need to manage imprecise knowledge. The limita-
tions of classical ontologies in such domains have been discussed in several fora. Fuzzy ontologies,
specifically Fuzzy OWL 2 ontologies, based on fuzzy logic theory, are a very natural and established
extension to manage imprecise knowledge [27, 42]. In fuzzy ontologies, an application domain is
represented by using fuzzy concepts (with partial membership degrees), fuzzy relationships, fuzzy
datatypes (described by fuzzy membership functions), and axioms that only hold to some degree of
truth in [0, 1].

One of the main features of fuzzy logic is the possibility to use so-called linguistic variables, i.e.,
variables whose values are words (or sentences) in a language; for example, HighMountain may be
the value of a linguistic variable measuring the height of a mountain. Of course, linguistic variables
and values are particularly subjective and context dependent. For instance, both Carrauntoohil

1



(Ireland) and Fuji (Japan) are usually considered as high mountains by local people, although they
have very different elevations (1041 m and 3776 m, respectively).

In Fuzzy OWL 2 ontologies such linguistic variables are represented using fuzzy datatypes. To
date, the only existing methods to build fuzzy datatypes are agnostic to any information about the
domain (for example, computing a uniform partitioning of the domain [42]) or determine the fuzzy
membership functions from real data (for example, using a previous clusterization of real data, as
in Datil [23]). However, often no real data (or not enough data, or data with not enough quality)
are available at the time of the fuzzy ontology building phase but there are some experts available
to provide the definitions. To the best of our knowledge, how to reach a consensus in Fuzzy OWL
2 ontology building when several experts are involved has not received attention so far.

In this paper, we present a tool, called Fudge,1 whose aim is to support the consensual creation of
Fuzzy OWL 2 datatypes by aggregating the specifications given by a group of experts, e.g. by merging
the definitions of HighMountain given by two Irish and Japanese experts. Fudge is open-source
and supports currently different linguistic aggregation strategies, including the convex combination,
linguistic OWA, weighted mean and fuzzy OWA and easily allows to built-in others. We also propose
and have implemented two novel linguistic aggregation operators, based on a left recursive form of
the convex combination and of the linguistic OWA. Fudge is also able to deal with missing data
from some of the experts and can use fuzzy quantifiers to define a vector of weights.

The remainder of this paper is organized as follows. Firstly, Section 2 relates our work with other
previous works. Section 3 provides some background on Fuzzy OWL 2 ontologies and aggregation
operators. Then, Section 4 describes our current strategy to build consensual fuzzy datatypes from
several experts and discusses two novel different aggregation operators. Next, Section 5 describes
our implementation, while Section 6 discusses some uses cases and provides a numerical example.
Finally, Section 7 sets out some conclusions and ideas for future work.

2 Related work

Fuzzy ontologies have already be proved to be useful in several applications, such as information
retrieval [9, 44, 50], Semantic Web and the Internet [42], ambient intelligence [16], ontology merg-
ing [46], matchmaking [37], decision making [33], summarization [25], construction [20], robotics [18],
diabetes diagnosis [19], design [35], human resources [43], decision making [41], gait recognition [5],
and many others [28, 38]. For a more detailed overview, we refer the reader to [12].

Some works have previously considered aggregation operators in the fuzzy ontology field [7, 10,
26, 49], but the aggregation was restricted to numerical degrees of truth. Furthermore, most of the
existing work assumes a unique definition of the fuzzy membership functions that define the fuzzy
datatypes. In the following we will focus only on the few exceptions.

In a series of papers, researchers from the University of Granada and coauthors studied the
application of fuzzy ontologies to reaching a consensus on decision making scenarios [29, 36]; in
particular, they used existing fuzzy ontologies as part of decision making processes. In related
papers, they also studied the process of building a fuzzy ontology; for example, [30, 31, 32] discussed
how to build a fuzzy ontology in scenarios of multi-granular linguistic information.

However, please note that there are significant differences with respect to our proposal. The
approach in [31] does not take account the opinions of different ontology developers to build a fuzzy
ontology. On the other hand, the approach in [32] does not focus on fuzzy datatype construction but
on assigning a membership degree to individuals of a concept. Finally, the approach in [30] considers
users’ opinions in social networks and computes the fuzzy membership function from sentiment

1Fudge works on desktop computers and mobile devices.
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information (numbers of positive, neutral, and negative words). However, rather than computing
fuzzy membership functions by aggregating the fuzzy membership functions of each ontology builder,
the authors compute the definitions of the fuzzy membership functions directly from all the opinions
of the different users. This depends on the quality of the sentiment analysis and is more vulnerable
to malicious users.

To the best of our knowledge, none uses the de-facto standard for fuzzy ontology representation,
namely Fuzzy OWL 2, supports several aggregation operators, and provides a publicly available and
modifiable implementation.

3 Background

This section gives a quick overview on the main ingredients related to fuzzy ontologies and aggre-
gation operators. The confident reader may directly skip to the next section.

3.1 Fuzzy OWL 2 ontologies

In fuzzy ontologies, the elements of a classical ontology are extended in such a way that concepts,
relations, datatypes, and axioms are fuzzy. In particular:

• Fuzzy concepts and fuzzy properties are interpreted as fuzzy sets of individuals and fuzzy binary
relations, respectively. For example, YoungHuman denotes the fuzzy set of young people, while
hasClimbed denotes a fuzzy relationship between people and mountains that they climbed
(maybe only partially).

• Fuzzy axioms express statements that are not either true or false but hold to some degree in
[0, 1]. For example, we can state that john belongs to the concept of YoungHuman with at least
degree 0.9, meaning that he is considerably young.

