Consiglio Nazionale delle T&‘ceééhe

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

" GLOBAL REQUESTS IN A DISTRIBUTED DATA BASE
SYSTEM FOR OFFICE AUTOMATION PURPOSE

F. Rabitti

Nota Interna B80-17
Luglio 1980

"Global Request in a Distributed Data Base System for Office
Automation Purpose

F. Rabitti*®

Istituto Elaborazione della Informazione - C.N.R. - Pisa

* I1 Dottor Fausto Rabitti ha svolto la sua attivitad di borsista C.N.R.
presso l'Istituto di Elaborazione della Informazione negli anni 1978-
-79, attivita che ha proseguito nel 1880 presso il Computer Systems
Research Group dell'Universita di Toronto, grazie ad una borsa C.N.R.
per l'estero.

1 Discussion of Global Requests problem in OFS.

- Introduction and discussion of the Global Requests problem in the QFS
Distributed Data Base System.

1.1 Global Query requirements in the general case.

The Global Query {GQ) problem in a Distributed Data Base (DDB) consists
in allowing an end-user (either an on-line user, on a high level conversa-
tional interface, or an application program) to perform a query on any re-
lation of the DDB, involving any possible file storing such relations,
without being aware about the locations of these files in the Distributed
System.

A further requirement about the GQ is that the answer must be con-
sistent with the global data model of the DDB (that is. each data element,
logically involved in the GQ, must be correctly considered, respecting the
logical relations of the data model) and with the actual situation of the
DDB (that is, the answer must refer to the most up-to-date situation of
the DDB).

It is impossible, in principle, to obtain an answer to a GQ which refers to
the situation of the DDB at the moment of the reception of the answer,
because of the concurrent activities, such update operations, in progres-
sion on the Distributed System (DS), unless completly blocking all the
other activities in the DS excepting those involved in the GQ.

It might be reasonably required that the answer to a GQ refers to the si-
Luation of the DDB at an intermediate moment between the occurrence of
the request and of the answer. Of course, shorter this interval is, more
up-to-date the answer to the GQ can be assumed.

In the general case there can be multiple copies of the relations, or of
sets of tuples constituting each relation, and they can be located in
several nodes of the DS. In this case, the most convenient copy (the least
expensive one, in terms of network load), among the ones which are
currently up-to-date, ought to be accessed; this decision, in a distributed
environment, is not an casy matter.

The problem of allowing general GQs in a DDB is very difficult to be
solved in an cflective way, that is, without overloading the DS and the

Communication Subsystem, in detriment of performeance, or without
blocking the other concurrent activities in the DDB.

Obviously, the property of this consideration depends from the amount
of processing power that is available, in the DS, for the execution of gen-
eral GQs. As it bas been shown by actual implementations, like the Distri-
buted Ingres (Ref.1) and the SDD-1 (Ref.2), at the state of art of today the
processing of general GQs can be considered acceptable, even if it is not
good yet, in a DS of considerable processing power; but it cannot be con-
sidered acceptable in a DS of limited processing power, based for in-
stance on cheap Micro and Mini systems as nodes. In the latter case,
there is no choice between overloading the DS with an unbearable amount
of work or blocking the other concurrent activities allowed in the DDB.

In the general case, performing a join between two relations (see the fol-
lowing Example-1) implies that, if a copy of both relations is not com-
pletely kept in one location of the DS, a heavy communication activity {ei-
ther in size or in number of messages) is required across the network.

The situation becomes far more complex when a relation can be spread
among several locations (nodes) of the DS; that means the tuples compos-
ing the relation can be located in several nodes, and the same tuple oc-
currence can be stored in more than one node, if duplication is allowed.

In the second case, a larger amount of communications activities can
result necessary for a GQ: they must occcur among a group of locations
which altogether keep at least one occurrence of each tuple, for each re-
lation involved.

In this latter situation, also a GQ logically involving only a relation (see
the following Example-2) may require, for example in case of a nested
query, that more than one node in the DS (again, a group of locations
which altogether keep at least a copy of each tuple of the relation in-
volved), must cooperate, in a likely complex way, in order to build up the
answer.

It must be remarked that the policy of keeping a complete copy of a re-
lation in many nodes of the DS, which could be considered as the easiest
solution to the previous G§ problems, besides the aspect of storage space
wasting, presents a severe trade-off in securing multiple copies consisten-
¢y, in consequence of concurrent update operations.

Fzomples

Two examples are-shown here, to explain the previous two kinds of prob-
lerms.

They make use of the SLQ (Sequel-Like-Query) language of MRS (Ref.3), a
relational data base systenw '

Ezayyple-i

Given: Rel’ (Atte. 1’ Attr.2’, ... Attr N*)
Rel” (Attr.1"”,Attr.2", ... ,Attr.N")

Join query:

select Attr.lc’ Attr.l” from Rel’,Rel” .
where Attr.i’=Attr.]" and clause{Attr'] and clause{Atir"]

NOTE: clausefAttr’] shows whichever compound condition, as allowed in
MES, on a subset of attributes of Rel’. '

Ezample-2
Given: Rel (Attr.1,Attr.2, ... ,Attr.N)
Nested query:

select Attr.i from Rel where Attr.k
in.select Attr.k from Rel where clause{Attr]

The Global Query problem is to be studied, here, in the Distriduted Data
Bese environment on which the Office Form System (Ref.4) is based.

The Office Form System (OFS) is a distributed system for office automa-
tion purpose, which desls mainly with data items in "form” formab; be-
sides the OFS is intended to work in a distributed environment based on
processing units of limited capability, like Micro and Mini systems.

The representation and handling of these forms, as well as the mainte-
‘nance and use of internal control structures, are strongly based on an
underlying Relational Data Base, MRS (Ref.3) compatible (that is, this Re-
lational DB can be accessed through the MRS, too).

In OFS environment there is a one-to-one correspondence between form
type and relation, and between form occurrence and tuple. Fields of a
form are merely atiributes of the corresponding relation.

Nevertheless this Relational DB, distributed over muitiple OFS stations -
(which constitute a Distributed System) is not really an integrated Distri-
buted Data Base System.

In fact, each OFS station owns its Relational DB (or better, its set of Re-
lational DBs). all Relational DBs in such total DS are compatible (they
bave the same relation definitions), but each OFS station can access only
the DB (or DBs} located inside itself. Moreover, the interactions between
the DBs in different stations are mainly for specific OFS purposes, as ex-

- plicitly sending and receiving forms among the stations, and not for more
genersl purposes characterizing e Distributed Data Base System, as Glo-
bal Query and Global Update operations on relations spread over the DS.

This previous situation corresponds to the original aims of OFS project.
But the OFS has been further studied and adapted for the development of
more advenced office automeation procedures in a distributed environ-
ment, above all in the direction of the automation of several procedural -
activities, as in the case of "sketch" mechanisms {Ref.5), and their pro-
gressive integration in a functional Office Information System (Ref.8).

Developping this kind of researches, it has become evident the useful-
ness of providing the single OFS station (whether under control of an
end-user, with possible help of several automatic procedures, or complet-
ly eutomatized) with Global Data Base services on data contained in forms
within the overall Distributed System.

Allowing Global Queries, and eventually Global Updates, in the OFS Distri-
buted System means thal it becomes also a resl Distributed Data Base
Systen.

1.3 DDB special featu

es in OFS envi

- Special features and restrictions of the Distributed Data Base in OFS en-
virenment.

Some special features, which characterize the OFS distributed environ-
ment, will characterize also -the definition of this pwtiaul&r Distributed
Data Base Sygtam

Let us examine the most relevant aspects of OFS, mainly as regards to
the definition of the underlying DB environment.

In the OFS environment there is a total identification between the con-
cepts of:

[form type| <=> |relation|
[form occurrence of a type| <=> [tuple of a relation]
|field of a form type| <=> |attribute of a relation

These two kinds of terminology can be alternatively used according
whether the same objects are seen in the view of the Office Form System
or in the view of the underlaying Relational DB. The only real difference
concerns the OFS user interface.

In effect, although the OFS stores and manages forms as tuples in rela-
tions, included the uses of indices, the end-user of OFS sees a form like a
paper form displayed on his screen. For all the OFS operations at the user
interface (flling, finding, modifying, etc.) a form is presented in this way.

That is sccomplished wusing e special file, which containg the
specification of the format of the blank form (this file is not a relation
file).

Through this special file, and the relation file of the form {which contains
the data, namely the fields values, of the form occurrences) any particu-
lar form occcurrence can be displayed to the user in a paper-form format.

Nevertheless this feature concerns only the OFS user interface, so, for
the purpose of accessing data associated to forms (this is in effect the
‘purpose of a Query) it can be completely neglected.

The following point can be remarked.

In the present situation, if a user want to access the data of a ferm-type
{data in corresponding relation), expoiting the full capability of a DBMS
Query lLanguage, he must access these data through the Sequel-Like-
Query language (SLQ) of MRS; this is a traditional approach to the DB ac-
cess.

It seems that the OFS, for a more integrated structure, should provide a
gingle form oriented interface to the user. In this enviromment it would be

attractive a form oriented DE =access language where gqueriss are
specified by filling forms in 2 manner similar to Query By Example (Ref.8
and Ref.7).

The previcus observation can be extended to the Global Query case {that
is, Global Queries can be included in a form oriented DB access language).

Any way this choice of user interface does not affect the DDB System
which has to perform these G@s.

The most distinguishing feature of this type of DB is the unigus oc-
currence of tuples in the DS,

There is only a physical copy of a form instance, at any time, in the DS,
The particular location of a form occocurrence has a semantic meaning for
OFS: this form actually belong to a OFS station (or better, to a DB of this
station), and so can be involved in the particular activities of this station.

In this way, such DB System deeply differs from other Distributed DB
Systems (Ref.1 and Ref.2}, which allow duplication of tuples, and in which
the choice of location for a tuple copy is determined not only by a seman-
tic factor but also by performance, security and fail recovery considera-
tions.

This unigue existence is reached with the introduction of a particular
key in each form ocecurrence. This key is unigue, for a certain form type,
in the overall system. So a form type and a key uniguely determine a
form occurrence in the DDB.

A ventralized central mechanism provides that the keys are not repli-
cated.

On the ground of a key, it can be determined if a form occurrence iz a
form or a copy, and the order ("meter") of the copy.

In this way a "relation”, in such a global DB, can be considered parti-
tioned in a number of mutually exclusive subsets, which altogether form
the relation. Each subset is in a logical OFS station, and can be called
"station relation’. Moreover, such a subset of a relation can be parti-
tioned in further subsels, since many DBs may belong to a OFS station.
These subsetls can be called "local relations”.

In this way the DDB, in this OFS environment, can be so defined:

- a relation is composed by all tuples (form occorrences) spread
on the DS;

- a stofion_relofion is composed by all tuples, of a relalion,
owned by a station;

- a local_relaiion is composed by all tuples, of & relation, con-
tained in a single DB, which is located in a station.

So we have that:

- a Data_Base {DB) is a set of all local relations, some of them
possibly empty. corresponding to all the relations definitions
{form types) in the DDB:

- @ station owns several DBs, they can be called the
Station_Date_Base (SDB);

- the union of all DBs in the DS (in all the stations) constitutes
the Distributed_Data_Base (DDB); it is to be remembered that
the intersection of the various DBs is emapty.

Another important obgesrvation iz that all the relations defined for the
D B, at global level, are also explicitly defined for all the DBs, at loval lev-
el. This homogeneily among the various DBs greatly helps the distriduted
algorithms for the global operations.

Another feature of OFS is relevant at this point. The main communica-
tion activity between OFS stations is the possibility, for a station, of send-
ing a form to another station ("ship" request) and the possibility, for a
station, of receiving forms sent to it by other OFS stations ("mail” re-
quest).

For this purpose, the concept of "tray” is introduced: a tray is intended
to hold the forms sent to a particular station from other stations, until
the target station decides to accept these forms.

The control and management of trays ig centralized, bul conceptually
each trey belongs to its destination station.

The node where the centralized activities of this DS reside (storage and
managerment of trays as well as global keys control mechanism, and cther
functions,like tracing of movements of forms in the DS} is called "host",
whereas the other nodes, where the OFS stations reside, are called "saiel-
Lites™.

