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CHAPTER 1
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Abstract: Alzheimer's disease (AD) is a complex neurodegenerative condition that is
clinically characterized by impaired cognitive functions. The major morphologically
observed  lesion  of  AD  encompasses  the  accumulation  of  extracellular  amyloid
aggregates  (plaques)  formed  of  amyloid-β  (Aβ)  protein  and  of  intracellular
neurofibrillary tangles (NFT) of  hyperphosphorylated Tau protein.  According to the
currently accepted amyloid cascade hypothesis, the major induction factor underlying
the loss  of  cholinergic  neurons  in  the  cortex  and  hippocampus  is  the  pathological
accumulation  of a  smaller  protein  fragments  known  as  amyloid-β  which  in  turn is
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derived from a larger membrane protein called amyloid precursor protein (APP). Based
on this hypothesis,  several diagnostic and drug-based therapeutic interventions were
suggested, mostly targeting amyloid-β and hyperphosphorylated Tau proteins. Several
data  have  emerged  that  might  indicate  the  inconsistency  of  the  amyloid  cascade
hypothesis. Moreover, due to the purely palliative nature of AD drugs used so far, new
stem  cell-based  therapy  has  been  suggested  as  a  promising  potential  therapeutic
approach. Several cell sources have been used, such as embryonic stem cells, neural
stem  cells,  mesenchymal  stem  cells,  and  induced  pluripotent  stem  cells.  While  this
suite  of  cell-based  trials  has  shown  promising  results  in  preclinical  paradigms,
stumbling  blocks  still  exist  in  the  current  treatment  regimens.  The  present  review
highlights the recent perspective that argues against the long standing amyloid cascade
hypothesis  as well  as the major efforts  in the experimental  application of stem cell-
based therapies used as treatment options for AD, and discusses the major impediments
against their successful translation into clinical.

Keywords:  Aβ42  peptides,  Alzheimer's  disease,  Amyloidogenesis,  Amyloid
precursor protein (APP), Neuronal stem cells, Pathogenesis, Senile, plaques, Stem
cells-Therapy.

ALZHEIMER’S DISEASE PATHOPHYSIOLOGY

Since the discovery of Alzheimer’s disease (AD) in 1907, two major pathological
AD associated proteins composed of amyloid β (Aβ), a small fragment of a larger
precursor  protein  called  amyloid  precursor  protein  (APP)  and  a  microtubule-
associated intraneuronal tau protein have been incriminated as the major etiology
underlying the massive loss of cholinergic neurons in the cortex and hippocampus
of the brain [1 - 3]. Using Sephadex G-100 column chromatography, and by high
performance liquid chromatography, a purified protein was derived from fibrils in
cerebrovascular  amyloidosis  associated  with  Alzheimer's  disease  has  been
isolated.  This  protein  have  no  homology  with  any  protein  sequenced,  and  may
provide a diagnostic test  for  Alzheimer's  disease and a means to understand its
pathogenesis [4].

A  monoclonal  antibody  to  the  microtubule-associated  protein  tau  (tau)  labeled
some  neurofibrillary  tangles  and  plaque  neurites,  the  two  major  locations  of
paired-helical  filaments  (PHF),  in  Alzheimer  disease  brain.  [5].

Massive neuronal loss is associated with major synaptic losses reflected clinically
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as gradual loss of recent memory functions and late-life dementia [6]. Based on
the  observed  AD-associated  pathology,  the  “amyloid  cascade  hypothesis,”  was
proposed [7,  8]. Major evidence for this hypothesis included the discovery that
mutations of APP genes are among the major genetic makeup of AD [9,  10].

During the last century, the amyloid cascade hypothesis represented the roadmap
by  which  AD can  be  diagnosed  and  treated.  Unfortunately,  in  most  cases,  this
simple straightforward linear hypothesis failed to explain the complex biological
and  molecular  pathways  associated  with  the  perplexing  and  devastating  AD
pathology. Smith et al. [11] stated that alternate interpretations of old data as well
as  new  evidence  indicates  that  amyloid-beta,  far  from  being  the  harbinger  of
disease, actually occurs secondary to more fundamental pathological changes and
may even play a protective role in the diseased brain. These findings bring into
doubt  the  validity  of  the  Amyloid  Cascade  Hypothesis  as  the  central  cause  of
Alzheimer  disease  and,  consequently,  the  potential  usefulness  of  therapeutic
targets against amyloid-beta protein. This became more clear when many of Aβ
and tau-protein-based preclinical and clinical trials failed to restore lost neuronal
and cognitive functions associated with AD pathology [12,  13].