• Fuzzy datatypes generalize crisp values by using a fuzzy membership function. In fuzzy ontolo-
gies, it is common to restrict the membership functions to trapezoidal (Figure 1 (a)), triangular
(Figure 1 (b)), left-shoulder (Figure 1 (c)), and right-shoulder (Figure 1 (d)) membership func-
tions.2 For example, instead of considering the age of an individual as the crisp value 18, one
may consider a fuzzy set about18 defined via a triangular function centered at the value q2=18.

Fuzzy Description Logics (Fuzzy DLs) [4, 42] are the logical formalism behind Fuzzy OWL 2
ontologies [6], in a similar way as crisp Description Logics (DLs) [2] are the underlying logical
formalism of OWL 2 [13]. Although there is not a W3C standard fuzzy ontology language, Fuzzy
OWL 2 (based on a fuzzy DL) has become a de facto standard/popular choice. Fuzzy OWL 2
extends OWL 2 ontologies with OWL 2 annotations encoding fuzzy information using an XML-like
syntax. The key idea of this representation is to start with an OWL 2 ontology created as usual, with
a classical ontology editor. Then, it is possible to annotate the elements to represent the features of
the fuzzy ontology that OWL 2 cannot directly encode. In particular, it is possible to annotate fuzzy
axioms by adding a degree of truth, to represent fuzzy datatypes, and to define specific elements of
fuzzy ontologies (such as fuzzy modifiers or aggregated concepts). Fuzzy OWL 2 is supported by
the fuzzy ontology reasoner fuzzyDL [8]. For instance, Figure 2 illustrates how to annotate a fuzzy
datatype by using the Fuzzy OWL 2 plug-in available for the Protégé ontology editor. (Note that
q1, q2, q3 are denoted as a, b, c, respectively.)
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(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c) Left-shoulder function; (d) Right
shoulder function; (e) Linear function; (f) Power function

Figure 2: Definition of the fuzzy datatype highValue using Fuzzy OWL 2
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We refer the reader to [4, 6, 42] for further insights on Fuzzy OWL 2 and Fuzzy DLs.

3.2 Aggregation operators

Aggregation Operators (AOs) are mathematical functions that are used to combine different pieces of
information. There is no standard definition of AO. Usually, given a domain D, an AO is a mapping
@ : DK → D, aggregating K values of K different criteria. Often, AOs use also a vector of weights
W = [w1, . . . , wK ] such that wi ∈ [0, 1] and

∑K
i=1 wi = 1.

Let us consider first the most usual case, where D = [0, 1]. Then, we will address the case where
D is a linguistic label. For a more detailed overview on existing AOs, we refer the reader to [3] (for
the numerical case) and [51] (for the linguistic case).

Aggregation of numerical degrees of truth Often, we would like to aggregate degrees of satis-
faction of K different criteria xi ∈ [0, 1], i ∈ {1, . . . ,K}, that are the membership degrees to K fuzzy
sets; the range of the AO is also [0, 1]. We will denote these AOs as @([w1, . . . , wK ], [x1, . . . , xK ]).
A typical example of such an AO is the weighted sum:

WS([w1, . . . , wK ], [x1, . . . , xK ]) =

K∑
i=1

wixi . (1)

Another very important family of AOs are the Ordered Weighted Averaging (OWA) operators [52].
Formally, an OWA operator of dimension K is an AO such that:

OWA([w1, . . . , wK ], [x1, . . . , xK ]) =

K∑
i=1

wixσ(i) (2)

where σ(i) is a permutation such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(K). A key aspect of these operators
is the reordering step: a weight wi is not associated with the i-th element xi but with the i-th
ordered element xσ(i).

Let us recall that the maximum and the minimum can be obtained by using W = [1, 0, . . . , 0]
and W = [0, . . . , 0, 1], respectively, and that OWA verifies the internality property:

min(x1, . . . , xn) ≤ OWA([w1, . . . , wK ], [x1, . . . , xK ]) ≤ max(x1, . . . , xn) . (3)

An important measure of OWA operators is the orness [52], which depends only on the weighting
vector:

orness([w1, . . . , wK ]) =
1

K − 1

K∑
i=1

(K − i)wi . (4)

It is easy to check that orness([w1, . . . , wK ]) ∈ [0, 1], orness([1, 0, . . . , 0]) = 1 (the value is 1 for
the maximum, a t-conorm) and that orness([0, . . . , 0, 1]) = 0 (the value is 0 for the minimum, a
t-norm). Hence, the orness measures to what extent an AO behaves as a disjunctive operator (a
t-conorm).

A common practical problem is how to compute the weights of an OWA operator. Two well-
known solutions are the following: (i) using quantifier-based aggregation [54] and (ii) applying
recursive OWA [48], as illustrated next:

2The functions in Figure 1 (e)–(f) will be addressed later in this paper, as they will be used to compute weights
from fuzzy quantifiers.
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• In quantifier-based aggregation, the vector of weights W can be defined using a fuzzy quanti-
fier [54]. A proportional fuzzy quantifier Q : [0, 1]→ [0, 1] is a fuzzy subset such that for each
r ∈ [0, 1], the membership grade Q(r) indicates the degree to which the proportion r satisfies
the linguistic quantifier that Q represents. For the sake of illustrative purposes, we will con-
sider here the Regular Increasing Monotone (RIM) quantifiers [53], which satisfy the boundary
conditions Q(0) = 0 and Q(1) = 1, and are monotone increasing, i.e., Q(x1) ≤ Q(x2) when
x1 ≤ x2. Essentially, these quantifiers reflect the notion that as the proportion increases, the
degree of satisfaction does not decrease. Given a RIM Q, the weights of an OWA weighting
vector of dimension K can be computed as (i ∈ {1, ...,K})

wi = Q(
i

K
)−Q(

i− 1

K
) . (5)

Note that indeed wi ∈ [0, 1] and
∑K
i=1 wi = 1.