The choice of centralizing the locations of trays is justified by the re-
guirement of saving forms which are sent to temporarily not connected
or not active OFS stations, and of providing overall control for the DS.
Nevertheless this cholce does not affect the logic of the OFS system or
the communication network topology.

Logically, a tray is a single DB, as previously defined {that is, set of all lo-
cal relations), even if the implementation may be different: for example,
in the actual implementation (the non global one) the forms of all trays
are contained in a single DB.

We will refer to the logical representation of trays.

The operations OFS stations can do on the trays are limited to sending
and receiving forms as mail. Even if a tray is a DB which logically belongs
to an OFS station, this station cannot do the same DB operations (real
qguery, update, ete.) it can do on the DBs located in the station (SDB). So

the SDB is not intended to include the DB-tray of the station.

This choice is mainly due to implementation restrictions and to the in-
tention of differentiating the DB-tray from the other station DBEs: in fact
the OFS station does not have the effective control of forms present in the
tray, since forms can be inserted asynchronously by other stations.

It must also be noted that actually ann OFS station, even if it owns seversal
DBs, can operate on only one DS at time.

The logical global structure of the DDE of OFS iz shown in Fig. 1.

.10 -

1.4 GR special features in OFS env

nent.

- Particularities and special features of the Global Requests problem in
the OFS Distributed Data Base, compared with the general Global Query
problem.

As it results in the previous discussion {(Par. 1.3), each form is uniquely
identified by its key, and if a form is located in a particular OFS station,
either in its station relation or in the local relation in its tray, it means
that specific semantic operations {(checking, updating, processing in gen-
eral, etc.), related to this station, are expected to be performed on this
form.

This two aspects of unique existence of a tuple in a relation, over the glo-
bal DDB, and of functional semantic related to the location of a tuple in
the DDB, determine the particularity of the Global Query problem in this
DDB, in comparison with the general case discussed for Global Query in a
DDBS (Par. 1.1).

In this case, a simplification factor, compared with the general case dis-
cussion (Par. 1.1}, is that, since no duplication is allowed in a relation,
there is no problem about the choice of the correct, up-to-date copy
(problem of consistency of multiple copies, concurrently updated) or the
choice of the most convenient copy {problem of efficency, in terms of
minimizing network subsystem load) tc access for processing a Global
Query. A greal simplicity is discovered also in the case of allowing Global
Update, since only a copy of each tuple is to be update, safeguarding the
consgistency constraint.

But there are also complexity factors (not just related to the logical
complexity, but also to the resulting overhead).

First of all, no complete relation can be kept in a single location, since
the tuples are spread over multiple locations (OFS stations).

In this situation, as pointed out in Par. 1.1, a large amount of communi-
cation activities, through the network, can be necessary for a GQ, if we do
not put any restriction.

Another important point, related to complexity, is that, being the tuples
located in a particular "local relation” for the particular function of the
OFS station that own it and not for particular properties of their attribute
values, there is no general knowledge in the DDE System about the distri-
bution of tuples in the DS according to some qualifications of their con-
tents (attribute values}, so it is impossible to direct a Global Query to a
subset of satellites (namely, station relations] according to some
gualifications in the Global Query request.

To explain this difference, it can be considered, for example, a DDB

-11 -

where, in the same relation, all tuples, with the valus of the atfribute A
in the range R, are located at the same station 5. In this case, a GQ on
this distributed relation, with the gualification: "where A.i=r and ete.”,
with r belonging to R, could be limited to the IB on station S.

This lack of general knowledge in the DDB System makes necessary that
all satellites are to be involved in any Global Query, and all their DBs are
to be searched.

But, due to functional semantic related to the OFS station where a tuple
is located, it must be allowed that the range of a Global Query (that is, the
OFS satellites to which this GQ request is broadcasted) can be limited by
a specific request, included in the G statement, from the QFS station
which issues this Global Query. The meaning of this explicitly requested
limnitation is fully understood by the user, or the application OFY pro-
gram, issuing this GQ.

There are two important limitations in comparison to a general GQ:
these limitations permit, in this DDB system, to avoid the great amount of
complexity involved in processing some G@s, as discussed in Par, 1.1,

The first limitation is that no GQ is allowed where there is requested a
join between two attributes of two different relations (problem of
Example-1, Par. 1.1}, that is where there is requested a comparison
between two fields of two different form types (join limitation).

The second limitation is that, even if a Global Query, inside a single rela-
tion, logically should involve together more then one local relation in
more than one satellite (problem of Example-2, Par. 1.1) {that means, in
this DDB system, that all local relations, in every satellite, should be in-
volved), a GQ is processed as it was separately directed to each local rela-
tion, and intended to be limited to each local relation, without any kind of
interaction among different satellites and diffierent local DBs {cross-over
limitation).

In such a way, with join limitation we avoid the difficult solution of the
problem shown in Example-2, Par. 1.1, with cross-over limitation we avoid
the as much difficult solution of the problem shown in Example-2, Par.
1.1

Nevertheless these two limitations can be accepted in this particular
DDE System, which must be the support of the OFS3, that is an office auto-
mation system intended to manipulate forms; but they could not prob-
ably be accepted in some other particular DDE.

In effect it results thal occurences of G@ gualified on more than one
form type, not allowed by the join limitation, or occurrences of GQ
gualified over the results of an inner GQ on the same form type, not al-
lowed by the cross-over limitation, are very seldom necessary. They are
often operations with no, or only poor, meaning, in relation to the QOFS
form system; so they, when not avoided, could be performed with a suc-
cession of GQs or with other operations pertinent to the OF3 environment

w18 -

(for example, the use of join-form types for the most required join query
operations).

With these limitations the processing of a GQ, in such & DDE, iz split inte
the coordinated processing of a corresponding Query in each interested
local DB, or better, in the contained local relation. These resulting "local
gueries” have to be coordinated in a distributed algorithm, but they do
not require any interaction of data base activities with other parallel local
queries, arisen out of the same GQ. That is, the local query does not
depend from the result of other local queries (as explicitly forbidden by
join and cross-over limitations}), but they are to be synchronized, in time
and range of application, by a global distributed algorithm, implementing
the GQ processing, for the correciness snd consistency of the result.

In this way, the acceptability of these limitations make possible to study
and design an effective solution (namely, that distributed algorithm) of
the GQ problem for this DDB system, intended to be implemented in a Dis-
tributed System of limited processing power, based on Mini and Micro sys-
tems connected in a networlk.

This solution, unlike other solutions to the GQ problem in DDB, already
implemented (see the discussion in Par. 1.1}, is expected to have accept-
able performance characteristics, also in a distributed environment with
little powerful Processing Units.

A final remark can be made about the problem of Global Update. In this
particular DDB system, the usually most difficult problem with which an
update operation has to deal in a distributed environment, that is the
consistency of various (partial) copies of the same relation, is here avoid-
ed since there is no tuple duplication. Furthermore, acting within the limn-
itations posed for Global Query, the processing of Global Update is techni-
cally straightforward and quite similar. There could be exploited the same
distributed algorithm, used for the Global Query, with minor modification
in the handling of data accessed (designed attribute values, namely form
fields, are changed instead of simply accessed for collecting data).

But this problem is probably to be discussed in the view of the OFS sys-
termn: a Global Update may result in a change of some fields in all forms of
a certain type, which satisfy the requested quealification; this result clashs
with the OFS assumption that a form is owned by the UFS station where it
resides, and only this station (user on-line or an application prograrm) can
make changes in it, until this form is shipped to another station. To com-
ply with this OFS functional assumption, the use of Global Update could
be restricted to some specially acknowledged OFS station, available only
to someone like a "super-user’, with managing purpose.

For the previous reasons, we have decided to implement also Global Up-
date activities, but in such a restricted way.

- 13 -

1.5 Requirements for the algorithm implementing GR.

- Correctiness and behaviour requirements for the global algorithm imple-
menting Global Requests in the OFS Distributed Data Base System.

A logical correctness requirement and a global behaviour requirement
can be stated for the algorithm implementing the processing of both Glo-
bal Query and Global Update (we assume the case that the Global Update
service is implemented in this DDB system, but it is allowed to a few
selected OFS stations).

Global Query and Global Update are called together Global Requests
(GR).

w 4 -

1.5.1 Correctness requi

Each form occurrence (tuple), of the specified form type {relation),
must be logicelly..searched in processing a GR, and this operation must
be done no more than once; that is, each form must be logically counted
exactly once, in each global operation.

That means no tuple, in the relation involved, must be missed, in the
whole DS, but no tuple must be considered, for example, in two or mors
different locations (local relations) in the DDB.

In fact it is to be observed that, in a distributed environment, other con-
current operalions keep going on during the period of time a GR is
operating, so a form occurrence could be transferred from a local loca-
tion to ancther, to a different satellite.

The GK algorithm must correctly handle these situations.

We have used the expression "logical searching” of tuples, about the pro-
cessing of GR, because il is not required to physically access all tuples in
local relations {local DBs), since, by the use of indices, it is sometimes
possible to access, in a local DB, the subset of the local relation specified
by the GR qualification.

It must be remarked here that a GR does nol move forms within the
DDBEB, since, in conformity to OFS specification, only the OFS station can do
it; a GR can only collect data from forms, if a GG, or change data in forms,
ifa@Qu.

The policy adopted to deal with the correctness requirement is to
develop an intelligent algorithm which can prevent the multiple searching
of the same form (besides assuring it is really searched), rather than to
use the unique existence of the key associated with each form to discover
multiple fetched items {second possible policy).

There are several reasons for that choice.

First of all in many GQ there is not the key among the form fields re-
guested; so, with the adopted policy, we do not need to add the key to
each item collected. With the other policy the key is necessary to detect,
in the node of DS where all local answers are gathered, the presence of
items coming from the same form, accessed in several local relations.

For the same reason, with the adopted policy, it is possible to process lo-
cally {(in each satellite) data collected by a GQ, for example counting
these items or performing mathematical operations on them, without
carrying, with the loecal result, the keys of forms involved.

In this way it is sometimes possible to greatly reduce the amount of data
flow , associated to G processing, in the network. Moreover it is greatly
reduced the workload necessary to build a GK answer from the several lo-
cal answer.

- 15~

With the adopted policy, in the node of the DS, where all local answers to
the same GR are gathered (it will be, for the particular function distribu-
tion of this DS, the central node designed as "host” - Par. 1.3} to build the
global answer, it is only necessary to collect together the various item
sets (GR answers from the satellites involved) received.

In this case of the second policy, to build the global answer it is neces-
sary to merge the various item sets, basing on the associated key, to
detect and erase the duplicated items. This task can be very costly, in
terms of workload in the gathering node of DS (that is, the host node), if a
great number of item sels is to be merged.

Nevertheless it can be observed that a synchronization at functional lev-
el, among the parallel operation on the satellites for a GR, is necessary
even if the second policy is adopted to avoid missing some forms in tran-
sit in the DS, since the use of key in each item collected only permits the
detection of duplicated items, not the detection of missing items.

Thus, the conclusive reason for adopting the first policy is that, working
at the design of a reasonable solution, it has been found that it was neces-
sary & relatively little improvement to the complexity of the algorithm for
GR processing to allow it, besides avoiding to miss any form, also detect-
ing duplicated items, without the extensive use of keys.

- 16 -

1.5.2 Behavicur regquirement

This requirement is a usual assuwmption for algorithms which have to
work in a distributed environment.

It requires that the actions of a distributed algorithm do not block the
overall behaviour of the DS, that is the other parallel activities in the vari-
ous nodes of the DS

In the particular case of OFS system, this reguirement means that the
activities resulting from the execution of a GE must not cause the block-
ing of the OFS stations, like form creation (getting a global key from the
host node}) and form meoving {"'shipping” and "mailing", from a satellite to
another one, through the DB-trays in the host).

Obviously, the temporary blocking of satellites distributed activities is
allowed {not local activities of OFS station), while each satellite is per-
forming its portion of & GR.

To deal with this behaviour reqguirement, {wo different policies have been
studied; they led to the design of two different algorithms: algorithr Al-
pha and algorithm Beta.

Both algorithms may involve some temporary blocking of distributed ac-
tivities of OFS satellites, even if these bloking situations are of guite
different types.