The palliative nature of AD drugs developed so far and the failure of amyloid and
tau-based therapeutic protocols have prompted several investigators not only to
point out the possible inconsistency of the amyloid cascade hypothesis, but also to
start searching for novel non-drug based therapeutic protocols such as stem cell-
based therapy [14]. In this respect, several cell sources have been used with the
aim to provide an ample supply of suitable progenitor cells that might restore the
lost neuronal and synaptic elements associated with AD [15,  16].

This review explores novel data that may modify or replace the amyloid cascade
hypothesis, and presents major experimental findings relevant to stem cell-based
therapy for AD.

GENERAL VIEW ABOUT AD

AD represents one of the major public health burdens in elderly population. The
ratio of AD occurence is approximately one to nine in individuals of age < 65 year
old and such figures worsen as the population of the world ages to approximately
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one in three over 85 years age [17]. AD pathology as collected and depicted in
Fig. (1) include massive loss of cholinergic neurons in different brain areas such
as the substantia nigra, subcortical structures such as the basal nucleus of Meynert
and the locus coeruleus are also damaged [18].

Fig. (1). Schematic representation of the pathology of Alzheimer’s disease depicting the multifactorial
perplexed  feature  of  AD  disease.  The  figure  depicts  the  role  of  amyloid-β  (Aβ)  in  the  formation  of
extracellular  amyloid  aggregates  which  in  turn  will  results  in  the  formation  of  Tau  aggregates  and
neurofibrillary  tangles  (NFTs)  which  contribute  to  the  neuronal  loss,  synaptic  dysfunction,  and  diseased
neurons characteristic of AD. In addition, the periplaque activation of astrocytes, resulting in the release of
various  cytokines  (CK),  and  microglia,  leading  to  the  generation  of  superoxide  radicals  (O2-).  The
contribution of damaged mitochondria due to aging plays a role in the accumulation of free radicles which
leads  to  change  in  the  energetic  efficiency  of  neuron.  The  loss  of  Ca2+  homeostasis  explained  by  the
excitotoxic  activity  is  a  core  contributing  cause  in  AD  pathogenesis.  Changes  in  the  gut  microbiome
composition may also contribute to AD pathology. [Parts of the figure were reproduced with permission from
references [17, 27, 32]].

A  major  hallmark  of  AD  pathology  is  the  deposition  of  amyloid  β  and
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hyperphosphorylated tau; this is usually associated with dramatic synaptic loss [2, 
19]. These lesions explains the well-known AD symptoms ranging from loss of
memory for recent events to complete dementia with severe behavioral symptoms
such  as  apathy  and  depression  [20,  21].  It  is  important  to  indicate  that  the
inclusion of such hallmarks is arbitrary and perpetuates the difficulty of properly
studying  the  etiology  of  AD,  because  it  is  nothing  more  than  a  tautological
element in support of the amyloid cascade hypothesis: amyloid must be present in
the brain in order for a patient to be defined as suffering from dementia of the AD
type.  That,  by  definition,  eliminates  the  sub-population  of  clinically  diagnosed
AD patients with no amyloid load from the AD category, and hampers progress
on our understanding of the disease.

GENETIC BASIS OF AD AND AMYLOID CASCADE THEORY

First,  it  is  important  to  highlight  that  he  pathogenic  sequence  of  familial  and
sporadic AD are very different, and that there is no published evidence indicating
that the latter begins with amyloid accumulation. Thus, the genetic basis of AD
only applies to the familial form of the disease. A detailed discussion of this issue
can be found in Ageing Research Reviews [21]. AD is a genetic disease and the
two forms of the disease are recognized as early- and late-onset AD. Mutations in
the  amyloid  precursor  protein  (APP)  gene  interfere  with  the  normal  cleavage
process of APP leading to the formation of pathologic proteins especially in early
onset AD [22].

