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A B S T R A C T

Computer Vision Systems (CVSs) have proved to be a powerful tool to evaluate the quality of agricultural
products in a non-destructive, contactless, sustainable and objective way. Machine learning techniques have
proved to simplify the development of CVS and to provide better performance and greater flexibility in
matching the requirements of different products and environmental characteristics, but they are often com-
putationally complex and difficult to be understood by humans. It is desirable to develop methods that ex-
ploit the benefits of learning and generate simple and fast solutions that are also interpretable by humans.
The approach described in this paper analyses a previously developed and effective machine learning model
to extract the information useful to develop computationally light and easily understandable algorithms that
evaluate the characteristics of interest on rocket leaves. A Random Forest model previously developed to
classify visual quality and to estimate chlorophyll and ammonia contents in rocket leaves has been studied to
identify a small set of visual characteristics (colours) that correlate with relevant properties of the product.
These visual characteristics have been used as input for several simple, fast and easily understandable algo-
rithms that classify visual quality (QL) and estimate chlorophyll and ammonia contents with lower computa-
tional complexities compared to the original Random Forest model. Results obtained by these methods are
shown and compared with the ones provided by the original Random Forest model. All the algorithms pro-
vided a good separation between marketable and non-marketable samples. They required from 1ms to 22 ms
to classify a new sample instead of the 25 ms of the original Random Forest model. Additionally, two meth-
ods provided good prediction of chlorophyll (R2

v = 0.70) and ammonia (R2
v = 0.72) contents requiring

only 3 ms and 1 ms respectively.

1. Introduction

Recently, researchers have focused their attention on contactless,
non-destructive, rapid, accurate and more sustainable techniques to ob-
jectively assess sensory and compositional quality of fruit and vegeta-
bles. Nevertheless, although these non-invasive methods offer signifi-
cant advantages compared to analytical and destructive analyses, they
cannot completely replace them. They are complementary, enabling
lower time and cost, continuous and reliable monitoring and reduction
of impact on environment along the supply chain (Chaudhry et al.,
2020). Computer Vision Systems (CVSs) represent an innovative and
contactless non-destructive technology suitable for in-line grading and
quality assessment of fruit and vegetables (Fan et al., 2020). The inte-

gration of machine learning techniques inside CVSs has proved to make
them more effective, more flexible e easier to be designed and config-
ured for specific tasks on different products. A serious limitation of ma-
chine learning methodologies is their difficulty to be understood by hu-
mans. Unfortunately, th most powerful models are too complex to be
evaluated and interpreted and operate as black-box: ensemble methods
and deep learning are just two examples of very successful tools that are
difficult to be explained. Instead, there is an increasing need of explain-
able machine learning in most application domains, for several reasons
ranging from reliability assessment up to legal questions depending on
their use (Lisboa et al., 2023). The growing research on eXplainable Ar-
tificial Intelligence (XAI) aims to explain the behaviour of complex
methodologies (Wang et al., 2023). However, even when these ap-
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proaches succeed in explaining the behaviour of intelligent agents, they
do not simplify their complexity. Sometimes, time constraints of spe-
cific applications can make acceptable a small loss in accuracy while
most of the best performing machine learning approaches are not suit-
able for tuning the trade-off between effectiveness and complexity.

This research described in this paper exploited machine learning to
extract information useful to design simple and fully understandable al-
gorithms for quality assessment or characteristics estimation in agricul-
tural products. The goal was not to investigate the best machine learn-
ing approach to solve the tasks of interest. Instead, we started from a
machine learning methodology that in previous experiments had
proved to be proficient in evaluating quality and in estimating internal
properties of rocket leaves and used it to identify effective colour fea-
tures. Then these features were used to develop simple and fully inter-
pretable algorithms to accomplish the desired tasks, accepting limited
losses of performance to achieve significative reductions in terms of
computational complexity. In our experiments, we moved from a previ-
ous work (Palumbo et al., 2022), in which a machine learning model
based on the Random Forest methodology had been used to solve a clas-
sification problem (assessment of quality level of rocket leaves) and two
regression problems (estimation of chlorophyll and ammonia content of
rocket leaves). That system worked successfully on both packaged and
unpackaged products. The Random Forest approach is based on the hy-
pothesis that the combination of several weak learners, each configured
as a decision tree, can provide more powerful and robust results in clas-
sification and regression (Breiman, 1984). The Random Forest method-
ology has proved to be successful to achieve several goals in agricul-
ture: to solve organic and conventional discrimination problems
(Natarajan and Ponnusamy, 2023), to distinguish healthy and infected
vegetables crops (Ghule et al., 2020), to predict freshness index in fruit
and vegetables (Gokhale et al., 2023). Each tree is trained on the same
task of the complete forest using random subsets of the available train-
ing samples and of the considered features. The training of each tree se-
lects the most relevant features among the available ones contained in
the current random set to achieve the required results: therefore, the
analysis of the resulting forest is expected to provide useful hints about
the relevance of each feature. Random Forest models are generally
quite efficient and effective, but their significant conceptual complexity
may prevent their application in some operational contexts. Moreover,
they are hard to be read and interpreted by humans. Our research was
not intended to compare the performance of Random Forest with other
machine learning techniques: we tried, instead, to overcome the limita-
tions of this approach while exploiting as much as possible the contri-
bution of learning.