Algorithm Alphe can involve some temporary partial splitting of the 0UB-
trays and different accessing ways to them {that may concern the local
relation in the DB-trays invelved in the GR) in the host node.

Besides, algorithm Beta presents the advantage of a larger distribution
of functions among concurrent cooperating processes in the important
host node, but with the trade-off of possible larger overall blocking
periods if the DS is not enocugh powertul or well balanced {namely, if there
are nodes gquite slower than others or if the host node is too small).

NOTE:

The algorithm Alpha is simpler to implement because of the ex-
isting OFS distributed features, above all for the actual central-
ized implementation of the DB-trays, so it is expected to be im-
plemented as first; but the algorithm Beta is cleaner from the
logical view-point, even if its implementation requires some
change in the physical structure of DB-tray in the host node, so
it 1s expected to be implemented as second.

However it seems more appropriate to state a difference of the
efficiency of these two algorithms in terms of the physical configuration
of the DS on which the OF3 DDB system is expected to run: the algorithm

17 -

Beta could be more useful and effective on a DS with a more powerful host
node and more homogeneous satellite nodes.

. Finally an observation can be made about the general policy of the GR
algorithm (both types Alpha and Beta): in the whole DDB system the GRs
are performed serially, in such a way thal only one GR can be in execu-
tion at eny tirme.

This main assumption is due to the need of nol overloading the DS with
many concurrent GR operations, each of them could involve a great load
of processing and communications activilies in the global DS, that could
excessively slow down or even stop the other concurrent activities, both
distributed and local, of the satellites (OFS stations).

The policy of global serialization of GR greatly helps in the delermina-
tion of the consistency point of each GR (Par. 1.1), that is the point
corresponding to the situation, in the evolution of the DDB, which the
answer of a GR refers to.

In fact, since the consistency point is bounded by the initial time when
the GR begins the execution in the whole DS {accordingly to a GR central-
ized serialization mechanism, in the host node), and the final time when
the GR execution ends and the global answer is collected, narrowsr is this
interval, better is the determination of the consistency point.

The adopted general policy, if from one side can have a worse GR
throughputl average time, from the other side has certainly the narrowest
time interval for GR execution and so the best consistency point determi-
nation, since several GR executions, being serialized, cannot overiap and
slow down each other.

.18 -

stic of Global Requests in OFS.

UFS Distributed Data Base System.

2.1 Syntax of Global Request.

The syntax of the Global Requests (Global Query and Global Updats) is
presented in Bakus Normal Form notation, as reguested by the compiler-
compiler YACC (Ref.8), used to build the parser and the syntactical
analyzer for such GRs in this system. YACC converts a contex-free gram-
mar into a set of tables for a simple automaton which executes an LR{1}
parsing algorithm.

- 19 ~

SYNTAX

global _request: statement ')

2

statement: global. query
[global _update

¥

global _query: globalg guery..ilem =>
=> from what mazx, transfer where_ _clause

»

global _update: globelwp what giving =>
=> get set__clause list where_ clause

1

guery..item: form. . oriented. _query
[unigue_count_guery
| math_query

il

form, _oriented__guery: station @mage return._count
| station field_list return__count
station:
| station
return.. count:
| refcount

field_list: field '(* field_number_list ')’

[

firld__number. list: field _number
| field _pumber ', field__number_list

o

field__number: }integeri

2

-20 -

unigue__count_query: unigue field_list
| count
| count unigue field. list

¥

math_query: station key select_extreme =>
=> numeric..field_name
| count sum product square._sum =>
=> numeric._field_name

key:
| key

select__extreme: moaz

| min
sum:
| sum
product:
| product

[l

square._sum:
| squaresum

?

numeric_field _name: field field _number

field _name: field field _number

what: form. . type
| form_type range ‘(" station_ list *)*

"
¥

form__type: jidentifier}

s

-21 -

station list: station id
| station_id’,’ station_list
station_id: f{identifier}

2

max. transfer:
| mazonline {integer]
giving:
| retcount
| retcount station key max__transfer

v

set_clause, _list: sei__clause

o8

| set_clause ’,’ set_clause_list
set _clause: field_name "=’ constant

¥

constant: string..constant
| null_constant

string_constant: f{gquoted string}

7

null__constant: null

8

"where_ clause” Quealification - Case A.

where,__clause:
| where ofs_predicate

]

ofs..predicate: field .name ofs_comp..op string_.constant

F

- 22 -

ofs_comp_op: "=
| >
§<B
S>nl

] v
| "<
%

P H

®
]

o
O
=

Ta

"where_ clause” Qualification -~ Case B.

where__clause:
| where boolean

3

boolear: *{’ boolean ')
| boolsan or boolean
| boolean and boolean
| predicate

[

predicate: field_name comp._op field _name
| field_name comp_op string _constant
| numeric_field_name num_comp_.op =>
=> numeric__constant
| field_name null_comp__op null_constant
| fleld_name in_op nested_query

1

numeric_constant: nwmeric {quoted string}

5

comp__op! NUM._COMP_0Op
| match

| match

{ smatch

ey

' smatch

Do ®

purn_comp._op: =

-23 .

i o>us::
‘ Lt 3]

s &

E LEL L2 B]

2

null_comp._op: "=

{ PIMTI
s
n._op: in
’ Bt § i?ﬁ’

nested_query: select field _name where,. clause

®

- D4 -

2.2 Semantic of Global Request.

Data types in form fields

Before discussing how to make a Global Request, it is suitable to discuss
the data types of form: flelds, that is, the data types of atiribute values.

Every field, in every form type, is formally a string of 45CII characters;
but each field can be interpreted in two different ways:
i1} as a "string constant”, that is, the content is not interpreted when
processed (for example, the comparison is done character by character);
2) as a "numeric constant”, that is, the content is interpreted as a ra-
tional number when processed (for example, the comparison is done on
the rational number obiained translating the ASCI string, moreover this
number can be used also for mathernatical operations, like sum, product,
ete.).

It must be noted that a string constant can be a raticnal nuw
ASCII representation.

A form field is callied numeric field, when it is expected tu con
numeric constant, instead it is called string feld {or simply field), wi
is expeclted to contain a string constant.

It is clear thal the same form fleld can be called numeric Held wi
consider the content as a numeric constant, and {(string) feld when we
consider the content as a string constant.

By the syntax of a GR, as previously presented, it is always possible to -
differentiate & numeric field from & string field. So the GE processing al-
gorithm, if it expecls a numeric constant in & psrlicular form feld, can
test the ASCII string contained in this field to know if it holds a rational
number. In the affirmative case, the string is translated tc the numeric
value and the processing {comparison or mathematical cpera%mns} is
done on this value. In the negative case, an error is detected and the GR
fails {the incorrect form can be signaled out).

If the GR algorithm expects a string constant, it will process the ASCII
string in the form field in per-character basis, even if it really helds a ra~
tional number.

It seems nevertheless proper that these two kinds of form fields must be
differentiated at form definition time. So the OFS user interface could
acknowledge the user about the type of data content each form field can
accept, and it could make a control on data that the user tries to insert
in such felds.

- D5 .
2.2.1 Global Query semantic.

In a Global Query the following parts can be distinguished:
- Part A} Query.__object ("query_item")

Part B) Query._source ("what", "max_transfer")

Part C} Query__gualification ("where__clause")

Pari 4A:

The guery object consists in the specification of data to be collected and
of the kind of processing required on them.

We have three types of guery objects.

A1) Form..oriented__query:

We can require either the image (image) of the form, that is the content
of all the form fields, in such a way that the form can be fully recomposed
in the requesting OFS station, or a subset of the form ("field_list":
Jield(N.1,...,N.k}), that is the content of fields N.1,...,N.k, where N.i is the
number of field in the form (number 0 is always the key). In the latter
case, only the fields requested are shown at the OFS station which started
the GR.

We define now an "item"” as the set of data, collected by a GQ, taken from
a single form.

In both previous cases, we can request (stafion) that another field, not
included in form type definition, is added to each item collected. This
field will hold the name of the station where the item was found.

In both previcus cases, we can also request {refcount) the total number
of items collected by the GQ.

A2) Umigue__count_query:

This kind of guery object is included only because it is common in rela-
tional data query languages (it is taken from SLQ of MRS).

The option unigue requires the elimination of duplication of items col-
lected ("field_list" specifies the fields wanted). Of course this option is
useless if the feld 0 (form key) is specified.

With the option count we require only the number of items identified {(ac-
cording to the gualification), but not collected.

The option couni_unigue combines the two effects: it requires the
number of items identified, but without duplication, and they are not col-
lected.

A.3) Mothematical _guery:

- 28 -

i
o

&1

This kind of query object is most inteéresting in OFS environment. A tar-
get numeric field is pointed out {(figld N) and, on the rational numeric
value of this field, one or more mathématical operations are locally per-
formed, giving at the end a single global result. Namely, the operation is
applied on each local relation, according to the form gualification, and
finally the same operation is applied on all local resulls, giving a global
result.

There are two types of such a request.

In the first one, we can require the maximum {maz) or the minimum
{min) arithmetical value of the field, among all the forms indicated in the
DDB. We can opticnally require the key {key) of the form holding the
found value, and the station name {station) of the OFS station where that
form is located.

In the second type, we require the total number (count) of numerical
values processed (this is also the number of forms matching the
gualification, and so holding these vaiues in the target field), plus any
combination of the results of the following arithmetical operations:

sum: sum of these values;
product: product of these values;
sguaresum: sum of squares of these values.

It must be remarked that with the couni, sum. product and squaresum
values, we can easily calculate several very interesting statistical indices
of the targetl field of the forms gualified, such the confidence interval of
statistical mean, of statistical variance, etc.. That is done without collect-
ing in a single OFS station all the data involved.

Part B:

The query source contains the specification of the form type interested
in the GQ (its name, among those globally defined in OFS DS).

The GQ is usually broadcasted to all connected satellites (in the DS), but
in the query source it is possible to limit the range of OFS stations to
which we want to route our G@. This is done with the option range
{station.1,...,station.k), showing the list of station names interested in this
GQ. In effect only a subsetl of these stations can be cffectively interested
in this GG, in the case of a few stations are not actually connected to the
DS,

An answer Lo a GQ could consist, in some case, in a very large amount of
data; so it can be useful, whether for the nelworlk, which could be over-
loaded, or for the OFS end-user, which could not handle such amount of
data, to print off-line the resull of a GQ.

This situation can be explicitly controlled issuing a G@, by the option
mozonline N, where N is the maximum number of-items the GG answer

- 27 .

can have in order to be allowed into the requesting OFS station. If the GQ
answer has more than N items, it is wholly transferred to an off-line
printer, and the interested OFS station is correctly warned.

If this option is not used, the system makes use of its own default value,
to control the maximum amount for & GQ answer in order toc be sent to
the issuing OF3 station.

Part C:

The query gqualification contains the specifications of the forms, within
the same type, which are to be involved in the G@ operation.

For the query qualification we have two implementation steps.

The first simpler one corresponds to the Case A (Syntax of GR, Par. 2.1).

In this case the qualification is completely similar to the selective
search mechanism actually implemented in the OFS stations. This
gualification, when present (if not present, all the forms of the indicated
type are searched), is merely composed by where and an "ofe..predicate’;
that is, the specification of the field in the form {field N), the specification
of an operator aliowed by OFS (=, >, <, >=, <=, maich), and a string con-
stant.

In this case we consider the form field only of string type, so all the OFS
operators are applied in per-character, non numeric basis.

The second, more complex, implementation step correspond to the Case
B (Syntax of GR, Par. 2.1).

In this case the qualification is almost completely similar to the
qualification part of =a relational query langusge, exactly to the
"where..clause” specification of the SLQ of MRS (Ref.3).

The only difference concerns the data types. In MRS there are two
different data representations: string and word binary numeric. In the
DDB of OFS there is only a data type, egual to the MRS string type, but
with two possible meanings: string constant and numeric constant.

A constant. namely a quoted string, is usually assumed here as a string
constant, so when we want a numeric constant, we have to specify numer-
i¢ before the guoted string.