Under normal conditions, the micro processing of APP involves two consecutive
cleavage  events  [12,   24].  The  first  cleavage  as  was  shown in  Fig.  (2a)  occurs
close to the outer cellular membrane and is mediated by the extracellular protease
α-secretase  leading  to  the  formation  of  a  soluble  extracellular  fragment  sAPPα
[10]. The second cleavage occurs within the membrane by an enzyme known as
γ-secretase  and  leads  to  the  formation  of  an  intracellular  peptide  known  as
amyloid intracellular domain (AICD) and smaller peptides between the α- and γ-
secretase cuts [10]. The benign nature of the second cut is mediated by one of the
presenilin  proteins,  encoded  by  either  psen1  or  psen2  genes  which  affect  the
catalytic  subunit  of  γ-secretase  [10].
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Fig. (2). The amyloid cascade hypothesis of Alzheimer’s disease representing the classic theory of the
origination  of  Alzheimer’s  disease  (AD).  The  amyloid  protein  precursor  (APP)  is  processed  by  two
consecutive proteolytic pathway events. The first cleavage (a) occurs close to the outer membrane and is
mediated  by  membrane  embedded α-secretase  which  leads  to  the  release  of  soluble  extracellular  domain
(sAPP- α) and smaller peptides between α and γ secretase cuts, which are cleared in normal neurons. In AD
(b), the APP metabolism is shifted from alpha to beta cleavage products by β- and γ-membrane embedded
secretases.  leading to the formation of extracellular Aβ monomers and oligomers which contribute to the
formation of the senile plaques or amyloid aggregates, the enzymatic activation of caspases through TERM 2
receptor, formation of neurofibrillary tangles, neurodegeneration, and eventually cell death. Both processes
produce identical intracellular C-terminal fragments (AICD), C-terminal fragment (CTF), and N-terminally
truncated Aβ (p3). Parts of the figure were reproduced with permission from reference [20, 23]. Additional
part of the figure were used with permission from Mayo Foundation for Medical Education and Research,
Rochester, Minnesota, USA.

The α-secretase first cut is defective in case of AD as was shown in Fig. (2b) and
APP is cleaved farther from the membrane by an aspartyl protease enzyme known
as β-secretase, followed once again by γ-secretase cleavage [10]. The amino acid
residue  between  the  two  cuts  is  mediated  by  β  and  γ  cleavage  sites  form  the
amyloid-β (Aβ) peptide. The Aβ accumulates in the form of oligomers leading to
the formation of amyloid plaques [25, 26].

The main genetic predisposition factor of AD encompasses three main genes APP,
PSEN1, and PSEN2 which are implicated in the early onset, familial AD (fAD)
[10].  Various  mutations  of  these  key  player  genes  are  known  to  interfere  with
APP cleavage, leading to increased production of Aβ42 which is implicated in AD
pathology [10]. This observation argues in favor of the amyloid cascade theory.
Other supporting evidence for the amyloid cascade theory stems from the recent
observation that mutation of APP near the β-secretase cleavage site interferes with
the  function  of  β-secretase,  leading  to  decrease  of  Aβ  production,  and  thus
presumably  having  a  protective  role  against  AD  pathology  [27].

The Amyloid Cascade Hypothesis

The AD pathology develops gradually over a considerable period of time and it is
explained  by  the  imbalance  in  Aβ  production  and/or  clearance.  The  amyloid
hypothesis  model  was  first  proposed  by  Glenenr  and  Wong  [28,   29].  The
oligomeric  and  fibrillar  forms  of  Aβ  are  the  main  driving  factors  behind  the
development  of  AD  pathology  which  includes  neuronal  loss,  synaptic  dys-
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function,  and  formation  of  neurofibrillary  tangles  [30].

Argument Against the Amyloid Cascade Hypothesis

The amyloid cascade hypothesis was poorly supported as summarized in Fig. (3)
solely on the basis that AD genetics, involvement of APP, and its processing by
presenilin. The amyloid cascade model did not provide a direct enough evidence
for the involvement of Aβ as the main cause behind the initiation of AD pathology
[31 - 33].

Fig.  (3).  Challenges  to  accept  the  amyloid  cascade  hypothesis.  The  figure  depicts  the  different
observations,  controversies,  and  anomalies  that  have  important  implications  in  explanation  of  the
pathogenesis  of  AD  on  the  sole  basis  of  amyloid  β  protein  concept.  [Parts  of  the  figure  were  used  with
permission from Mayo Foundation for Medical Education and Research, Rochester, Minnesota, USA].