• Recursive OWA starts from a desired value for the orness of the OWA operator and computes
the weights in two recursive ways, a Left Recursive Form (LRF) and a Right Recursive Form
(RRF). LRF is obtained after rewriting Eq. 2 as:

OWA([wK1 , . . . , w
K
K ], [x1, . . . , xK ]) =

vKL ·OWA([wK−1
1 , . . . , wK−1

K−1], [xσ(1), . . . , xσ(K−1)]) + (1− vKL ) · xσ(K) ,
(6)

where the weights are defined as

vKL =
(K − 1) · orness

(K − 2) · orness + 1

wKi = vKL · wK−1
i , i ∈ {1, . . . ,K − 1}

wKK = 1− vKL .

(7)

The base case happens when K = 2:

OWA([w2
1, w

2
2], [x1, x2]) = v2L · xσ(1) + (1− v2L) · xσ(2) (8)

Similarly, RRF is obtained after rewriting Eq. 2 as:

OWA([wK1 , . . . , w
K
K ], [x1, . . . , xK ]) =

(1− vKR ) · xσ(1) + vKR ·OWA([wK−1
2 , . . . , wK−1

K ], [xσ(2), . . . , xσ(K)]) ,
(9)

where the weights are defined as

vKR =
(K − 1)(1− orness)

(K − 2)(1− orness) + 1

wKi = vKR · wK−1
i , i ∈ {1, . . . ,K − 1}

wKK = 1− vKR .

(10)
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Aggregation of fuzzy linguistic values Although this case is not as usual as the aggregation
of numerical values, some aggregation operators to combine fuzzy linguistic numbers have been
proposed [51]. Among them, we will consider here four of them: convex combination (CONV–
RRF3), linguistic OWA (LOWA–RRF), weighted mean (WMEAN), and fuzzy OWA (FOWA).

To start with, we will assume a vector of weights W and a permutation σ over fuzzy numbers/-
values (see, e.g., [24, 40]) such that dσ(1) ≥ dσ(2) ≥ · · · ≥ dσ(K) (that is, dσ(i) denotes the i-th largest
fuzzy number).4 Now,

1. CONV–RRF was proposed by Delgado et al. [15]. It assumes a fixed vector of possible values
for the linguistic variables L = [l1, . . . , lL] such that li < lj if i < j. CONV–RRF has a
recursive definition. Let us start with the base case where we want to aggregate K = 2 fuzzy
values di ∈ L. The CONV–RRF of a vector [d1, d2] given a vector of weights W = [w1, w2], is
defined as

CONVRRF([w1, w2], [d1, d2]) = lc (11)

where dσ(1) = lj , dσ(2) = li, c = i+ round(wσ(1) · (j− i)). Note that the permutation is applied
both to the weights and to the values to be aggregated, so each wi is associated to the value
di. Now, if K > 2, then:

CONVRRF([w1, . . . , wK ], [d1 . . . , dK ]) =

CONVRRF
(

[wπ(1), 1− wπ(1)],
[
dπ(1),CONVRRF([β2, . . . , βk], [dπ(2), . . . , dπ(K)])

])
,

(12)

where βh = wπ(h) /
∑K
j=2 wπ(j), h ∈ {2, . . . ,K}.

2. LOWA–RRF is a variant of CONV–RRF using a reordering step as in standard OWA [21]:

LOWARRF([w1, . . . , wK ], [d1 . . . , dK ]) =

CONVRRF([w1, . . . , wK ], [dσ(1), . . . , dσ(K)]) .
(13)

3. WMEAN is an extension of the classical weighted mean to deal with trapezoidal fuzzy num-
bers [17]. Specifically, given K trapezoidal fuzzy numbers di = trap(qi1, q

i
2, q

i
3, q

i
4) and a vector

of K weights W, the result is:

WMEAN([w1, . . . , wK ], [d1, . . . , dK ]) =

trap
( K∑
i=1

wiq
i
1,

K∑
i=1

wiq
i
2,

K∑
i=1

wiq
i
3,

K∑
i=1

wiq
i
4

)
.

(14)

In general, the result of the aggregation is not any of the original aggregated values, and the
weights describe the importance of each expert.

4. FOWA is a variant of WMEAN with a reordering step [11], so that w1 is associated to the
largest fuzzy number. Given a permutation σ such that dσ(i) denotes the i-th largest trapezoidal
fuzzy number, FOWA is defined as:

FOWA([w1, . . . , wK ], [d1, . . . , dK ]) =

trap
( K∑
i=1

wiq
σ(i)
1 ,

K∑
i=1

wiq
σ(i)
2 ,

K∑
i=1

wiq
σ(i)
3 ,

K∑
i=1

wiq
σ(i)
4

)
.

(15)

3We write CONV–RRF and LOWA–RRF to distinguish them from the new operators CONV–LRF and LOWA–
LRF that we will define in Section 4.

4Of course, this requires an order relation between fuzzy numbers that we will discuss later.
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Ordering fuzzy linguistic labels In CONV–RRF, LOWA–RRF, and FOWA, we need to define
an ordering between fuzzy linguistic labels. Many approaches can be found in the literature (see,
e.g., [24, 40]), but we will rely here on Delgado et al. [14] transformation function transform(d)
from a linguistic domain (trapezoidal fuzzy numbers d) to a numerical domain, so that d1 ≥ d2 iff
transform(d1) ≥ transform(d2):

transform(trap(q1, q2, q3, q4)) =
8(q3 + q2)H + (q4 + q1)H + 8(H + q3q4 − q1q2)

24H
, (16)

where H = q4 + q3 − q2 − q1 and q1 = q2 = q3 = q4 is assumed not to hold.