Therefore, we started from the results previously achieved on pack-
aged and unpackaged rocket leaves in Palumbo et al. (2022) to move
further. An analysis of the features used by the Random Forest trees was
used to identify a compact yet efficient set of colour cues that can be
used by simpler classifiers and regressors. Due to the nature of the origi-
nal universe of features (frequencies of colour occurrence in the prod-
uct), this subset can be associated to colour regions that are informative
about the nature of the product. Each region provides a single measure
that becomes a single feature for new simpler classifiers and regressors.
That simplifies the computational load. The structure of the classifiers
and regressors used is very simple and easily interpretable. In fact, each
specific colour region can be correlated by humans to specific charac-
teristics of the products, whose changes, during the storage, depends on
well-known chemical or physical processes. Therefore, this colours
hints provide a sound and objective base to describe quality marker pa-
rameters of the product, whose textual and iconographic descriptions
become more robust.

The two innovative goals achieved by this paper are: i) to use a
sound and effective machine learning model to automatically identify
objective and sound colour regions in the ap-plane of the CIELab color
space that effectively correlate to properties of interest of rocket leaves;

ii) to show simple and easily interpretable algorithms to separate mar-
ketable from non-marketable rocket leaves and to estimate their ammo-
nia and chlorophyll contents.

2. Materials and methods

2.1. Identification and preliminary selection of clusters

The experiments used the same images of packaged and unpackaged
rocket leaves acquired for Palumbo et al. (2022). They were chosen to
make significant the comparison between the performance of the sim-
pler algorithms with the Random Forest model used in that previous pa-
per.

The Random Forest model described in Palumbo et al. (2022) was
analysed to identify the colour features more relevant for classification
and regression. That resulting small set of relevant features provided
the input for the simple and understandable algorithms described in
this paper. The vocabulary of features of the Random Forest was com-
posed by the elements of colours histogram (percentage of presence of a
specific colour) in the ab-plane of the CIELab colour space. The rele-
vance of each colour feature was estimated by considering its use to
generate splits in the trees and its correlation with other features (Loh,
2002; 2002). Then, features were sorted by decreasing importance. The
n most important features (with n empirically set to 36) were selected
providing a set of 36 colours (Fig. 1). In this way, the machine learning
model was used only to select the colours more informative to accom-
plish the tasks of interest. Those features purposely do not contain the L
component because past experiments have shown this channel too sen-
sitive to illumination levels and to uneven distribution of light across
the scene.

Some of the selected colours were isolated in the ab-plane of the
CIELab space while others were close to each other. A hierarchical clus-
tering approach was used to group the 36 colours: the resulting clusters
are shown in Fig. 2 using both rectangular (A) and polar (B) representa-
tions (Hastie et al., 2009). The clusters composed by one or two isolated
colours have been considered less able to identify colour regions of in-
terest for our work and discarded.

Three clusters, whose colours are shown in Fig. 3, collected a larger
number of elements, namely the cluster 4 (C4) which contains 10
colours, the cluster 5 (C5) with 11 colours, and the cluster 9 (C9) with 6
colours. A compact group of relevant colours has been considered able
to suggest a region of the ab-plane with a significant relationship with
the characteristics of interest. The rectangles defined by the minimum
and maximum values of the two components of the colours of each clus-
ter are shown in Fig. 4 in both rectangular and polar representations.

The proposed approach associates a region of the ab-plane to each of
the more populated clusters. A single feature is extracted from each re-
gion. This reduces the number of features and simplify the processing
required to their evaluation, that is evaluating the percentages of pixels
of each image whose colour belongs to each region.