In this way we can differentiate, in the "predicate” B.N.F. production, the
case of comparison (in per-character basis) of a string field
("field._name") with a string constant, from the case of comparison (in ar-
ithmetic way) of a numeric field {"numeric_ field_name") with a numeric
constant,

- 28 -

2.2.2 Global Update semantic.

In a Global Update the following parts can be distinguished:
Part A) Update_direction {"what")
Part B) Update_answer_request {'giving')
Part C) Update_object ("set_clause_list")
Part D) Update_qualification {'where_clause")

Part A:

The update direction contains the specification of the form type to which
this GU is directed, and, optionally, the range of OFS stations we want to
be involved in this global operation.

The update direction specification is completely equal to the query
source specification.

Part B:

The update answer request contains the specifications of the kind of
answer we want at the completion of this GU.

If we do not use such option, we will simply receive a completion mes-
sage at the end of this GU processing.

It we specify the retcount option, we will receive, as answer, the number
of forms updated in the whole DS.

If we specify refcount station key, we will receive, as answer, the total
number of forms updated and an information item for each form updated.
Bach item contains the station name where the form was found, and the
key of this form.

Since all these iterns could constitute a large amount of data, here 1t is
possible to use the option mazonline N, to direct the output to an off-line
printer when the answer contains more than N items (of course, if this op-
tion is not used, the system uses its own default value).

Part C:
The updale object consists in the specifications of the changes to be
made on the dala contents of the specified fields of the forms accessed.
The update object is in the forrnat:
set fleld N.1 = C.1, ..., fleld Nk = Clk
In this way, we require that the contents of the fields N.1,...,N.k in all the
forms accessed according to the qualification, are changed respectively
to the value of the constants C.1,...,C.k where each constant can be a

-29 -

string constant {quoted string) or a null constant (reuil).

In OFS there are three types of form fields, defined at the moment of
form type creation:

- fields filled in by the OFS system (as key, date, OFS station signature);
- fields whose content cannot be changed, after it has been filled in once;
- fields whose content can be freely changed.

It is evident that only form fields of the third type can be updated, and
so they only can be specified in a GU, otherwise the GU is rejected (this
check can be made in the OFS station, since all form type definitions are
global in the DDB system).

Part D: _

The update gualification contains the specification of the forms, within
the same type, which are to be involved in the GU operation.

The update gualification is exectly equal to the query qualification.

NOTE:
For every correct GR answer, there are shown the interval {ime
limits {lower and upper bound) of the consistency point, misured
in the host node.

- 30 -

3 Design and implementation of OFS DDB System.

- Design and implementation of the OFS Distributed Data Base System
performing Global Requests.

3.1 Logical and physical models.

- Logical and physical models of the Distributed System structure.

3.1.1 Logical model.

We have already outlined (Par. 1.3) the logical structure of the DDB
underlying the OFS Distributed System (Fig.1). In Fig.2 there is shown the
logical structure of the OFS Distributed System itself, now a real DDBS.

That is essentlially the logical model according to the concurrent and
cocperating functions are organized, in such a way that it is possible to
perform, besides the other parallel distributed activities, like craating
and moving forms, the GRs too. We can observe that the DDB shown in
Fig.1 cornpletely fits the DS structure shown in Fig.2.

Let us describe the functional model of this DDBS (Fig.2). As it results
from previous discussion (Par. 1.3) the DS is composed by a host node,
called logical hosi, and several satellite nodes, called logical _satellites,
which are connected, through a logical communication subsystem, in a
LN way. That is, each logical satellite is},g&g)?}?}ec‘ted to, and only to, the
logical host: so a star type logical structu¥e tormes out (Fig.3). Obviously,
the star type topology of the logical communication network does not im-
ply that the physical communication network must have the same topolo-
gy: no limitation is imposed on the physical network structure. In each
logical satellite two main functional modules are present {a functional
module can be either just a process or a group of tightly cooperating
processes): the OFS-Satellite Local Functions (OFS-SLF) module and the
OFS-Satellite Distributed Functions (OFS-SDF) module. The OFS activities

-31 -

of local nature are concentrated in the OFS-SLF module , whereas the 0FS
activities of distributed nature, that is involving the whole DS, are concen~
trated in the OFS-SDF module.

In OFS-BLF are fully performed all activities allowed in the previous OFS
stations (Ref.4), as well as the new activities which are expected to be im-
plemented in OFS stations, such the "sketches” (Ref.5), but only if these
activities do not involve the rest of the DS, that is if they are not of distri-
buted kind. For the latter ones, the OFS-SLF must require the collabora-
tion of the OFS-8DF, through the communication path within the satellite.

Distributed activities are here intended the previous distributed activi-
ties of an OFS station, such "creating” {reguiring a unigue global key for a
new form), "shipping"” (sending a form teo a DB-tray, in the logical host, of
another satellite), "mailing" (fetching forms from the DB-tray, in the logi-
cal host, owned by the satellite}, "tracing” {retrieving a trace of move-
ments of a form among the satellites, from the LOG global relation in the
logical host) forms, as well as the new distributed activities corresponding
to the GRs, such Gs and GUs.

In the OFS-SLF module there is a User Interface (Ul} submodule which
handles the interaction with the end-user {if this satellite can support an
on-line end-user and it is not an automatic station) in a "environment
specification by successive menus” way.

The introduction of GR in Ul consists simply in the introduction of a new
entry in the highest level menu, specificating the GR environment. In this
environment the GR can be entered in accordance to the sintax specified
in Par. 2.1. Al this level a change is forcasted to switch from this Rela-
tional DB like access language for GR to a form oriented access language,
similar to Query By Example (Par. 1.3).

In OFS-8DF two different sets of activities can be distinguished: the set
of activities caused by distributed requests (any possible distributed ac-
tivity, as previously specified) from the local OFS-SLF, which in order to
be completed are to be routed teo the corresponding OFS-HDF in the logi-
cal host, and the set of activities caused by a Global Reguest from anoth-
er satellite in the DS, concerning also ihis station, which is routed to this
module from the corresponding QFS-HDF in the logical host. This latier
set of activities of OFS-8DF consists mainly in performing that GR on the
DBs located in this satellite (that is, on the satellite relation).

It is possible, for this second kind of activities by OFS-SDF, to interfer
with the concurrent activities in progress on OFS-SL¥F in accessing the
DBs in the satellite. So a problem of concurrent access to shared local DB
rise up.

The access conbrol ig realized by special locks associated to every rela-
tion in every local DE; these special locks do allow concurrent guery
cperations but do not allow concurrent updates, neither query and up-
date operalions.

- 32

5

The communication path between OFS-SLF and OFS-SDF, in each satellite,
is organized on three levels.

The first one is a syncronization line which allows these modules to asyn-
chronously interrupt each other, sending a simple signal with no data as-
sociated.

The second one is a two ways direct data communication line, with inter-
nal first-in-first-out gueuing policy. This path is used for fast comrnunica-
tion of limited amounts of unstructured data, such request from OFS-SLF
and short answers from OFS-SDF. Unfortunately, this facility {called
"pipe” under the UNIX operating system) is not avilable in all the satellite
implementations, as further explained in Par. 3.1.3.

Thus, in the least powerful satellites, the third level communication path
is also used for this second kind of communications.

The third level consists in a set of data structures, on secondary
storage, called "Local Communication Data Structures” {LCDS), which are
shared by both OF3-SLT" and QFS-SDF.

This path is the most useful for exchanging relevant amounts of struc-
tured data, especially complex answers to OFS-5LF or complex distribut-
ed requests (if allowed) to OFS-SDF.

Each OFS-SDF module, in a logical satellite, is tightly coupled, from the
functional viewpoint, to a OFS-HDF module, in the logical host. There is a
biunivocal correspondence between an OFS-SDF module, in the i.th satel-
lite, and i"hv corresponding OFS-HDF module in the host; so that module is
called OFS-HDF.1.

These iwo modules, OI'S-SDF and OVS-I'DF.i, although located in two
different components of DS (a satellite and the host), essentially work to-
gether to perform the same distributed activities.

Nevertheless, while the link connecting these two modules is so impor-
tant for their behaviour, it is alsc the most difficult type of link to be
correctly implemented because this is the only communication path, in
the whole DS, which can cross the communication network connecting
physically distincet DS nodes

Thus, in each OFS-SDF and in the corresponding OFS-HDF, there is a Phy-
sical Network Interface (PNI) submodule {a couple for each link, one at
cach link end) aiming i‘m correctly handle possibly different communica-
tion link types, and so lo insulate OF3-SDY and QFS-HDF behaviour from
the krmwic.‘,dgng: of the communication link peculiarities. PN[functions and
types arc fully describoed in Par. 3.1.2.

Since the OFS-HDFA modules is the functional complement, in Lhe host,
of the OI'S-SDV module in the i.th satellile, it will be intended to perform
the same kind of aclivities of the associated OFS-8DF module. Thus the
OFS-IEDI1 medule can execute two sets of activities: a first set of activi-
ties 1s caused by a request from the associated OF'S-8DF module, of any
possible distributed type, which will involve the rest of the DS a second

- 33 -

set of activities is caused by a request from another satellite, through its
corresponding OFS-HDF in the host, which will involve the i.th satellite,
through its OFS-SDF module.

In that first set of distributed activities, there are the following activi-
ties.

- The OFS-SDF module reguests a new ginobal key for the creation of a new

§

form (or for copying an existing form)}, of j.th type, in a DB belong-
ing to the Lth satellite. The corresponding OFS-HDF.i module, in the
host, makes an access to the "Global Coniroel Data Structures”
(GCDS). a set of structured data on secondary storage of the host,
shared by all the OF3-HDF modules, containing all relevant control
data of the global DS. Then it will pick up the new available key for
the j.th global relation and it will send it back to the corresponding
OFB8-8DF module in the Lih saiellite,

The OFS-SDF module request to retrieve the trace of the movements of

a specified form through the DS satellites.

The corresponding OFS-HDF.i makes an access to the LOG Belation
in GCDS and select the tuples recording movements of that form,
then it send back this answer.

- The OFS-EDF module, in the ith satellite, requests to send a particular

H

form, of k.th type to the L.th satellite.

The correspeonding OFS-HDF.Q module will insert that form in the
le.th relation of the tray of the j.th satellite, that is, in the DBt.j
(DBt.j denctes the DB-iray belonging to the j.th satellite). Then it
malkes an access to GCDS, inserting a tuple, in LOG Relation, record-
ing the movement of that form.

The OFS-SDF module, in the i.th satellite, requests to receive forms pre-

viously sent to this satellite from other ones.

The corresponding OFS-HDF.i module will fetch the forms, as re-
guested, from interested relations in DBt., that is, the tray of the
i.th sateliite. The LOG Relation is updated in GCDS, indicating that
these forms have been received in the i.th satellite, and the forms
fetched are sent to the OFS-8DF module.

The OFS-SDY module sends a Global Request, either a Global Query or a

Global Update, from the i.th satellite.

The corresponding OFS-HDF.I module must now perform this GR
with the help of the other OFS-HDF modules in the host, and through
them, with the collaboration of the other involved satellites in the
DE.

- 34 -

How can OFS-HDF.i broadcast this GR? How can it synchronize its ac-
tivity to the concurrent activities of the other OFS-HDF modules, in
the host, which help it for this GR? How can it do that without bloak-
ing the parallel activities of other OFS-HDF modules executing cther
distributed functions, not related to this GR? How can it correcly
gather all the answers, to the GR, received from the cther invelved
satellites, through their corresponding OFS-HDF modules? How can
it be sure that the concurrent operation requested by the GR are
performed in a correct and consistent way?

The answers to all those questions are the specifications of the two
algorithms (Alpha and Beta) proposed for the implementation of -
GRs.

The second set of activities a OFS-HDF module, corresponding to the i.th

satellite, can execute, simply consists in the help, as previously outlined,
which some other OFS-HDF can request from this OFS-HDF.i, to perform a
GR involving the i.th satellite.
In this case the OFS-HDF.i module must send the GR received to the
linked OFS-SDF module, in the ith satellite. That OFS-SDF module will
perform the request on the DBs local of the satellite and will send back
the local answer to the OFS-HDF.i in the logical host. Then the local
answer, from the i.th satellite, will be added to the global answer of that
GR, in GCDS, by the OFS-HDF.i module. :

Obviously, the detailed correct operations this OFS-HDF module must
perform in this case, are specified in the two algorithms (Alpha and Beta)
proposed for the implementation of GRs (Par. 1.5.2 and Par. 3.2). -

" At this point, it is possible to make an important remark about the logi-
cal host of the DS,

The logical host in practice does not exist as a separated and indipen-
dent executive entity: it is simply the sum of activities of QFS-HDF
modules, corresponding to the various logical satellites of the DS. Local to
the logical host we can consider the shared data (DB-trays and GCDS) on
which those activities are performed and synchronized.