4 Consensual aggregation of fuzzy datatypes

In this section we start by illustrating how to use aggregation operators to build consensual fuzzy
datatypes. Then, we discuss two novel aggregation operators, all of them supported in the Fudge
tool.

4.1 Using aggregation operators to build fuzzy datatypes

At first, let us define formally the problem we will address. We assume that there is a group of experts
E1, E2, . . . , EN providing the definitions of the membership functions F1, F2, . . . , FN characterizing
several fuzzy datatypes from a fuzzy ontology. dij denotes the definition of the datatype Fi according
to expert Ej . dij is assumed to be a linguistic value. Furthermore, there could be missing data, i.e.,
expert Ej might not provide his/her definition of some datatype Fi. Therefore, for each datatype
Fi we have a number of definitions denoted K, with K ≤ N . Our objective is to define each Fi as
a consensus of the definitions 〈di1, di2, . . . , diK〉. We will sometimes omit the subscript i when the
particular Fi is not important.

We assume that all the definitions are given using trapezoidal fuzzy numbers of the form
trap(q1, q2, q3, q4), as they are those supported by Fuzzy OWL 2. Note that triangular (denoted
tri), right-shoulder (denoted right), and left-shoulder (denoted left) functions can be represented
as trapezoidal fuzzy numbers, provided that right-shoulder and left-shoulder functions are defined
over a fixed range [r1, r2]. For example, a left-shoulder function left(q1, q2) can be represented as
trap(r1, r1, q1, q2).

Now, for each fuzzy datatype Fi, we compute @(W, [di1, di2, . . . , diK ]) as a consensual definition,
for some aggregation operator @ taking as input a vector of numerical weights W and a vector of
trapezoidal fuzzy numbers, returning as output a trapezoidal fuzzy number, and satisfying internal-
ity. Possible choices for the aggregation operator include CONV, LOWA, WMEAN, and FOWA.

An advantage of such a consensus process is that the individual opinions of the ontology builders
are only used to build the final consensual values, thus respecting the privacy of the experts by
hiding their individual opinions.

Example 1 For the sake of illustrative purposes, let us consider the problem of paper reviewing. We
assume that we want to build a general fuzzy ontology with the relevant definitions (e.g., a hierarchy
of publication types, the steps of the reviewing process, the different roles that take part in the
process, etc.) to reuse it in other applications, to enable interoperability, or to detect inconsistencies
automatically.

We assume that there are 5 possible decisions for a submission (Reject, WeakReject, Borderline,
WeakAccept, Accept) and that we need to define their definitions by aggregating the definitions given
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by 4 experts (the coauthors of our work). For example, these categories could correspond to reject,
reject and encourage re-submission, major revision, minor revision, and accept as it is, respectively.
Table 1 shows the definition of the fuzzy datatypes given by all the experts.

Table 2 shows instead the consensual aggregation for several aggregation functions. Note that
for CONVEX RRF and WMEAN, we used a vector of weights W = [0.2, 0.25, 0.25, 0.3] taking into
account the experience (years in academia) of the experts, while for LOWA–RRF and FOWA we
used a fuzzy quantifier right(0.3, 0.8), leading to a vector of weights W = [0, 0.4, 0.5, 0.1] for FOWA.

The resulting datatypes for each aggregation strategy are illustrated in Figure 3 (a)–(d). It is
worth to note that all methods result in a left-shoulder and a right-shoulder function, but there are
differences for the rest of functions: CONV–RRF result in 3 triangular and 0 trapezoidal functions,
LOWA result in 2 triangular and 1 trapezoidal functions, and both WMEAN and FOWA result in
3 trapezoidal and 0 triangular functions. Note also that CONV–RRF and LOWA–RRF result in
4 datatypes with the definitions given by Expert 3; CONV–RRF and LOWA–RRF coincide in 3
definitions.

(a) (b)

(c) (d)

Figure 3: Consensual datatypes using (a) CONV; (b) LOWA; (c) WMEAN; and (d) FOWA

Now, let us discuss how to evaluate a given submission. We assume that each submission has
a numerical score from 0 to 10 that combines the evaluation of several criteria (e.g., originality,
technical soundness, significance, presentation, and relevance) given by different reviewers.5 For a
paper p0 with a score of 7.5, the membership degrees to each category are shown in Table 3.

Therefore, the optimal decision depends on the aggregation strategy: for WMEAN, it is WeakAc-
cept, while for the other ones the optimal choice is Accept.

Computing the vector of weights In LOWA or FOWA, we propose two different strategies to
obtain the vector of weights. Namely:

5This involves the aggregation of numerical values, which is a well-known problem and out of our scope.
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Alternative Expert 1 Expert 2 Expert 3 Expert 4
Reject left(3.5, 4.5) left(3.5, 4) left(3, 4) left(1, 2)

WeakReject tri(3.5, 4.5, 5.5) trap(3.5, 4, 4.5, 5) tri(3, 4, 5) trap(1, 2, 3, 4)
Borderline tri(4.5, 5.5, 6.5) tri(4.5, 5, 5.5) tri(4, 5, 6) trap(3, 4, 6, 7)

WeakAccept tri(5.5, 6.5, 8) trap(5, 5.5, 6.5, 7.5) trap(5, 6, 7, 8) trap(6, 7, 8, 9)
Accept right(6.5, 8) right(6.5, 7.5) right(7, 8) right(8, 9)

Table 1: Individual definitions of the decisions given by the experts

Alternative CONV–RRF LOWA–RRF WMEAN FOWA
Reject left(3, 4) left(3, 4) left(2.63, 3.5) left(3, 3.8)