2.2. Methodologies for the definition of the colour region corresponding to
each cluster

A first statistical analysis (data not shown), done using a one-way
ANOVA, pointed out the greater relevance of C5 and C9 compared to
C4 which was therefore discarded in the following experiments. Only
in two features, the frequencies of colours belonging to the C5 and C9
respectively, were evaluated and used to build the simple and under-
standable algorithms that are presented in the paper. Each cluster was
composed by a set of sparse points in the ab-plane: it was necessary to
transform these points in a continuous connected region to which to
assign the colours of pixels of each image. Several possibilities to de-
fine this transform were analysed and compared. It is relevant to note
that the points belonging to C5 were well separated by any other clus-
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Fig. 1. The colours in the squares (from 1 to 36) are the most important features, resulting from the analysis of the Random Forest model, in descending order of im-
portance.

ter both in the polar and rectangular representations of colours. On
the contrary, the points belonging to C9 were very close to the cluster
C4 in both the representations. Therefore, to correctly assign colours
to C9 seemed feasible in the polar space but much more challenging
in the rectangular space. For this reason, it was decided to apply each
method to both the representations to verify their efficacy in trans-
forming points into continuous connected regions suitable for the de-
sired tasks. Each method also determines the extension and the shape
of the region associated to each cluster: this choice affects the effi-
ciency both in terms of computational complexity and flexibility.

Let us now describe in detail all the methods compared in this paper.
Let us define (ai, bi) with i = 1, …, 36, as the rectangular coordinates of
the relevant colours identified in the ab-plane by the analysis of the
Random Forest model. Every point in the plane can be expressed also
using the polar representation:

(1)

For simplicity, all the formulas in the rest of the paper will be writ-
ten only once using the symbols x and y. It is intended that they can be
applied to both the representations (rectangular and polar), providing
results that just need different interpretations. In the rectangular repre-
sentation, x stands for a and y for b while in the polar representation x
stands for angle and y for distance. Therefore, every method that we will
describe has been applied into both the coordinates systems to compare
their performance in characterizing the colour regions of interest. Let it
denote:

(2)

(3)

3



CO
RR

EC
TE

D
PR

OO
F

M. Palumbo et al. Journal of Food Engineering xxx (xxxx) 111850

Fig. 2. The clusters of the relevant colours as identified by the analysis of
the Random Forest model. In A, the abscissa and ordinate axes represents
respectively the a and b components of the colours in the rectangular rep-
resentation of the ab-plane in the CIELab color space. In B, the same points
are represented in polar coordinates, where the ordinate represents the dis-
tance of the point from the origin (which is an achromatic point): this dis-
tance is evaluated in the ab-plane of the CIELab color space and it is adi-
mensional. The abscissa represents the angle (in radiant) compared to the
line having b equal to 0. In the latter representation, the elements of each
cluster lie inside a narrow region of the x axis.

The method 1 (M1) associates to each cluster a rectangular region in
the ab-plane whose limits are the minimum and maximum values of
each component of the colours, out of the 36, belonging to that cluster.
The upper-left and bottom-right corners of the resulting rectangular re-
gion have coordinates respectively:

(4)

All the pixels whose colours belong to the rectangular region corre-
sponding to the cluster k, are assigned to that cluster.

Fig. 4 shows that this method separates the clusters C4 and C9 in
the polar representation but not in the rectangular representation in
which the rectangular regions corresponding to C4 and C9 largely
overlap.

The method 2 (M2) represents each region using the central point of
the cluster, that is the point whose coordinates are the mean values be-
tween the minimum and the maximum of x and y. The central point of
the cluster k is:

(5)

Each colour of an image is counted in the cluster whose central
point is closest to it.

The method 3 (M3) represents each region using the centroid of the
colours belonging to the cluster. The coordinates of the centroid of the
cluster k are:

(6)

where and is the number of colours, out of the 36, as-
sociated to the cluster k.

Each colour of an image is counted in the cluster whose centroid is
closest to it.

The method 3 M3 has been applied in two different variants. In the
first one (M3a), only the centroids of C5 and C9 have been considered
when looking for the proper cluster for a colour in the image: each pixel
was assigned to the cluster (out of these two) whose representative
point (centroid) was closest to the colour of the pixel. In the second one
(M3b), all the centroid points of all the clusters have been considered
when looking for the proper cluster for a colour in the image: each pixel
was assigned to the cluster (out of all the 11 clusters) whose representa-
tive point (centroid) was closest to the colour of the pixel. Even in this
last case, only the values corresponding to C5 and C9 were considered
for further processing. The difference between the two variants is that
in the first variant (a) all the pixels are assigned either to C5 or to C9,
according to which one is the closest. In the second case (b), a significa-
tive number of pixels were assigned to other clusters (different from C5
or C9) and were not considered in further processing. In geometrical
terms, variant (b) reduces the size and modifies the shape of the regions
of the ab-plane assigned to each of the two clusters of interest (C5 and
C9).