Despite  the  fact  that  amyloid  cascade  hypothesis  is  largely  dependent  on  the
presence of mutations of APP genes, uptill now there hypothesis was no evidence
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that clearly link mutations in APP, and AD symptome. Moreover, no mutations
were  reported  in  either  the  β-  or  α-secretase,  major  enzymes  responsible  for
cleavage of APP, that either lead to inductions of fAD or guard againist it [33].

Furthermore, the sporadic form of AD (sAD) is more prevalent that fAD, and its
high  risk  is  caused  mainly  by  mutation  in  the  apolipoprotein  E  (APOE)  gene
leading  to  a  two-amino-acid  switch  in  its  normal  amino  acid  sequence,  thus
producing the APOE4 variant of the protein [31]. Thus, sAD does not appear to
involve  genes  for  either  APP  or  secretases  as  risk  factors  which  might  argues
against the amyloid cascade hypothesis [10,  34].

Results  from several  experimental  and  clinical  trials  argue  against  the  amyloid
cascade hypothesis. In some individuals, massive amounts of amyloid aggregates
could  be  localized  in  the  brain  with  few  if  any  clinical  AD  symptoms;  thus
amyloid is not sufficient to cause disease [35,  36]. Transgenic mice that carry a
variant defective human APP gene together with a mutated form of presenilin 1
and 2 produce substantial amounts of amyloid in their brain and despite their poor
performance  in  tests  of  spatial  memory  (such  as  the  Morris  water  maze)  they
never develop any of the well-known AD pathology [37]. Moreover, transgenic
mice  that  express  amyloid-β  peptide  only,  with  no  APP  expression,  develop  a
considerable amount of amyloid-β with no cognitive deficits [37], such data thus
provide a strong suggestion that Aβ alone is not sufficient to cause the complex
AD symptoms and pathology.

Beside  apoE  polymorphisms  which  are  being  linked  to  differential  AD  risks,
current genome-wide association studies (GWAS) expand the early findings on
apoE and highlight  three  key pathways as  being linked to  AD risk:  cholesterol
dysregulation, immune response and endocytosis. An increasing number of results
implicating cholesterol metabolism in the pathophysiology of AD. Cholesterol, its
transporter in the brain, apolipoprotein E, amyloid precursor protein, and amyloid-
beta all interact in AD pathogenesis [38].

Removal  of  macroscopic  plaques  in  mice  through  active  and  passive
immunization against the Aβ peptide and the use of anti-inflammatory drugs was
shown to be effective in removing amyloid plaques from the brain [39,  40]. The
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clearance  of  Aβ  plaques  was  associated  with  improvement  in  behavioral
performance  and  restoration  of  the  damaged  neural  networks.  The  rapid  and
nearly complete restoration of normal behavior may indicate that although these
models may reproduce some of the early stages of AD, they do not fully represent
the  massive  permanent  damage  that  occurs  along  the  course  of  AD  in  human
patients [39,  41].

Immunization  against  Aβ  in  humans  was  tested  in  sAD  subjects.  Several
participants have developed anti-amyloid antibodies and the plaque pathology was
reported to be drastically reduced [42,  43]. Despite the great reduction in plaque
load, the associated cognitive impairment did not improve, and in most cases the
dementia  appeared  to  be  aggravated  [44].  The  most  likely  reason  for  this
phenotype is the proposed protective role of amyloid in the brain. Understanding
such  role  would  clearly  provide  the  intellectual  framework  that  is  currently
missing  in  the  discussions  on  the  amyloid  cascade  hypothesis.  In  that  regard,
amyloid  can  be  protective  against  upstream  pathogenic  triggers,  such  as
cholesterol, inflammation and oxidative stress that are more solidly linked to AD
than amyloid itself, both by GWAS as well as by population studies. This notion
is a significant conceptual contribution to the debate, first proposed by the Perry
lab, and has been discussed at length in the following references [21,  45].

Further  arguments  against  the  amyloid  cascade  hypothesis  were  deduced  from
repeated failure of clinical trials to demonstrate possible beneficial effects of anti-
amyloid-β antibody therapy even after as much as 80 weeks of therapy [46,  47].