WeakReject tri(3, 4, 5) tri(3, 4, 5) trap(2.63, 3.5, 3.93, 4.8) trap(3, 3.8, 4.1, 4.9)
Borderline tri(4, 5, 6) tri(4, 5, 6) trap(3.93, 4.8, 5.4, 6.28) trap(3.65, 4.6, 5.4, 6.35)

WeakAccept tri(5.5, 6.5, 8) trap(5, 6, 7, 8) trap(5.4, 6.28, 7.075, 8.18) trap(5.2, 6.15, 6.75, 7.95)
Accept right(7, 8) right(6.5, 8) right(7.08, 8.175) right(6.7, 7.95)

Table 2: Consensual definitions of the decisions for 4 aggregation strategies

• Quantifier-guided aggregation, using Eq. 5 as in standard OWA [54]. In this case, we propose
to use right-shoulder (Figure 1 (d)), linear (Figure 1 (e)), and power (Figure 1 (f)) functions
as RIM quantifiers.

• A recursive procedure to compute a vector of weights with a given orness, using either Eq. 7
(to combine the lowest value and the aggregation of the other ones) or Eq. 10 (to combine the
highest value and the aggregation of the other ones) [48].

Dealing with incomplete data It could be the case that some of the experts do not provide
his/her definition of some datatype. In this case, unavailable opinions are not taken into account
during the aggregation, so a new vector of weights W is computed. Specifically, in CONV–RRF
and WMEAN, we can normalize each weight dividing by the sum of the weights of the available
experts. In LOWA–RRF or FOWA, we can use the previously described strategies (quantifier-guided
aggregation or a recursive procedure starting from the orness) to get a vector with a smaller size.

Example 2 Assume that there are 4 experts E1, E2, E3, and E4, but E3 does not provide a definition
for some datatype. To aggregate the other definitions using CONV–RRF or WMEAN, the initial
vector of weights [w1, w2, w3, w4] can be updated as

[
w1

w1 + w2 + w4
,

w2

w1 + w2 + w4
,

w4

w1 + w2 + w4
] .

To aggregate the available definitions using LOWA-RRF or FOWA, let us firstly assume that

Alternative CONV–RRF LOWA–RRF WMEAN FOWA
Reject 0 0 0 0

WeakReject 0 0 0 0
Borderline 0 0 0 0

WeakAccept 0.33 0.5 0.61 0.38
Accept 0.5 0.67 0.39 0.64

Table 3: Degree of satisfaction of each decision for a paper with score of 7.5
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the vector of weights was computed using a quantifier Q = right(0.3, 0.8). Then, the initial vector
[0, 0.4, 0.5, 0.1] is replaced with [0.067, 0.667, 0.267].

Now let us assume that the vector of weights was computed from a desired orness 0.6 us-
ing a left recursive procedure. Then, the initial vector [0.368, 0.245, 0.205, 0.182] is replaced with
[0.45, 0.3, 0.25].

4.2 Some properties of the linguistic aggregation operators

The first thing to observe is that CONV–RRF (and hence LOWA–RRF) does not care about the
concrete definitions (e.g., if a trapezoidal function has some value of q1 or another); only the relative
ordering matters.

In our case, when using CONV–RRF, rather than assuming a global vector of linguistic labels
L (such as VeryLow, Low, Neutral, High, and VeryHigh), for each fuzzy datatype Fi we assume a
different vector Li = [li1, li2, . . . ]. On the one hand, it does not make sense to use the same label
VeryHigh to define a mountain or a temperature. On the other hand, the linguistic labels are not
defined a priori, so we can only rely on the definitions given by the experts. Furthermore, the same
of labels can be different for each fuzzy datatype Fi, as some experts might not provide a definition.
Thus, for each Fi, we define Li = [diσ(K), . . . , diσ(1)]. Therefore, the result of the aggregation is
always one of the aggregated values, so a single expert (or a group of them giving the same value)
is the single provider of the consensual definition. The same holds in LOWA as well.

It is worth to note that a pair of labels lij , ljk ∈ Fi may have the same definition. That is,
although it is probably not very common in practice, two experts may use the very same trapezoidal
membership function to define a label. This case was not originally considered in [15], where the
authors assumed that k > j. However, we consider this case because the combining the same
definition is not trivial, as Example 3 shows.

Example 3 Assume that there are 5 experts and that E1 and E2 provide the same definition, so
we have L = [Exp1&2,Exp3,Exp4,Exp5] (for ease of presentation, we assume that the i-th expert
provides the i-th largest value). Given a weighting vector [0.15, 0.15, 0.1, 0.5, 0, 1], one may verify
that the consensual definition using CONV–RRF is that of expert E3:

CONVRRF
(

[0.15, 0.15, 0.1, 0.5, 0, 1], [Exp1&2,Exp1&2,Exp3,Exp4,Exp5]) = Exp3

Note that if we group the opinion of the two first experts and assign to this new value the sum
of their weights, the result of CONV–RRF is different:

CONVRRF
(

[0.3, 0.1, 0.5, 0, 1], [Exp1&2,Exp3,Exp4,Exp5]) = Exp4

Table 4 summarizes some key features of the four methods, namely if the output is always one
of the inputs or not, and if weights are assigned to a specific expert or not.

Criterion CONV–RRF LOWA–RRF WMEAN FOWA
Output is always one of the input datatypes Yes Yes No No

Weights are assigned to a specific expert Yes No Yes No

Table 4: Comparison between the four aggregation strategies
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4.3 Left Recursive Form of CONV and LOWA

In this section, we will propose some new linguistic aggregation operators. Inspired by the rewriting
of classical OWA in two recursive forms LRF and RRF (see Eqs. 6 and 9), we may view the standard
definition of CONV (Eqs. 11–12) as a right recursive form. From that, we propose a left recursive
form (CONV–LRF).