- 35 -

3.1.2 Physical model.

The general physical structure is shown in Fig.4.,

We can obviously have many particular physical implementations for the
same logical structure, but some constraints are to be observed.,

It is possible to change the type of the machines and the type of the
communication network, but the reciprocal interactions are to be care-
fully considered to obitain a global DS with acceptable performance
characteristics.

An important matter is the choice of the machines for the physical host
and for the physical satellites.

Each physical satellite must bear a logical satellite (that is, an OFS sta-
tion with several local DB and an eventual end-user line), of remote type.
Therefore, the processing power and mass storage size and speed of this
machine are to be chosen considering the functional characteristics of
the corresponding logical satellite (esteemed workload and DBs dimen-
sicn).

The physical host is the true critical component of the DS.

In fact, if the failure of a satellite machine can be discovered and suit-
ably handled by the host machine, without blocking the overall DS, the
failure of the host machine causes the crush of the DS, and only the OF3
local {(not distributed) activities in the satellites can keep going on.

Mereover the physical host is a critical compoenent for performance con-
gideration, too.

In fact, every distributed activity of every logical satellite {creating and
moving form, as well as GRs) does certainly involve the physical host of
the DS. Hence, the host machine must likely be the largest and most
powerful machine in whole DS,

Another important characteristic of how the logical structure is distri-
buted in the physicel structure, is that some logical satellites can be cone
tained in the physical host. These logical satellites, of type local, are func~
tionally identical to the logical satellites of type remote, namely running
on the physical satellites; so each of them implements an OFS station,
owning several DBs and holding an sventual end-user line.

The purpose of these local logical satellites is to keep some important
OFS station (for example these with OFS meanagerial aims, to which it
could be allowed the use of GU) in the same machine bearing the logical
host, which performs the distributed non-local functions. In this way, such
local logical sateliites are not dependent from the communication net-
work for accessing the logical host, so whichever communication link
feilure doss not affect their correct behavicur.

Hence, as shown in Fig.4, the physical host must bear the logical host an

- A8 -

several local logical satellites: so its processing power and its secondary
storage system have to be enough large to prevent it from becoming the
bottle-neck of the whole DS. ,

Another important matter is the kind of comrmunication network con-
necting the various node (host and satellites) in the DS.

The choice of the type of communication network depends, first of all,
from the distribution scale, if local or geographically dispersed, of the
global system.

Obviously, this choice slso affects the determination of certain internal
parameters (for example , the time the host usually waits for an answer
from a remote satellile before starting the procedure for remote salsellite
or communication path failure) in the distributed algorithm, in the logical
host as well as in the remote logical satellites. In the actual implementa-
tion the choice has been for & local environment, so switching te a geo-
graphically dispersed environment, these internal parameters are to be
set again,

Often, implementing a DS, we need to use an existing communication
network which can range from a true communication subsystemn, with =
relatively high level access interface, reflecting & high level communica-
tion protocol, to a bare set of physical data transmission links and physi-
cal ports on DS nodes, with no communication software package available.

The features of the DS dependent from the type of the communication
network available are insulated in a localized module: the Physical Net-
work Interface {PNI), as shown in Fig.2.

In fact, as shown in the logical structure of DS {Fig.2), the only interpro-
cess communication link which does pass through the communication
network is the one between the module containing the "OFS Satelite Dis-
tributed Functions”, in the logical satellite, an the module containing the
"OFS Host Distributed Functions”, of that satellite, in the logical host.

These two modules have been provided with two specular submodules,
one in the OFS-SDF module and the other in the OFS-HDF module, which
do perform the requested communication services, accessing the particu-
lar communication network in conformity to its own specifications.

The PNI couples are present on the ends of every link between an QFS-
HDF module and an OFS-SDF module, whether in a remote or in a local
logical satellite.

Therefore the PNI submodules, implementing a common interface to all
OFS-HDF and CFS-SDF modules, realize the total indipendence of the logi-
cal host and logical satellites from the comunication network features, as
well as the total identification of a local and remote logical satellites (in
fact, all the differences are restricted within the PNI submodules).

The assumptions of the external interface of PNI submodules are mainly
two. As first, a logical link must be permanently established between the
logical host and each {connected at the moment) logical satellite, that is

- 37 -

between each couple of OFS-HDF and OFS-SDF modules: in this way the
resulting logical architeclure is of star type, which the logical host as
central node and the logical satellites (bolh remote and local) as peri-
pheral nodes. As second, the logical communication protocol of the fully-
duplex link must be of type master/master with both the logical satellite
{that is, its OFS-SDF module} and the logical host {that is, the correspond-
ing OFS-HDF module) acting as masters, following a carsfully stated end-
to-end protocol.

There are two types of PNI couples. The first one, connects OFE-HIF and
OFS-HDF modulns of a local logical satellite; therefore, both modules are
in the same host machine,

These PNI submodules do not use the communication network facilitiss
but do simply use the interprocess cormmunication and synchronization
tools, provided by the operating system on the host machine, in order to
build the necessary internal communication link.

The second type of PNI couples connects OFS-HDF and UFS-EDF modules
of a remote satellite; therefore, one is in the host machine and the other
is in a satellite machine.

These PNl modules strictly depend from the existing communication
network.

In case of complex communication subsystem, with a communication
software package providing a high level access protocol, the PNI function
is simply to translate the primitives of the upper interface {with OFS-HDF
or OFS-SDF modules) to the primitives of the lower interface (with the
software access interface of the communication network). That is usually -
an easy task, since the upper interface has quite simple features, in com-
parison to the usual high level communication protocols,

Instead, in the opposil case where only the bare physical communication
lines and the associated ports are availeble as comrmunication networlk,
the PNI submodules must implement, gven if in the simplest possible way,
the essential functions for the control of & communication network, as es-
tablishing the basic message switching {or packet switching, if considered
necessary) protocol, error checking by control extra-code, observing ack-
nowledgement and resetiing conventions, etc.

It is also possible to have many different communication links in the net-
work: in this case more PNI couples types can be present at the same
time, to properly handle each different link.

- 38 -

3.1.3 Implementation choices.

The reasons of the basic implementation choices were discussed and
stated at the moment of the original implementation of the OFS (Ref.4).

These choices are generally still valid, but some features have now been
changed or improved , in consideration of what is available today, mainly
in the field of the communication network.

The machines for the physical host and physical satellites are DEC mini-
computers of the family PDP-11 (Ref.9).

The physical host must be a relatively large member of this family so we
have chosen a PDP-11/45 with hard disc units as mass storage. It runs
under the UNIX operating system, by Bell Laboratories (Ref.10), which has
also been extensively used for the software development of this DS.

For the physical satellites it is possible to choose different minicomput-
ers, even the simplest types, like the LSI-11 group (based on the mi-
croprocessor LSI-11), on the ground of the needs of the corresponding
logical satellites.

‘Thus, for this purpose we have used several different machines.

First of all, there is a PDP-11/50, of a size similar to the host machine,
mainly because it was available.

Then there are a few PDP-11/23, of smaller size, with & micro LSI-11 as
CPU, and with floppy disc units as mass storage; but they are soon ex-
pected to hold physically small, moving-head disc units of Winchester
technology (manufactured for example by Shugart and Pertec Corpora-
tions), which have better performance and larger size (80 M-byte) at =
reasonable cost (five thousands dollar price range). These machines run
under UNIX operating system, as well as the host.

For other satellites, with quite simple expected activities, we have used
the PDP-11/03, of the LSI-11 group, the smallest among the PDP-11 fami-
ly, with only floppy disc units as secondary storage. These machines run
under the MINI-UNIX operating system, by Bell Laboratories {Ref.11), a
simpler version of UNIX, upward compatible with it.

Thus, the software of the logical host can run under UNIX operating sys-
tem, as well as the software of a local logical satellite, while the software
of a remote logical satellite can run, in the basic version, under UNIY
operating system for all PDP-11 types except PDP-11/03, and in another
version, which is slower bul as completely functional as the previcus one,
under MINI-UNIX operating system for PDP-11/03.

All the software for the OFS DDB system is written in C programming
language, by Bell Laboratories (Ref.12).

The only difference, betwee these two version, concerns the communica-
tions between the OFS-SDF process (satellite distributed functions) and

- 39 -

the OFS-SLF process (satellite local functions): in the former version it is
possible to use the "pipes”, interprocess communication mechanisms at
core memory level, available under UNIX operating system, while in the
latter version, since the "pipes” are not available under MINI-UNIX operat-
ing system, it is necessary to pass through files on mass storage (which is
rather slow, being constituted, in this case, by floppy disc units).

For the OFS Distributed Systermn it is intended to use a local communica-
tion network, with central swilch, which uses a master-slave internal pro-
tocol and poliing synchronization mechanism, and Whlch can offer & guite
large transmission bandwuitp of the order of 800 KHZ, since it uses thes
DMA devices on the node {Ref.13) (Ref.{4).

Nevertheless, since EhlS communication network is now at an experimen-
tal stage, we need to lemporarily use telelype lines as communication
links: that is, two teletype ports, one on the host machine and the other
on the satellite machine, are linked together via an elesctric cable. The
bandwidih of this communication link is much lower than the previcus
one: 9600 baud.

This kind of ad hoc communication link, even if it will be in most part
substitued by the previously presented communication network, will be
still in use for that satellite mechines which cannot be connected to that
network, for example because they do not support a DMA device, like the
PDP-11/03.

Thus, three types of PNI submodules couples have besn implemented, to
connect OFS-HDF and OFS-SDF processes.

The first one, used within the host machine for connecting a local logical
satellite to the logical host, exploils a synchronization signals link of UNIX
operaling system and shared files, to build a data communicalion path
between the two processes.

The other two ones are used in the host machine and in a satellite
machine for connecting a remote logical satellites to the logical host. The
former of these Lwo ones, i1s employed when the communication path is a
direct teletype link, the latter when the communication path is a logical
link through the previcusly shown communication network,

As regards to the implementation, an important remark must be made:
being the UNIX {and so the MINI-UNIX} mainly a time-sharing operating
system rather than a real time operaling system., it can provide rather
poor interprocess synchronization and communication tools.

As to the communication, the best tool is the "pipe" {only under UNIX),
but it is quite far from a real queuning message mechanism.

As to the synchronization, there iz alsc an interrupling mechanism
(among process of the same user-ID); but, given the lack of semaphores,
critical regions, monitors, ste., and even shared memory areas, the only
really useful synchronization tool is the use of lock files; that allows a
"test and sel” type operation.

- 40 -

Thus, with a lock file associated to a common data file, it is possible to im-
plement a critical region on that data file; nevertheless that critical re-
gion does not have any waiting queue or any other control mechanism to
assure a fair access policy.

For that reason, many implementation choices on the synchronization,
within the distributed algorithms, are heavely conditioned by that kind of
available synchronization tools, and so they could often lcok neither the
simplest nor the most efficient.

- 471 -

3.2 Algorithms implementing Global Requests.

- Algorithms implementing the Global Requests and the other distributed
activities in the OFS Distributed Data Base System.

DEFINITIONS
Distributed Data Based System components:

1} Distributed__System:
- 1 Logical Host: Hosi

- M Logical Satellites: Safellite. !, Satellite. 2, ..., Saleilife. M

2) Distributed__Dato_Fase:

- N Relations {global relations):
Relation. 1, Relation.2, ... , Relation.N

- M DB-trays in the host {one DB-tray for each satellite):
DBt.1, DBt.2, ..., DBt.M (DBt.i: DB-tray of the Satellite.i)

- N local relations for DBt.i, the same definitions in each DB-tray (subset
of global relations, located in one DB-tray}):
Relation. 1{DBt.i}, Relation.2(DBt.i}, ... , Relation.N{DBt.i)

- M Satellite DBs {set of local DBs located in one Satellite):
Sat.DB.1, Sat.DB.2, ..., Sat.DB.M

- N Satellite.i Relations, the same definitions in each Satellite (subset of
global relations, located in one Satellite):
Relation. 1{Sat-i), Relation.2(Sat-i), ... , Relation.N{Sat-i)

- S.i local DBs in the Satellite.i, for each Satellite {local DB is a single com-
nlete DB, physically unigue): ‘
DB(1,1), DB(2.1), ..., DB{S.L,1)

- N local relations for DB{Lj}, the same definitions in each local DB {subset

- 49 .

of global relations, located in one local DB):
Relation. 1(DB(L])), Relation.2(DB(L.j)), Relation.N(DB(i.j}).