Therefore,  AD  pathology  cannot  be  only  explained  based  on  a  simple  linear
model  such  as  the  amyloid  cascade  hypothesis.  Instead,  there  are  alternative
hypothesis to account for the development of the disease [48]. AD is a complex
array  of  the  lesions  including damage in  the  brain’s  neuronal  circuits,  synaptic
failure, neuritic atrophy, tauopathy, failure of autophagy, and lysosomal functions
[49  -  51],  and  a  loss  of  Ca2+  homeostasis  which  may  be  explained  by  the
excitotoxic activity. These are considered the core mechanisms of AD [52 - 57].
Other studies have suggested that AD is associated with a failure of neuronal cell
cycle  control  [58  -  67],  neuroinflammation  [68  -  73],  progressive  oxidative
damage  [74]  that  accumulates  with  age  [75],  DNA  damage  [76  -  83],  loss  of
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mitochondrial function [84 - 86], or a complex senescence phenotype [87]. More
recently, the involvement of human microbiota including bacteria and fungi in the
secretion  of  lipopolysaccharides  (LPS)  and  other  related  pro-inflammatory  and
neurotoxic  substances  which  significantly  contribute  to  AD-related  neuro-
degeneration  and  age-related  neuroinflammation  has  been  described  [88  -  91].
Other  possibilities  include  impairment  in  glucose  metabolism  [92,   93]  or  a
general  metabolic  compromise  [94  -  96].  Although  Aβ  was  believed  to  be  the
most  frequent  underlying  cause  concomitant  of  the  AD  disease  process,  much
evidence suggests that it is neither necessary nor sufficient alone to induce the AD
associated  damage.  Each  of  the  aforementioned  processes  may  contribute  in
important pathways towards the development and progression of AD disease [31].
Recent GWAS studies have provided the strongest available evidence that other,
non-amyloid factors are involved in late onset AD. This topic has been discussed
at length in our recent paper [97].

Stem Cell-Based Therapy for AD

It was previously shown that the pathogenesis of AD is probably multifactorial.
Effective therapeutic strategy for the treatment of AD has not yet been available.
AD  therapy  should  be  comprehensive  and  tackle  the  complex  multiple  factors
contributing to the pathogenicity of the disease. Recently, stem cell technologies
have  succeeded  in  generating  different  types  of  neuronal  and  glial  cells  from
different types of stem cells. This achievement may be a crucial step in providing
hope for the  possible  use of  stem cell  therapeutics as a  novel treatment for AD
[98 - 109].

Neural Stem Cell-Based Therapy for AD

Neural  stem  cells  (NSC)  are  multipotent  progenitor  cells  located  in  specific
regions of the brains such as the subventricular zone (SVZ), the subgranular layer
of the hippocampus, and olfactory bulbs. The cell characteristics fit well with the
standards criteria for any viable stem cells, namely: the ability to self-renew, the
ability  to  differentiate  into  different  kinds  of  nervous  tissue-specific  cells
(including  neurons,  astrocytes,  oligodendrocytes)  and  the  ability  to  replace
damaged tissue following their engraftment as shown in Fig. (4). NSC have been
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isolated from human fetal brain tissue [110,  111] and from different regions of
adult human brain such as the olfactory bulb [112 - 115], cortex, hippocampus,
and  SVZ  of  the  lateral  ventricles  [116].  Isolation  of  NSC  from  the  human
olfactory bulb (OB) provides a promising approach to cell-based therapy for AD
which overcomes possible immunorejection,  avoids ethical  issues raised by the
use of human embryos, and provides a chance for personalized medicine [117].
NSC can be transplanted either as a wild type or can be genetically engineered to
overexpress several  active substances of  known trophic influences for  different
elements constituting the CNS tissues [118].

Fig. (4). Schematic representation showing the differentiation of neural stem cells (NSCs) into different types
of nervous tissue-specific cells including neurons, astrocytes, or oligodendrocytes and the ability of these
cells  to  replace  damaged  tissue  following  their  engraftment.  NSCs  may  be  genetically  programmed  to
produce neurotrophic factors such as brain-derived neurotrophic factor (BDNF), nerve growth factor, and
vascular endothelial growth factor.