Definition 1 The Left Recursive Form of the convex combination (CONV–LLF) of K ≥ 2 linguistic
labels given a weighting vector [w1, . . . , wK ] is defined as follows:

• if K = 2, then

CONVLRF([w1, . . . , wK ], [d1 . . . , dK ]) = CONVRRF([w1, . . . , wK ], [d1 . . . , dK ])

• if K > 2, then:

CONVLRF([w1, . . . , wK ], [d1 . . . , dK ]) =

CONVLRF
(

[1− wπ(K), wπ(K)],
[
CONVLRF([β1, . . . , βk−1], [dπ(1), . . . , dπ(K−1)]), dπ(K)

])
,

(17)

where βh = wπ(h) /
∑K−1
j=1 wπ(j), h ∈ {1, . . . ,K − 1}.

Example 4 4 experts provide definitions [VeryHigh,High, Low,VeryLow] and there is a weighting
vector [0.45, 0.05, 0.1, 0.4]. Let us firstly aggregate using CONV–RRF:
CONVRRF([0.45, 0.05, 0.1, 0.4], [VeryHigh,High, Low, VeryLow]) =

CONVRRF
([

0.45, 0.55
]
,
[
VeryHigh,

CONVRRF([0.09, 0.91], [High,CONVRRF([0.2, 0.8], [Low,VeryLow])
])

=

CONVRRF
([

0.45, 0.55
]
,
[
VeryHigh,CONVRRF([0.09, 0.91], [High,VeryLow])

])
=

CONVRRF
([

0.45, 0.55
]
,
[
VeryHigh,VeryLow

])
= Low

Now, let us compute CONV–LRF, obtaining a different result:
CONVLRF([0.45, 0.05, 0.1, 0.4], [VeryHigh,High, Low, VeryLow]) =

CONVLRF
([

0.6, 0.4
]
,
[
CONVLRF([0.83, 0.17],

[CONVLRF([0.9, 0.1], [VeryHigh,High]), Low]),VeryLow
])

=

CONVLRF
([

0.6, 0.4
]
,
[
CONVLRF([0.83, 0.17], [VeryHigh, Low]),VeryLow

])
=

CONVLRF
([

0.6, 0.4
]
,
[
VeryHigh,VeryLow

])
= High

To understand the differences between CONV–LRF and CONV–RRF, we computed the results
of the aggregation of four different values with different vectors of weights. Specifically, we evaluated
each possible arrangement of degrees wi = k · 0.01,

∑4
i=1 wi = 1, k ∈ {1, 2, . . . , 100}, i ∈ {1, 2, 3, 4}.

Out of the 156849 possibilities, CONV–LRF and CONV–RRF give the same value in 114259 cases
(72.85 %). In 39538 cases (25.2 %), CONV–LRF returns a higher value, whereas in 3052 cases (1.95
%) CONV–RRF returns a higher value. Therefore, CONV–LRF seems to have a slightly higher
orness than CONV–RRF. If the weights associated to the higher value or to the smaller value were
greater than 0.83, both approaches coincided. This was also the case when the other weights were
greater than 0.74.
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Figure 4: Consensual datatypes using CONV–LRF

CONV–LRF can also be used to define a new version of the linguistic OWA based on the left
recursive form of the convex combination.

Definition 2 The Left Recursive Form of the linguistic LOWA (LOWA–LLF) of K ≥ 2 linguistic
labels given a weighting vector [w1, . . . , wK ] is defined as follows:

LOWALRF([w1, . . . , wK ], [d1 . . . , dK ]) =

CONVLRF([w1, . . . , wK ], [dσ(1), . . . , dσ(K)]) .
(18)

Example 5 Let us revisit Example 1, considering CONV–LRF and LOWA–LRF but not their right
recursive forms. It turns out that LOWA–LRF produces exactly the same output, and that CONV–
LRF only differs in the consensuated definition of Borderline, which is now given by trap(3, 4, 6, 7),
i.e., the definition given by Expert 4. The resulting datatypes for CONV–LRF are illustrated in
Figure 4.

Using CONV–LRF, the membership degree of paper p0 to Borderline is also 0, as it happens using
CONV–RRF. Both CONV–LRF and LOWA–LRF return 2 triangular and 1 trapezoidal functions
(CONV–RRF returns 3 triangular functions), CONV–LRF includes 3 datatypes defined by Expert 3
(CONV–RRF includes 4); and CONV–LRF and LOWA–LRF coincide in 2 definitions (the right
recursive forms coincide in 3).

CONV–LRF and LOWA–LRF behave as their right recursive form counterparts with respect to
the features analyzed in Table 4.

5 Implementation: Fudge

We have developed an implementation of the consensual aggregation of fuzzy datatypes described
in the previous section. Our tool is called Fudge (FUzzy Datatypes from a Group of Experts) and is
available online6. The application has two versions (for desktop computers and for mobile devices)
and uses OWL API [22] to manage (fuzzy) OWL 2 ontologies represented in Fuzzy OWL 2 language.
Some snapshots of the tool can be found in A.

Fudge receives a folder containing the input ontology files, and it imports all the .owl files in the
folder. We assume that each of the input files includes a Fuzzy OWL 2 ontology —specifically, an
OWL 2 ontology where datatypes can have an OWL 2 annotation describing the parameters of the

6http://webdiis.unizar.es/~ihvdis/Fudge.html

13

http://webdiis.unizar.es/~ihvdis/Fudge.html


fuzzy function. As an output, Fudge creates a new ontology with the axioms included in the input
files, except the declarations of the datatypes, which are unique. That is, if two or more files have
a datatype with the same name, it only adds a consensual one to the output ontology.