- 43 -

LOGICAL SATELLITE BEHAVIOUR

The behaviour of the logical satellites is the same in algorithm Alpha and
Beta; only the behaviour of the logical host differs between the two algo-
rithms.

OFS-SLF wodule.

This module implements the local function of a legical satellite. In it
there are located almost all the functions of an OFS station, as previcusly
intended, whether it supports an end-user or it is an automatic station.

By the point of view of the DDBS, the behaviour of this module is to send,
through the communication path internal to the logical satellite, a distri-
buted request to the OFS-3DF module and to wait for an answer from it,
through the same communication path.

These distributed requests are:

1) Get a key for a new created form, or keys for a set of copies of a form.
2) Send a form (ship) to another satellite,

3) Get, selectively or in batch, forms sent to this satellite from other ones
(mail}.

4} Get traces of movements of a form among the satellites {or only the
actual location of a form).

5) Perform a Global Request, that is a Global Query or a Global Update.

OF5S-5DF module,

This module implements the distributed funciions within a logical satel-
lite.

The behaviour of this module consists in handling twoe types of asynchro-
nous requests: the first one is a request from the local OFS-SDF module,
the second one is a reguest from the linked OF3-HDF.i module {(if this is
the Satellite.i) in the host.

OF3-SDF must control these two kinds of concurrent activities, prevent-
ing incorrecl interferencies.

The possible requests from the local OF3-SDF have been previcusly list-
ed.

The request from OFS-HDF.Q (through the PNI) is essentially a GR from
another satellite {either from this satellite), through the logical host,
which involves this satellite,

u

~ OFS-SDF‘handles the first type of activities routing: the corresponding re-

. quest to the linked OFS-HDF.i and then sending the reply from it, when ar

‘rived, to OFS-SLF. _
* Only for a request of a global key for a new form the action can be .
different: in fact OFS-SDF keeps a batch of global keys for each form type,
8o, if the batch is not empty, OFS-SDF can directly give the answer to
OFS-SLF. When the batch is empty, OFS-SDF must request a new one from

OFS-HDF.i.

- OFS-SDF handles the second type of activities performing the received
- GR on Sat.DB.i, that is on the set of local DBs of the satellite. If the form
type involved in the GR corresponds to Relation.j, OFS-SDFP precisely per-
forms the GR on Relation.j(Sat.i). ‘

In doing so, it must successively lock each local relation accessed,
namely Relation.j(DB(k.i)), with k=1,2,s.i, to avoid illegal concurrent
access with OFS-SLF (only concurrent query activities are allowed).

At 'the end, OFS-SDF send the answer, local to this satellite, of that GR,
to the connected OFS-HDF.1L.

- 45 -

LOGICAL HOST BEHAVIOUR

The logical host behaviour results by the sum and interaction of the con-
current activities of the OFS-HDF.i modules, with i=1,2, ... \M, where M is
the number of logical satellites.

The behaviour of the logical host differs between the algorithm Alpha
and the algorithm Beta.

OFS-HDF 4 module.

This module implements the distributed activities of the L.th logical sa-
tellite, within the logical host.

1t is connected to the OFS-SDF module in the Satellite.i, and tightly
cooperates with it for its activities.

The behavicour of OFS-HDF.I module consists in handling two types of
asynchronous requests: the first one is a request from the linked OFS-8DF
module in the satellite, through the PNI; the second one is a request from
another OFS-HDF.} in the logical host.

The reguests from the OFS-SDF medule, have been previously listed
{they essentially come from OFS-SLF module of the i.th satellite).

The possible reqguest from another OFS-HDF.j module is essentially a GR,
from the Satellite.], which does invelve the Satellite.i too.

The way these two types of activities are performed and synchronized in
the algorithm Alpha and in the algorithm Betea are different.

In algorithrm Beta, in comparison to the algorithm Alpha, these activities
are performed in a larger distributed way, in spite of a more complex glo-
bal behaviour.

- 48 -

3.2.1 Algorithmn ALP

Global data structures in the logical host

Mail trays:

- DBT={Relation.i{DET}, with i=1, . .
Relation.i{(DBT)={Relation.i{DBL.j}, with j=1, ..., M}

- TRAY.i (with i=1, ..., M)

NI,

where

The forms of all DB-trays are contained in one only DB, called DET.
Moreover there is a relation file for each tray, called TRAY.i {with i=1, ...,
M, one for each satellite), which points out the forms, in DBT, belonging to
the same tray. That is, through TRAY.] there can be distinguished, in DBET,

the forms of the logical DBt.L

- DBT.LOCK.i {(with i=1, ..., N): Lock file for Relation.i{DBT).

- TRAY.LOCK.i (with i=1, ..., M): Lock file for TRAY.L

NOTE:

On the lock files there are generally permitied two operations:
lock and unlock. Locking operation consists in trying to create the
lock file: if it does not already exist, it is created, and the associ-
ated file is locked. If it does already exist, the lock operation is
temporarily unsuccessfull. The process must sleep for a while (K
seconds), and rmust try again to lock the file, until it succeeds.

In particular cases, when explicitely stated in the algorithm, if
the lock operation does not succeesd the first time, the process
resurmes other operations instead of going to sleep, waiting on the

lock mechanism.

GCDS {Global Control Data Structures):

- GKEY: Relation file containing the actual value of the global counter for
the N form types, which gives global keys for new forms or copied forms

{meter).

- 47 -

- GKEY.LOCK: Lock file for GKEY.

- LOG: Relation file containing record of the traces of form movement
through the trays and the satellites.

- LOG.LOCK: Lock file for LOG {of type allowing concurrent gqueries}.

- GR: File containing the Global Request, already parsed and analyzed (it
is in a structured form, as output from YACC), in execution in the DDBS.

- GR.LOCK: Lock file for GR.

- GA: File where there are gathered the local answers, to the actusl GR,
from the inovolved satellites.

- GA.LOCK: Lock file for GA.

- GEW.LOCK: Lock file warning a special access way to DBT, in conse-
quence of the current GR.

- DRT-REL: Relation file which can temporarily contain some forms of the
type invelved in a GR and "shipped” during it.

- DBT-REL.LOCK: Lock file for DBT-REL.

. GRN: Indication of the global number of the current GR (each GR has its
own progressive number).

- GRTYPE: Indication of the form type {(relation) involved in the GR.

- SATMAP: Relation file where each tuple contains the necessary informa-
tion about each satellite in the DS:

-~ number and namae;

- if connected,;

~ guery class;

- update class;

3
- L.

- GRSATMATF: Relation file where each tuple contains the necessary infor-
mations about each satellite involved in the current GR:
-name of the satellite;
- flag for the "master” satellite, that is that one which requested
the current GR;
- if this satellite has already begun the current GR;

- 48 -

- if it has already finished that execution;
- gte..

- GSM.LOCK: Lock file for GRSATMAP.

Local date structures for euch OFS-HDF .4

- DR.i: Distributed request fromn OFS-8DF in Satellite.i.
- DA.i: Distributed answer to OFS-SDF.
- GA.1: Local answer, from OFS-SDF, to a GR from another satellite,

- LGRN: Number of the last GR performed by this module.

-4 -

OFS-HDF.4 activity for a GR from. another satellite

NOTE:
As regards to the synchronization hetween the activity for a GR
from another satellite and the activity for a Distributed Reguest
from OFS-SDF of Satellite.i, there is no correciness reguirement
about the scheduling policy. That is, the algorithm does work
whether one type of activity or the other one has the priority.
Thus we decided to give the priorily to the requests from the as-
soclated satellite {in order to advantage the requests becoming
from the local environment). We do not allow the preemption of
reguests, since it can be extremely costly in the implementation.
In this way. the first arrived request is performed as first; if there
is a conflict, the request from the associated satellite has priority
over the GR from anciher satellite.

0) OSF-HDF.i receives a signal from OFS-HDF.], indicating that the
Satellite.i is inveolved in the current GR, by the Satellite.j.

1} Access GRSATMAFP in GCDS, previously locking GSM.LOCK. Signel in
GRSATMAP that Satellite.i is going to begin the GR activity. If this is the
last one to do so {OFS-HDF.j, which is indicated in GRSATMAP as "master"
for the GR, must not be included in this check), send a synchronization
signal to OFS-HDF.]. Unlock GSM.LOCK.

2) Send the Global Request (the content of GR in GCDS) to the linked
OFS-8DF module, in the Satellite.l, through the Physical Network Inter-
face (PNI) submodule.

3} Wait and receive a reply from OFS-SDF, through PNI, and put it in GA.L
This reply contains the result of the GR performed con the DBs located in
Satellite.i.

4} Access GA in GCDS, previcusly locking GA.LOCK, and then add the lo-
cal answer in GA.i to the global answer in GA. Unlock GA.LOCK.

5) Access GRSATMAP in GCDS, previously lecking GSM.LOCK. Signal in it
that Satellite.i bas just finished its GR activity. If it is the last one to do so
{this time OFS-HDS.j, that is the "master” for the current GR, must be in-
cluded in this check), send a synchronization signal to OFS-HDF.j. Unlock
GSM.LOCK.

-50-

8) Put into LGEN the number of GR just performed, contained in GRN of
GCDS. :

7) End of this activity: wait for the next requested activity.

NOTE:
In every moment it is possible that PNI signals to OFS-HDS.i that
the connection, through the communication network, with the
Satellite.i fell down. In this case OFS-HDB.I must signal in SATMAP
that this satellite is not connected anymore, and it stops whichev-
er activity, waiting until the line is set up again.

- 51 -

OFS-HDF. i activity for a Distributed Reguest
From the associated Satellifed

D) OFS-HDF.i receives a signal from its PNI submodule, indicating that a
Distributed Regquest (DR} has been sent by the corresponding OFS-SDF
module in the Satellite.i. The received DR has been put into DR.L

This step 0 is common to the following parts 4, B, C, D and E.

A) DR.iis a request of an allotment of keys for new forms, or for copies of
a form.
1) Access GKEY in GCDS, previously locking GKEY.LGCK.

2} From the global counter contained, delermine the requested allotment
of global keys.

3} Increment correspondingly the global counter.

4) Uniock GKEY.LOCK.

5) Build a reply to OFS-SDF, with this allotment of keys, and put it in DAL
8} END: Send the reply, in DA, to OFS-SDF in the Satellite.i, through PNIL

Erase DAL Then wait for the next reguested activity.
{This END step is common to all the following reguest types).

B} DR.iis a reguest of the trace of movements of a form among the satel-
lites (or only the actual location of a form).

i} Access LOG in GCDS, previously locking LOG.LOCK.

-5 .

2) Get all the tuples recording movements of that forms among satsl
or through their mail trays (oy’ get only the last recorded location of
form).

3) Unlock LOG.LOCK

4) Build a reply to OFS-8D¥F with these traces, and put it inte DAL

5) END

C) DR is a "mail” reguest, that is, the Satellite.
forms, or only a selectad one, sent to it by olher satel
from itz mail tray in the host.

arls
lites, £

1) Test if GRW.LOCK is set. If it is
on DBT).

2} Lock TRAY LOCK.L

3 If this is & "mail” reguest for all forrns in the tray {tats
quest), lock all DBT.LOCK.] corresponding to every form type present in
TRAY .1
If this a single form "mail” request, lock only DBT.LOCK.] of the type of
form requested {previously check if that form is really in TRAY. i)

4} If this is a total “"mail” request, try to fetch all the forms {from the
Relation.j{DBT), whose corresponding DBT.LOCK.] were locked} pointed out
in TRAY.L

It is possible that some forms, indicated in TRAY.L
Relation.j(DBT) of the corresponding type: in this case
cated in DBT.REL, because of a GR in execution, and o
in this "mail" operation.