The  marked  ability  of  NSC  to  differentiate  into  neurons,  astrocytes,  and
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oligodendrocytes following transplantation seems to be promising for cell-based
therapy.  In  our  previous  studies,  NSC  isolated  from  the  adult  human  OB
(OBNSC)  were  able  to  proliferate  in  culture  for  several  months  [118].  The
OBNSC differentiated into MAP2-immunoreactive mature neurons (17.5%) in the
presence of 1% fetal bovine serum, β-tubulin immature neurons (5%), astrocytes
(75%) and fewer oligodendrocytes (2.5%). The human OBNSC were genetically
modified to overexpress human NGF (hNGF) and green fluorescent protein (GFP)
genes [119]. Engraftment of human OBNSC into the hippocampus of an ibotenic
acid-treated  AD  rat  model  restored  memory  deficits  and  hippocampal  histo-
architecture [112 - 115,  118]. Transplantation of F3. NGF human NSCs in mice
following  ibotenic  acid-induced  hippocampal  damage  was  associated  with
improved  cognitive  functions,  and  restoration  of  lost  neurons  within  the
hippocampal  regions,  indicating  the  positive  neurotropic  effects  exerted  by  the
biological  action  of  hNGF  [120].  Direct  intracerebral  engraftment  of  NSC
genetically modified to over-express nerve growth factor (NGF) gene promoted
the  hippocampal  regeneration  and  restored  age-related  atrophy  of  cholinergic
neurons  [121].

Neurotrophins  activate  a  number  of  signalling  pathways  relevant  to  neuro-
protection; however, their poor pharmacological properties and their pleiotropic
effects resulting from interaction with the p75(NTR)-Trk-sortilin three-receptor
signalling system limit therapeutic application [122]. The traditional perspective
of applying neurotrophins in the context of Alzheimer's disease is based on the
premise that neurotrophins are capable of upregulating cholinergic function and of
rendering neurons less vulnerable to certain processes causing degeneration [123].
Neurotrophins have potential for the treatment of neurological diseases. However,
their therapeutic application has been limited owing to their poor plasma stability,
restricted nervous system penetration and, importantly, the pleiotropic actions that
derive  from  their  concomitant  binding  to  multiple  receptors.  One  strategy  to
overcome these limitations is to target individual neurotrophin receptors — such
as tropomyosin receptor kinase A (TRKA), TRKB, TRKC, the p75 neurotrophin
receptor  or  sortilin  —  with  small-molecule  ligands  [124,  125].  Application  of
neurotrophic factors able to modulate neuronal survival and synaptic connectivity
is a promising therapeutic approach for AD. Ciliary neurotrophic factor (CNTF)
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and/or  CNTF  receptor-associated  pathways  may  have  AD-modifying  activity
through protection against progressive Aβ-related memory deficits [126]. Ciliary
neurotrophic factor  oral  administration in 3xTg-AD and wild type female mice
was associated with significant reduction in abnormal hyperphosphorylation and
accumulation of tau at known major AD neurofibrillary pathology [127]. 

NSC  can  be  derived  from  different  primary  tissues  such  as  fetal,  postmortem,
neonatal or adult brain tissues [109], or from ESCs and iPSCs [128 - 130]. In an
AD  mouse  model,  the  engrafted  NSCs  survived,  differentiated  into  different
neuronal and glial elements, and improved learning and memory function [131, 
132].  Transplantation of  rat  NSC in  fimbria-fornix  has  been shown to  improve
memory function, and to restore lost cholinergic neurons [133,  134].

The specific microenvironment (niche) of the recipient brain has been shown to
have  a  major  impact  on  the  proliferation  and  differentiation  potential  of  the
engrafted NSCs. In this regard, it has been revealed that overexpression of human
amyloid  precursor  protein  shifted  the  differentiation  potential  of  the  engrafted
NSCs  to  form  more  astrocytes  than  neurons  or  oligodendrocytes  [135].  In
contrast, it was previously demonstrated that genetic engineering of NSC to over-
express  nerve  growth  factor  (NGF)  helped  promote  proliferation  and
differentiation  of  engrafted  NSC.  It  was  demonstrated  that  NSCs  that  are
genetically  modified  to  stably  express  hNGF  engrafted  well  into  the  cerebral
cortex of AD rats and enhanced different cognitive parameters; an effect that was
not show upon engraftment of non-genetically manipulated NSC [100].