In theory, all input files should contain the same axioms (ontology schema and individuals), and
only the datatype annotations may be different. In practice, it could happen that not all ontologies
contain the same axioms. In such cases, there are several possible choices: adding to the output
ontology axioms that are in all input ontologies, adding axioms that are in some of the ontologies,
adding axioms that are in most of the ontologies, etc. Among them, we chose to add the axioms
included in the input ontology with a larger number of logical axioms.

Fudge considers as a name of an entity its full URI (e.g., http://sid.cps.unizar.es/engines.
owl#HighTemperature) rather than its fragment identifier (e.g., HighTemperature), as two experts
could use the same fragment to denote two different entities (e.g., in the car domain, temperature
of an engine and temperature of oil).

Note that some datatype may not be annotated in some of the input files. In such cases, only
the existing annotations are taken into account, and a vector of weights of the appropriate size is
computed, as already discussed in the previous section.

The declaration of the fuzzy datatypes must conform the specification of Fuzzy OWL 2, including
an annotation (with the type of the membership function and the values of the parameters) and
a range restriction to an interval [r1, r2]. The current implementation is restricted to trapezoidal,
triangular, left-shoulder, and right-shoulder functions, accordingly to the Fuzzy OWL 2 specification.

So far, the supported aggregation operators are CONV–LRF, CONV–RRF, WMEAN, LOWA–
LRF, LOWA–RRF, and FOWA. It is worth to stress that the application has been designed to ensure
that adding more aggregation operators is very easy. Indeed, it is enough to (i) add a new class
extending an existing one, (ii) implement a method computing the aggregation of K trapezoidal
functions, and (iii) update the graphical interface by adding another item to a list of aggregation
operators.

The following fragment of code illustrates the creation of the new class:

public class NewAO extends AggregationOperator

{

@Override

public TrapezoidalFuzzyNumber aggregate(

ArrayList <TrapezoidalFuzzyNumber > values , Double [] weights)

{

...

}

}

To obtain the weights for LOWA–LRF, LOWA–RRF, and FOWA one may use quantifier-base
aggregation (using right-shoulder, linear, and power functions) or two recursive procedures starting
from a given orness.

5.1 Desktop computers

The versions for desktop computers is written in Java. A simple user interface allows to select
the input ontologies, the type of consensus (aggregation operator) and the necessary parameters: a
vector of weights for CONV–LRF, CONV–RRF, and WMEAN, and the type of fuzzy quantifier and
its parameters for LOWA–LRF, LOWA–RRF, and FOWA. Figure 6 shows the main tab of the user
interface. Initially, the second and the third tab are disabled.

If the user selects CONV–LRF, CONV–RRF, or WMEAN as the aggregation operator, the fourth
tab is enabled, as shown in Figure 7. In this case, Fudge checks that all values are positive and
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normalized, and that the sum is equal to 1.
If the user selects LOWA–LRF, LOWA–RRF, or FOWA as an aggregation operator, the second

and the third tab become enabled. The second tab allows to obtain the weights from a fuzzy
quantifier. Figures 8–10 show how to select the type of fuzzy quantifier (right-shoulder, linear, and
power functions) and their parameters. The user can see a general picture of the selected fuzzy
quantifier and a customized picture with the values of the selected parameters (Figure 11). Fudge
checks that all values are correct; for instance, in a right-shoulder function, q2 ≥ q1. The third tab
allows to use a recursive procedure to obtain the weights. Figure 12 shows that the user can select
the type of recursive (left or right) and an orness value in [0, 1].

5.2 Mobile devices

The version for mobile devices is written in Android. Since the version for desktop computers was
written in Java, the adaption was relatively easy and only the graphical interface needed to be
changed.

Figure 13 (a) shows the main activity, where the user can select the input fuzzy ontologies and the
aggregation operator. Depending on the aggregation operator, s/he will be able to select different
ways to compute the weights. For example, Figure 13 (b) shows how to obtain the weights for
LOWA–LRF, LOWA–RRF, and FOWA from a quantifier; a customized picture of the quantifier is
shown in Figure 13 (c). Figure 14 (a) shows to obtain the weights using the recursive procedure, an
example of vector is shown in Figure 14 (b). Furthermore, Figure 14 (c) shows how to manually set
the vector of weights for CONV–LRF, CONV–RRF, and WMEAN.

6 Use case: location-based services

In this section we provide a use case illustrating the usefulness of having consensual fuzzy datatypes
in the field of location-based services by discussing how to extend the SHERLOCK system [55].

SHERLOCK (System for Heterogeneous mobilE Requests by Leveraging Ontological and Con-
textual Knowledge) is a general and flexible system that provides Location-Based Services (LBSs)
using semantic technologies and mobile agents. The output of the system depends indeed on the
location of the user, but also on his/her context, understood in a more general sense. SHERLOCK is
a knowledge-based system that uses ontologies to represent the knowledge of an application domain
(objects and interesting areas in a scenario) and the user context. Then, an ontology reasoner is
used to discover implicit knowledge which is taken it account to answer user requests. The system
can be used from both fixed and mobile devices. It has been applied to different application scenar-
ios, such as recommendation of transportation means, helping firefighting, camera selection for live
broadcasting of sport events, or emergency management.

Let us focus on the recommendation of transportation means (see Figure 5). Sherlock uses some
background knowledge, stating for example that PublicTransport is a subclass of TransportationMean,
and that Cab and Tram are subclasses of TransportationMean. Such general schema is populated
with concrete instances. For example, cabLicense4815162342 is an instance of Cab tramLine1 is an
instances of Tram. By using an ontology reasoner, both instances can be inferred to belong to
the class TransportationMean. Each transportation mean has some properties that can be used to
compute the best alternative, such location, direction, speed, or price.