If this is a "mail" request for one only form, try to fetch it [rom the
Relation.j{DBT) corresponding to its type.

5) Put the forms fetched into DA (answer to this request) and build a
trace record for each form movement {from logical DBt.i to the
Satellite.i).

- 53 -

8) Lock LOG.LOCK.

7) Insert into LOG all trace records (tuples) for the performed form move-
ments,

8) Unlock LOG.LOCK, all previously locked DBT.LOCK.j and TRAY.i. Unlock
DBT-REL.LOCK, if previously locked.

9) END.
10) Access GRN in GCDS: if the number of the current GR is different
(namely greater) from the number in LGEN (that is, OFS-HDF.i has not al-

ready performed the current GR, or is not involved in it}, go to step 2.

11) Access GRTYPE in GCDS, and leok at the form type involved in the
current GR. It is s.

12) If it is a single form "mail" request, of type k different from s, go to
step 2.

e

13) Lock DBT-REL.LOCK.

14) Access DBT.REL. If it is a single form "mail” request and the wanted
form is in DBT.REL, fetch it and go to step &.

15) At this point the "mail” request cannot be performed completely be-
cause there is still in execution the same GR that this module has already
finished. We have two possible cases:
a) If this "mail” reguest does not allow an incomplete answer, at
the cost of delaying it: unlock DBT-RELLOCK and wait on
GRW.LOCK until it is unlocked, then go to step 2.
b} If this "mail” reguest does allow an incomplete answer, for not
delaying il
- If it iz a single form "maeail” request, it is now impossible to be
performed; so unlock DBT-REL.LOCK, build a negative answer in
DA and go to step 9.
- If it is a total "mail” request, it can now be done partially, sub-
stituting DBT-REL to Relation.k{DBT)}, as shown in the following
steps.

18} Lock TRAY.LOCK.L

17} Lock DBT.LOCK.j for every form type present in TRAY., but with]
different from k.

18) Tray to fetch all the forms, pointed out in TRAY.L, from
Relation.j{DBT), whose corresponding DBT.LOCK.j were locked, and [
DBT-REL, at the place of Relation. k{DBT).

3,
pe

i
<
=

since they are in Relation.k(DBT). That happens because these forms are
to be processed by the actual GR, on behalf of the "master” OF i
(that is, the one which issued the GR}.

19) Go to step 5.

D) DR.i is a "ship" request: that is the Satellite.i wants to send &« f
type k, to the Satellite.j, putting it in the mail tray, in the host, of
tellite.

1) Lock TRAY.LOCK..
2) Put a tuple in TRAY.j, indicating the form sent (key and type}.

3) Test if GRW.LOCK is set. If it is set, go to step 11 (& GR is in execution
on DBT).

4) Lock DBT.LOCK.k.
5) Put the form, contained in DR.L, in a new tuple in Relation.k(IBT}.
8) Lock LOG.LOCK.

7} Insert into LOG a tuple with the trace of movement of that forre (from
Satellite.i to the mail tray of Satellite.j).

8) Unlock LOG.LOCK, either DBT.LOCK.k or DBET-REL.LOCK (according to
which previously locked) and TRAY.j.

9) Build in DA.i a suiteble acknowledgement as answer to Satellite.i.

10) END.

11) Access GRTYPE in GCDS and lock at the form type involved in the
current Global Reguest. It is s.

12) If s is different from k, go to step 4 (the form type in GR is different
from the form type of the form to ship).

13) Access GRN in GCDS: if the number of the current GR is different
(namely greater) from the number in LGRN (that is, OFS-HDF.i bave not
already performed the current GR), go to step 4.

14) Lock GSM.LOCK. Access GRSATMAP in GCDS and unlock GSM.LOCK: if
the Satellite.] is not involved in the current GR, go to step 4.

18) In this case, the form to be shipped cannot be slered, at the moment,
into the designed Relation.k{DBT) because of the current GR: so lock
DBT-REL.LOCK.

18) Put the form, contained in DB.i, in a new tuple in DBT.REL.

17} Go to step 6.

E) DR.i is a Global Request (GQ or GU) from the Satellite.i, involving the
form type k.

1) Tray to lock GR.LOCK. If this lock operation does not succeed at once,
go to waiting state for a while {sleep R seconds), staying_available at sig-
nals, from others OFS-HDF in the bost, for a possible request involving
OFS-HDF.i, and hence Satellite.d, in the actual GR.

This is important in order to avoid a deadlock which could occurr if
OFS-HDF.i performs an usual lock on GR.LOCK at this point {in fact GR
sould not be relesased, if it reguires the cooperation by OFS-HDF.L, now
waiting to take possession of GR}.

After the waiting period, or after having performed a GR, tray again to
lock GR.LOCK.

2) Increment by 1 the number of actual GR in GRN (in GCDS}) and put in
GRTYPE the type k of the forms involved.

3) Take the time of the beginning of the execution of GR and put it into
an entry in DAL

4) Take the Global Reguest, in structured form as ocutput of YACC in OFS-

SLF, from DR.i and put it into GR (in GCDS).

5) Send a message to the linked OFS-SDF (in Setellite.i), through PNI, to
signal that the GR previously sent to the host is now in execution in the
whole DDES, and so can be performed also lovally in that satellite, on
Relation. k{Sat.i).

8) Create DBT-REL, now empty, in accord to the Relation.k definition.

7) Lock GRW.LOCK, to signal to the other OFS-HDY that now a GR is in exe-
cution on DBT and a special procedure might be reguested for "shipping”
forms.

8) Access SATMAP (in GCDS) and create the relation file GRSATMAP, now
emply.

9} For each Satellite.j that is requested to cooperate in the GR, also impli-
citly (for example if all the Satellites in the DS are indicated by defauit)
the following checks are to be made:

- Ig the Satellite.j actually connected?

- Only if the GR is a G is the query class of Satellite.] lowsr oy equal to
the query class of Satellite.i? (Note that a satellite can perform a GQ only
on satellites with query class lower or egual).

- Only if the GR is a GU: is the update class of Satellite.j strictly lower than
the update class of Satellite.i? (Note that a satellite can perform a GU
only on satellites with update class strictly lower).

If all these checks are affirmative, the Satellite.] cen be involved in the
GR, so put a new tuple in GRSATMAP with the indication of this satellite.

If also only one of these checks is negative, the Satellite.j cannot be in-
volved in the GR, so put a suitable acknowledgement in DA.i (answer to
the requesting Satellite.i}.

Put a tuple in GRSATMAP for the Satellite.i, with the indication that this
is the one which sent the GR, that is, it is the "master” for this GR.

10) Send a synchreonization signal to all OFS-HDF.] involved in the GR (that
is, for every Satellite.j pointed out in GRSATMAP).

Now the various OFS-HDF.j can start their concurrent operations to build
their GA.j for this GR (see the part: "OFS-HDF.I activity for & GR from
another satellite”, step 0).

11) Wait a synchronization signal from the last OFS-HDF.], involved in this
GR, which is ready to handle it (see the part: "OFS-HDF.i activity for a GR
from another satellite”, step 1).

- B7 -

12) Lock TRAY.LOCK], for each Satellite.j involved in the GR (pointed out
in GRSATMAP).

13} Lock DBT.LOCK.k and DBT-REL.LOCK.

14) Tag every form in Relation.k(DBT) which is pointed out in whichever
TRAY.j, corresponding to a Satellite.j involved in the GR (as indicated in
GRSATMAP).

15) Perform the GR on the tagged tuples of the Relation.k({DBT) and put
this local answer (for forms in mall trays involved) in TEMP temporary
file.

18) Now in DBT-REL there are all the forms, of the type involved in the GR,
sent to satellites involved in the GR, by salellites which have already per-
formed, in their DBs, the GR on the same forms: so OFS-HDF.1, the "mas-
ter” for this GR, does not perform this GR again on these forms. After
that, the function of DET-REL is finished.

Thus, put all tuples of DBT-REL into Relation.k(DBT}, erase DBT-REL and
unlock GRW.LOCK {no need anymore of a possible special procedure ac-
cess to DBT, for parallel "shipping’ form operations).

17) Unlock DBET-REL.LOCK, DBT.LOCK.k and all TRAY.LOCK.] previously
locked.

1B) Wait and receive in GA.l the answer to the GR performed locally on the
Satellite-i, that is on Relation.k{Sat.i}. For that, wait a synchronization
signal from PNI, indicating a message arrived from the linked OFS-SDF.

18) Lock G3M.LOCK and access GRSATMAP,

20) If the "rpaster” OFS-HDF.1iis the last module in the host, among those
involved in the GR, which has received the answer from the linked satel-
lite, as indicated in GRSATMAP, go to step 2.

21) If cther OFS-HDF.j have not finished yet, unlock GSM.LOCK and wait a
synchronization signal from the last OFS-HDF.j finishing the activity in-
volved in this GR {(see the part: "OFS-HDF.i activity for a GR from another
satellite”, step B).

22) Now all the data related to the GR are owend by OFS-HDF.i. Teke the
tirne of the end of distributed execution of GR {(to determine the con-

sistency point interval - Par. 1.1 and Par. 1.5.2) and put it into an entry in
DAL

-58 .

23) Add TEMP (local answer from the mail trays) and GA.i (local answer
from the Satellite.i) to GA, where the data for the Global Answer are not
gathered. Erase TEMP and GA.L

24) Perform other possible operation requested by GR on the items in GA
{for example for mathematical queries, "unique_ count” queries, ete.).

25) Count the items in GA. They are R.

28) RMAY is the maximum number of items for the Global Answer, as indi-
cated in GR (if not indicated, a default system value is assumed), in order
to be acceplted by the yequestmg Satellite.i

If R is greater than RMAX, the (formatted) GA is spooled to an ofi-line
printer, connected to the host.

If R is less or equal to RMAY, the (formatted) GA is added to DA.L

Note that DAL also in the first case, contains the indication of ;‘fim satel-
lites requested to be involved to this GR but which were not be able i
that, and the indication of the time internal for the consisten

GRSATMAP.

28) END.

- 59 -

3.2.2 Algorit

In several parts, the Algorithm Beta is very similar to the Algorithm Alfa.

The first main difference is in the implementation of mail trays in the
logical host: here there is a local DB for each mail tray (DBt.i is the mail
tray of Satellite.i).

The second main difference is in the way the Global Requests are per-
formed on suck mail trays. In Algorithm Alpha the "master” OFS-HDF.i,
that is the one which started the current GR, performs the GR on all the
trays, gathered in a single DB, that is DBT. Instead, in Algorithm Beta,
each OFS-HDF.j, involved in the GR, performs this GR on its mail tray, that
is on DBL.A.

We will list the resulting differences.

Global data structures in the logical host

Mail trays:

- DBt.i (with i=1, ... , M) = {Relation.j(DBt.i), with j=1, ... , N}
DBt.i contains the forms of the mail tray for the Satellite.i.

- DBL.i{ReLj}.LOCK (with i=1, ... , M and j=1, ..., N}: Lock files for each re-

lation in each mail tray.

GCDS (CGlobal Control Data Structures).
The only difference with the Algorithm Alpha is that DBT-REL, DBT-
REL.LOCK and GRW.LOCK are not present here.

&

Local data structures for each OFS-HDF 4

They are the same ones like in Algorithm Alpha.

NOTE:

- B0 -

OFS-HDF.

ctivity for a GR from another salellite

'vmx“

As regards to the synchronization between different activ
OFS-HDF.i, we use, for the same reasons, the same pwz% Cy e
gorithm Alpha. That is, the Distributed Request from ti ciat
ed satellite has the priority over the Global Request from ancther
satellite, without allowing the presmption.

0) Like step 0 in Alpha (Satellite.i is invo
QFS-HDF.j).

1-2) Like steps 1-2 in Alpha.

3} Access GRTYPE in GCDS, and look at the form types
the current GR. Itis k.