NSCs have also been used as a vehicle for several amyloid-inhibitory genes such
as  neprilysin,  insulin  degrading  enzyme,  plasmin,  and  cathepsin  B  [107].
Fibroblast-delivered neprilysin has been shown to reduce amyloid plaques in AD
mice  [102,   136].  Engraftment  of  embryonic  NSCs  isolated  from  embryonic
medial ganglionic eminence (MGE) into the hippocampal hilus of aged apoE4-KI
mice  (with  or  without  Aβ  accumulation)  developed  into  mature  inhibitory
interneurons  and  rescued  learning  and  memory  despite  the  toxic  environment
created by Aβ and apoE4 [137]. Such inhibitory GABAergic interneurons could
connect  to  more  than  thousands  of  excitatory  neurons  leading  to  significant
improvement  of  learning  and  memory  functions  [138,   139].
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Several  other  cellular  sources  have  been  used  to  treat  animal  models  of  AD
pathology  in  addition  to  NSCs  such  as  embryonic  stem  cells  (ESCs),  mesen-
chymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) and these
cells have been shown to be effective in removal of AD pathology. These cells
can improve the cognitive ability of animals [120,  133,  134,  140 - 146] by cell
replacement [140,  144], Aβ reduction [133,  134,  141,  142], neurotrophic action
[133], and immune modulation [122]. Following engraftments, ESCs, NSCs and
MSCs-derived  from  bone  marrow  have  been  shown  to  survive,  migrate,  and
differentiate  into  cholinergic  neurons,  restoring  spatial  learning  and  memory
ability  for  AD  animal  models  [142].

Induced Pluripotent Stem Cell-Based Therapy for AD

De novo generation of neurons from iPSCs seems to be a promising approach for
AD  treatment.  New  neurons  generated  from  iPSCs  from  familial  AD  patients
exhibited  positive  MAP2  and  β  III-tubulin  expression,  normal  electro-
physiological  activity  in  vitro,  and  formed  functional  synaptic  contacts.  The
genetic background of AD patients from which iPSC-derived neurons originated
is reflected in the formed neurons, which displayed similar pathological features
[147].  This observation necessitates the final  tuning of iPSC technology before
translation into AD patients. One possible way to alter the associated mutation is
the use of  recent  genome editing protocols  to  eliminated associated deleterious
AD variants.

Direct programming of somatic cells into functional neurons or induced neurons
(iN) seems to be a possibly effective protocol for AD cell-based therapy. The iN
might represent a direct source of replacement for lost neurons that are associated
with  AD  pathology.  However,  such  direct  differentiation  protocols  usually
provide  low  yields  of  non-proliferated,  terminally  differentiated  neurons.  The
lower cellular yield in this protocol might limit its broad application in cell-based
therapy for AD [148]. It is suggested that direct reprograming of somatic cells into
induced neural progenitor cell (iNPCs) which have the ability to differentiate into
all types of neural cells would be a potential promising therapeutic strategy for
AD pathology [149 - 151].
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A major  breakthrough  in  the  field  of  stem cell-based  therapy  for  AD has  been
achieved  in  converting  somatic  cells  into  iNSCs  using  defined  transcription
factors [152,  153]. The iNSCs elicited in this technique have been shown to share
similarities  with  NSC  in  proliferation,  differentiation,  and  self-renewal
capabilities.  The  iNPCs  were  also  obtained  from  mouse  embryonic  fibroblasts
using  chemical  cocktails  under  a  physiologically  hypoxic  condition,  without
overexpression of exogenous genes [154,  155]. Direct conversion of somatic cells
into iNPCs may well overcome the ethical issue associated with the collection of
cells  from  human  embryos,  and  at  the  same  time  it  should  help  to  reduce  the
tumorigenic nature of the iPSCs [154,  156].

Despite the apparent success in the direct reprogramming of somatic cells into iN,
and iNPSc which have proven to be able to give rise to all types of neural cells,
efficient  induction  of  cholinergic  neurons  from  NSC  and  iNPCs  remains  a
challenge.  Under  typical  culture  condition,  the  great  majority  of  NSCs/NPSCs
seem to be converted into glial restricted states, with low efficiency for specific
neuronal subtypes [157]. Moreover, most of the transplanted NSCs/NPCs tend to
be converted into astrocytes, especially in response to injury [158,  159]. Based on
these observations, it seems plausible that using AD cell-based strategy that have
been primarily directed to produce specific neuronal subtypes, such as forebrain
cholinergic  neurons,  will  be  more  effective,  especially  the  apparent  loss  of
cholinergic neurons associated with AD pathology, and the selective degeneration
of  septal  and  hippocampal  GABAergic  neurons  reported  in  AD mouse  models
[160].  Thus,  direct  conversion  of  somatic  cells  into  GABAergic  neuronal
progenitor seems to be a promising avenue for further exploration in strategies for
AD treatment.