So far, it is possible to ask SHERLOCK to retrieve transportation means that satisfy some strict
requirements specified with thresholds, e.g., cheaper than a given price, closer than a given distance,
or faster than a given time. However, while this can be acceptable in some applications, it seems
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Figure 5: Snapshot of SHERLOCK: recommendation of transportation means
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interesting to extend the system with flexible queries, so for instance closeness and user satisfaction
with the price are a matter of degree. To do so, a possible solution is to use fuzzy ontologies with
fuzzy datatypes representing the possible values of the linguistic variables (such as location or price
as fuzzy membership functions. For example, a fuzzy price LessThan10Euro can be defined using a
function left(10, 15), so that a price of 11 e belongs to LessThan10Euro with degree 0.9. However,
providing a definition for those fuzzy membership functions is not a trivial step for a non-expert and
domain knowledgeable user.

As an option, we may use Fudge to compute the values of the fuzzy datatypes. We can ask some
domain experts, or or other users, to provide their individual definitions for the fuzzy membership
functions, and then use any of the discussed linguistic aggregation operators to compute a consensual
definition for each fuzzy datatype. For instance, we can assign a weight to each expert/user (for
instance, according to his/her professional experience in the field) and use CONV–LRF, CONV–
RRF, or WMEAN. We may also determine the vector of weights from a fuzzy quantifier or an orness
value and use LOWA–LRF, LOWA–RRF, or FOWA. 7

7 Conclusions and ideas for future work

In this paper, we have addressed the problem of building fuzzy OWL 2 datatypes via a consensual
approach among definitions provided by a group of experts, i.e., to combine the definitions provided
by a group of experts into a single one using linguistic aggregation operators. Our proposal supports
all fuzzy membership function types that are available in the Fuzzy OWL 2 language (a de-facto
standard to represent fuzzy ontologies). Let us recall that, so far, aggregation operators were used in
fuzzy ontologies to combine numerical values in [0, 1] only, but in this work we allow to use aggrega-
tion of fuzzy membership functions as well. In addition we have also proposed two novel aggregation
operators to be used in the process, namely a left recursive form of the convex combination (CONV–
LRF) and of the linguistic OWA (LOWA–LRF). An empirical analysis shows that CONV–LRF and
the standard convex combination (CONV–RRF) usually coincide, but CONV–LRF has a slightly
higher orness degree.

We also proposed to use some existing aggregation strategies: namely, CONV–RRF, standard
linguistic OWA (LOWA–RRF), weighted mean (WMEAN) and fuzzy OWA (FOWA). We discussed
some features of the aggregation strategies, e.g. the possibility to assign a weight to a specific
expert, and the possibility to obtain as an output a value which was not provided by any expert.
Furthermore, we show how to obtain the weights from fuzzy quantifiers or an orness value in problems
with incomplete data —in which not all experts provide a definition for every fuzzy datatype.

More importantly, our approach is implemented in a publicly available tool called Fudge. We
have discussed the main features of Fudge, such as two user interfaces (one for desktop computers
and another one for Android devices) and the generation of a consensual OWL 2 ontology from
several Fuzzy OWL 2 input files.

We also discuss a concrete use case: how to extend a real ontology-based system providing
location-based services to support flexible queries, by aggregation the definitions of some experts to
build a consensual fuzzy ontology. In general, any of the existing fuzzy ontology-based application
can benefit from our proposal to build them.

Concerning future work, a first idea is to wrap our implementation as a Protégé plug-in [34]
in order to better integrate the tool into the (fuzzy) ontology development process. This way, it
would be possible to directly create a fuzzy ontology, refine it with the opinion of other experts,

7This may also make it possible to evaluate how well the tool may perform in practice, which we leave for further
research.
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and query the aggregated ontology from Protégé. Right now, these steps can be carried out, but
an intermediate step involving Fudge is needed. The plug-in may also good for gathering data from
user usage to the end of an experimental validation.

The modular design of the application makes it very easy to consider more fuzzy operators.
In particular, we would like to incorporate more general linguistic aggregation operators, e.g., not
verifying internality or assuming a vector of non-numerical weights [51]. More general linguistic oper-
ators include the linguistic weighted OWA [47] or the fuzzy triangular ordered weighted arithmetic
operators (based on a t-norm and a t-conorm) [39]. We might also consider supporting different
quantifiers, or alternative rankings between fuzzy numbers.

Last but not least, it would be also possible to study other scenarios in which the experts are
allowed to use already existing linguistic terms, possibly different to the labels used by other experts.
In this case, we plan to reuse existing work on defining reasoning-preserving mappings between local
linguistic terms [1].
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A Snapshots of Fudge

Figure 6: Snapshot of Fudge: selection of input files and aggregation operator
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Figure 7: Snapshot of Fudge: vector of weights
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Figure 8: Snapshots of Fudge: selection of right-shoulder quantifier
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Figure 9: Snapshots of Fudge: selection of linear quantifier
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Figure 10: Snapshots of Fudge: selection of power quantifier

Figure 11: Snapshots of Fudge: customized picture for a power quantifier
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Figure 12: Snapshot of Fudge: computing the weights from an orness value
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a) b) c)

Figure 13: Snapshots of Fudge app: (a) set of input fuzzy ontologies and aggregation operator, (b)
quantifiers interface, and (c) customized picture for a right-shoulder quantifier
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a) b) c)

Figure 14: Snapshots of Fudge app: (a) interface for recursive operators, (b) LFR vector of weights,
and (c) vector of weights for CONV and WMEAN.
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