4) Wait a synchronization signal from CFS-HDF.j (the "mea:
this GR), if not already received. It indicates that %’”aﬁgﬁ. sat
volved has already started its activity for this GR {see ‘&hiﬁ
"OFS- HDFi activity for a Distributed Reguest from the
Qatellite.i”, part B, step 10). Now the GR can be perform
on the mail tray DBt.L

5} Lock DBt.i{RelL.k).LOCK and DBET-RELLOCK.L
) Perform the GR on Relation.k(DBt.i}, and put this local answer
{for forms in this mail tray) in GA L

7Y Now the function of DBT-REL.I {that is, holding all the forms
the type involved in the GR, sent to Satellite.l by setellites w
have already performed, in their DBs, this GR on the same for
is finished: OFS-HDF.i did not perform this GR on the forms oo
tained in DBT-REL., since other satellites have already done that.

Thus, put all the tuples of DBT-REL.L into Relation.k{(DBt.i), and
erase DBT-REL.L

8) Unlock DBL.i{Rel.k}.LOCK and DBT-REL.LOCK L

9-12) Like steps 3-6 in Alpha.

13} END.

-B1 -

- B2 -

OFS-HDF .4 activity for a Distributed Reguest
from the associaied Satellite.d

0) This common step is like the common step O in Alpha

A-B) The parts A and B are like the parts A and B in Alpha.

C) DR.i is a "mail” request.

1) If this is a total "mail” reguest (for all the forms in the mail
tray), lock all DBt.i(Rel.j).LOCK, for j=1, ..., N.

If this is a single "mail” request {for a particular form in the
tray), lock only DBt.i(Rel.k}.LOCK, whers Relation.k is the typs of
the form. :

2) If this is a total "mail" request, fetch all forms from aill
Relation.j(DBt.i}, with j=1, ..., N,

If this is a single "mail” request, feteh the requested formn
Relation. k(DBt.i}, corresponding to its type.
3-5) Like steps 5-7 in Alpha.
6) Unlock LOG.LOCK and all previcusly locked DBt.i{Relk) LOCK.

7) END.

D) DR.iis a "ship” request of a form, of type k, to the Satellite.j.

1) Lock DBt.j{Rel.k).LOCK.

-83 -

2} Put the form, contained in DR, in a new tuple in
Relation. k(DBt.j).

3} Lock LOG.LOCK.

4) Insert into LOG & tuple with the trace of the movernent of that
form (from Satellite.i to the mail tray of Satellite.}).

5) Unlock LOG.LOCK and DBt.j(Rel.k).LOCK.

6} Build in DAI a suitable acknowledgement as answer to
Satellite.i.

7} END.

E) DR.iis a Global Request {GQ or GU) from the Satellite.i, involv-
ing the form type k.

1-8) Like steps 1-5 in Alpha.

8-8) Like steps 8-11 in Aipha.

10} Access GRSATMAP, previously locking GSM.LOCK., Send a syn-
chronization signal to all OF3-HDF.j invelved in the GR, as indicat-
ed in GRSATMAP. Now the various OFS-HDF.j can start the GR on
their mail trays, namely on Relation.k(DBt.j} (see the part: "OFS-
HDF.i activity for a GR from another satellite”, step 4).

11) Lock DBt.i{Rel.k).LOCK.

12} Perform the GR on the Relation.k{DBT.i} and put this local
answer (for forms in this mail tray), into GA.1.

13) Unlock DBt.i{Rel.k).LOCK.
14-18) Like steps 18-22 in Alpha.

19) Add GA.i (local answer from the mail tray DBt.i and from the
Satellite.i} to GA, where all the data for the Global Answer are now

gathered. Erase GA.L

20-23) Like steps 24-27 in Alpha.

24) END.

Table of Contents

1 Discussion of Global Reguests problem in OFS. i 2
1.1 Global Query requirements in the general case. ..o ORI

1.2 Office Form System environment. B OSSR POPPON avens 5

1.3 DDB special features in OFS environment. 8

1.4 GR special features in OFS environment. PP UPP 1)

1.5 Requirements for the algorithm 1mp1@memmg (Ahy B TP P OO ¥+
1.5.1 Correctness reqguirementocoevennn. et e b v n e annaan : . 14

1.5.2 Behaviour requirement ... s cavnnans s L8

2 Syntax and semantic of Global Requests in OFE. i ecinieirine cvnveee LB

2.1 Syntax of Global Request. .icvrvriviriivieiiriiicn v ciceininei v cciens b e ot n e aans 18
2.2 Semantic of Global Request. ...coviviierioinoveiiinsinioevinsrevonns U PURUURUR -
2.2.1 Global Query semantit.coiiiinnvininanccinnnnerannns DR -5
2.2.2 Global Update sermantic.ovcivvivviriiiiivirnciriinmneiorocrennvsraesanss brewrensnens . 28

3 Design and implementation of OFS DDB Systerm. vvviiriiiniieivenen, i R crevenree 30
3.1 Logical and physical models. .ot cne e ae caon e eaveans 0
3.1.1 Logical model. ciiiviieriiirrieesicecnrevanianecasunes beeneraen s wovaenen e .. 30
3.1.2 Physical model. e ee e nen b e e e eae e e e ans B TN)
3.1.3 Implementation cholees. i e e i 358

3.2 Algorithms implementing Global Requests Cr e ous oo e v ra e s Ceeovenanaas 41
3.2.1 Algorithm ALPHA it cvcisvaiiinsnee s irvanncnininreneenens D
3.2.2 Algorithim BETA e ecean secnac e oan s n e e e e snbe e 58

- i -

REFERENCES

Ref.1) M. Stonebraker: "Concurrency Control and Consistency of Multiple Copies of
Data in Distributed INGRES". Proc. 3rd Berkeley Workshop on Distri-
buted Data Bases and Computer Networks, pp 235-258, 1078,

Ref.2) ©P. Bernstein, D. Shipman, J. Rotnie, N. Goodman: "The Concurrency Control
‘ Mechanism of SDD-1: A System for Distributed Databases (the Gen-
eral Case)’'. Technical Report CCA-77-09 (Computer Corporation of
America). December 15, 1977,

Ref.3) A) R. Hudyma, J. Kornatowski, 1. Ladd: "Implementing a Microcomputer Data-
base Management System (MRS)". Technical Report CSRG-101
{University of Toronto). May, 1979.

B) J. Kornatowski: "The MRS User's Manual". CSRG - University of
Toronto. July, 1878,

C) 1. Ladd: "A Distributed Database Management System Based on Mi-

crocomputers”. M.Sc. Thesis, Dept. of Computer Science {Universi-
ty of Toronto). Jan., 1979.

Ref.4) A) D. Tsichritzis: "A Form Manipulation System’. Technical Report CSRG-101
{University of Toronto). May, 1979.
B) S. Gibbs: "OFS: An Office Form System for a Network Architec-
ture”. M.Sec. Thesis, Dept. of Computer Secience (University of Toron-

to). Sept., 1979.

C) C. Cheung, J. Kornatowski: "The OFS User's Manual’. CSRG -
University of Toronto. March, 1980,

D} S. Gibbs: "OFS Implementation Manual". CSRG - University of
Toronto. Febr., 1980.

Ref.5) O. Nierstrasz: "Automatic Procedures in OFS: the Sketches”. (Working paper)

- v -

CSRG - University of Toronto. May, 18980.

Ref.6) D. Tsichritzis: "OFS: An Integrated Form Managment Systern”. Technical Re-
port CSRG-111 (University of Toronto). April, 1980,

Ref.7y M. Zloof: "Query By Example: a Data Base Language”. IBM Systems Journeal -
Vol. 18, No. 4. 1977.

Ref.8) S. Johnson: "YACC - Yet Another Cormpiler Compiler”. Comp. Sci. Tech. Rep. No.
32, Bell Telephone Laboratories, July, 1875,

Ref.9) Digital Equipment Corporation: "PDP-11/03, /23, /45, /50 Processor Hand-
books".)

Ref.10) D. Ritchie, K. Thompson: "The UNIX Time-Sharing System" and "UNIX Imple-
mentation”. The Bell System Technical Journal - Vol. 87, No. 8, Part
2. Aug., 1878,

Ref.11) H. Lyckloma, D. Bayer: "UNIX on a Microprocessor”. The Bell System Technical
Journal - Vol. 57, No. 7, Part 2. Aug., 1978.

Ref.12) B. Kernigham, D. Ritchie: "The C Programming Language”. Bell Telephone La-
boratories - Prentice-Hall Software Series. 1878

Ref.13) A) K. Hudyma: “The Hardware Design of Distributed Office Workstations”.
Technical Report CSRG-111 (University of Toronto). April, 1980.

B) Computer Technology: "Engineering Specification HEX-L11 - Inter-
processor Linking System”. Technical Manual. Nov. 21, 1878,

Ref.14) F. Rabitti:"Ricognizione di Sistemi Distribuiti in una Classifica-
zione Generale di Sistemi di Elaborazione', Nota Inter-
na B79-28 Istituto di Elaborazione della Informazicones,
Pisa ~ Consiglio Nazionale delle Ricerche. Dicembre
1879,

LOG
¢ b .
/ \ g
Dg“uﬁﬂ.‘:}’ﬂ S k5 DB ~Teay®
| S \
Rigm’wulgg W asf rd %, \ W Qﬁg‘ - g
\\\ué / kY (e
S e » @ %
;’,........ i }(RTINS W)
c‘f 7 \\‘\ y’&gdr N xc
’ f/ %‘“‘w < \\e QX
0/ 7 &d’f’ x%% \% \
F // y"‘sf” W‘%\% %‘\ \
L & a %
S L7 o 5,
PR R U B —— « LN \T.\m.,
<4 N Y
ObES - STATION OFS - STATION
SATELLITE ~ SATELLITES SATELLITE M
2+ (4-1) . ~
, P NI
L./ \)ﬁ O v oo o &;j}/ Sy
5
DB&;& T DBA:L,Sﬁ M,% mal— m’/im;
By A abopl e

\ : DBMS access (queny,update, insext clefete ate...}

———gp ¢ Recelve Jorws (mall)
it Send. a form { ship?
Resomd, §orwm amoverment H\xwv%h &m‘g‘s {in the ?ma%}»

§ §
and. wetileve such traces upon tequest

Figoz

ICLOBAL CONTROL |
IDATA STRUCTURES |

-th &-ﬁ:ﬁ - ,3» &"&Q,.ij o gw%
DBy y | DBy
Ryfoe--- . Raf - - 4w
%W \M"W
p P / "M"’"’M::ﬂ . \\%
1 e ,ywv““’““”‘wﬂw o, N“\x
) P NN
,/ OFS -« HosT OFS ~HOST
DISTRIBUTED PISTRIBUTED \
WNM QNS 4 FUNCTIONS-M)
\ 'gp NLT \ /r/ f'p w1 s'
sﬁ& N
e
” COMMDNICATIO SUBSYETEM
/) ‘ ¢
OFS &M@
smau..w_g»i OFS ATELLITE-M
SETELLITES
T3 (M)
o
NI \‘*M ors |
0ES | SATELLITE
SATELLIVE LOCAL
DISTRIBUTED) FUNCTIONS
FUNCTIONS E sCal 1 SN &z

Dﬁﬁ’ﬂ

i1

Qi%ww«WWmégw

OMVU Owowg'
HRTA STRUCTURES

S0 0 00 O

Fiﬂ,'ﬁ '

o

LOGICAYL, e
SATELUTE-4 LOGICAL '\
S SATELLIVE-3
Loalcal, '
SATELUTE-S e
| V/a P
L / / “LoslGL
\ / pﬂ%m%« E
”{D;CAL L j\/ Y 4
T 7 ~ o

SATELLTE-6 N /;;,»
. N
/ Mt S
S 3 \\< WWWWW
’ L "’ &wa@a \
: SATELLD m}
o]
/
i e
o]
“, /‘V m P
o o y,/ T,
e \ \
. \\Mwmww’ 77 LOGITA EL
g SATELUTE-N |
o /
\\ #,f
© o ™
©

o

g’:%ige%“

PHYSICAL HOST

TLocal rosicaL
TV SATELLITE -4

LOGICAL HOST .
' &

—

TPHYSICAL SATELLITE T PHYSICAL SATELLITE

%6@@@@0@@’@@%@@@@

REMOTE LOGICAL REMOTE LOGICAL
SATELUTE - J+1 S _—_-

o LOGICAL COMMUNICATION PATH THROUGHT THE (OMMUNICATION NETWOREL

& B o PRYSICAL CONNELTION YO THE cOMMUNICATION NETWORK