One of the recently discovered protocols that might revolutionize the field of cell-
based  therapy  of  AD  is  the  direct  in  vivo  conversion  of  somatic  cells  such  as
astrocyte into region-specific iPNCs in the AD brain [161,  162]. These studies
will contribute to the conversion of active astrogliosis into neurogenesis, possibly
leading to the formation of disease specific neurons, such as forebrain cholinergic
neurons. Such novel therapeutic strategy could potentially overcome the need for
an  invasive  transplantation  protocol,  and  also  provide  an  effective  tool  for
personalized  medicine.
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Expert View and Future Perspectives

The amyloid cascade hypothesis  is  a  relatively simple linear theory that  relates
most if  not all  of the AD pathology to the pathological  aggregation of amyloid
beta  in  brain regions known to be involved in learning and memory.  Defective
APP breakdown products formed as result of mutations of key AD-related genes
may  be  at  the  core  of  AD  pathology.  Despite  the  central  role  of  Aβ  in  the
initiation of AD pathology proposed in the amyloid cascade hypothesis, a number
of alternative mechanistic pathways of viewing the disease have been suggested,
such  as  progressive  loss  of  integrity  in  the  brain’s  neuronal  networks,  gradual
decrease in synaptic density, increasing neuritic atrophy, and eventually widely
dispersed  cell  loss.  Moreover,  there  is  enough  evidence  to  support  that  AD
represents  a  failure  of  autophagy  and/or  lysosomal  function,  loss  of  Ca2+

homeostasis due perhaps to excitotoxic activity. Other alternative causes include
failure of neuronal cell cycle control, neuroinflammation, progressive oxidative
damage that  accumulates with age, DNA damage, loss of  mitochondrial function
and general metabolic compromise. These have all been argued to be root causes
of the disease.

Amyloid is a frequent contributor to the AD disease process, however evidence
suggests that it is neither necessary nor sufficient. The biology of AD is perhaps
one of the most perplexing systematic malfunctions of the nervous system so far
known. Indeed, it is likely that we will need to address all of the listed options if
we are to cure AD or completely prevent it.

Cell-replacement therapy for AD has achieved some success in animal models of
AD. Although these preclinical studies are promising, many obstacles are required
to be addressed before successful translation into therapy for human AD patients
can  be  achieved.  Different  types  of  stem  cells  are  used  for  testing  cell-based
therapy in animal models of AD, such as embryonic,  mesenchymal,  and neural
stem cells, and recently induced pluripotent stem cells were included. These cells
are either engrafted without any genetic manipulation as naive wild type cells or
they  are  genetically  engineered  to  overexpress  specific  biologically  active
substances that can alter AD molecular pathways. At the preclinical level, most of
the engrafted cells survived, proliferated, and differentiated into different neuronal
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subtypes,  although  the  hostile  environment  of  AD  in  many  cases  favors  the
transformation of them into astrocytes rather than neurons. This caveat prompted
many  investigators  to  directly  reprogram  somatic  cells  into  specific  cell  types
such as the cholinergic neurons that are known to be lost in AD brain. The low
yield  of  differentiated  neurons  also  prompted  many  investigators  to  find  a
mechanism by which somatic cells could be transformed into neuronal progenitor
cells rather than fully differentiated neurons. Such approaches should enhance the
proliferative and differentiating features of the transformed cells to enhance the
ability to replace all of the lost neuronal and glial cell types.

Progress  in  the  stem  cell  research  field  has  also  opened  new  windows  to  the
generation  of  region-specific  and  subtype-specific  neural  progenitors  through
direct reprogramming from somatic cells, thus creating another new concept for
potential  AD  treatment.  Moreover,  instead  of  cell  transplantation,  directly
reprogramming of activated astrocytes already in the pathological site of AD brain
into  region- or  subtype-specific  iNPCs  by  direct  injection of  defined  factors
in vivo, could be a promising strategy. Development of comprehensive therapeutic
protocols for provision of different cell types and stages, together with anti-Aβ,
and anti-Tau antibodies will be a crucial step for clinical translational studies in
human AD patients.
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