The method 4 (M4) assigns each pixel to the colour, out of the 36,
which is the closest in the ab-plane. Then, all the pixels associated to
colours belonging to the same cluster are cumulated to evaluate the
number of pixels belonging to that cluster. This last method enables a
finer definition of the shape of the colour region associated to each clus-
ter.

It is important to remember that each method has been applied us-
ing both the polar and the rectangular representations. The results
have been compared to verify the expressivity of each representation
compared to the tasks at hand. All the methods reported above were
applied on the images of unpackaged and packaged samples of rocket
leaves acquired by the CVS in Palumbo et al. (2022). The features cor-
responding to the different clusters were normalized: they were di-
vided by the total number of foreground pixels in the image.

2.3. Statistical analysis

The values corresponding to the most relevant clusters (C5 and C9)
were subjected to a one-way ANOVA analysis to find significant rela-
tionships with the quality level (QL) scores of rocket leaves reported in
Palumbo et al. (2022).
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Fig. 3. Colours belonging to the most relevant clusters 4, 5 and 9. Please note that the black cells marked as void, are empty and purposely introduced in the image
to simplify its construction.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The mean values were separated using the Student-Newman-Keuls
(SNK) test and Statgraphics Centurion (version 18.1.12, Warrenton,
Virginia, USA) was used for statistical analyses.

Principal component analysis (PCA) was performed by the software
Statistica (version 6.0, StatSoft, Inc., Tulsa, OK, USA), using as variables
the values of the C5 and C9 obtained by all the methods described
above, in both the polar or rectangular versions (Method 1, Method 2,
Method 3a, Method 3b, Method 4) and the chemical data of total
chlorophyll and ammonia content previously reported (Palumbo et al.,
2022). While, as the case, data were mediated in two visual quality
group: 5-4-3 (marketable) and 2-1 (unmarketable).

Significant correlations were highlighted between each method and
the chemical data (total chlorophyll or ammonia content) reported in
Palumbo et al. (2022). In particular, the correlation matrices based on
the Pearson correlation coefficient were explored by an heatmap and
the level p = 0.05 was assumed significant for the correlation coeffi-
cients. Data analysis was carried out using the software Statistica (ver-
sion 6.0, StatSoft, Inc., Tulsa, OK, USA). Moreover, a partial least
square regression (PLSR) analysis was carried out to predict the total
chlorophyll or ammonia content using The Unscrambler X software
(CAMO AS, Oslo, Norway).

3. Results and discussions

3.1. Selection of methods associated to rocket leaves marketability

Significant relationships among the values of C5 and C9 evaluated
using the 4 methods and the QL scores attributed to rocket leaves dur-
ing the cold storage (Palumbo et al., 2021) are reported in Table 1.

Results from the one-way ANOVA highlights that all the compared
methods can separate marketable samples (QL5, QL4 and QL3) from
non-marketable ones (QL2 and QL1). This information is normally suf-
ficient in most commercial applications where the QL3 represents the
limit of marketability. It is interesting to note that the method M2,
when applied in the polar representation, is able to separate all the QLs.
Moreover, the methods require different times to assign a quality level
to a sample: they allow the designer of a Computer Vision System to
choose the appropriate trade-off between accuracy and computation
time. The Random Forest model analysed to identify the 36 most rele-
vant colours required about 25 ms to classify a sample. The methods de-
rived by the relevant colours allow different reduction of computation
time and are easily understandable by humans. The method M1 takes
only 1 ms to evaluate a sample. The method M2 requires 3 ms for classi-
fying a sample. The methods M3, regardless its version, requires 11 ms.
M3a, applied in the polar representation, is able to separate all the QLs
but not the QL5 and QL4 (corresponding to very good and good prod-

uct, respectively). The method M4 involves a computation time of 22
ms.

All the methods showed a general reduction in the value associated
to C9 (associated to green nuances), going from QL5 to QL1. The senes-
cence produced an increase in the value of C5, associated to yellow pig-
ments. While a Random Forest model behaves as a black-box, the meth-
ods based on such phenomena are clearly interpretable by humans: in
rocket leaves, the reduction of green pigments and the simultaneous in-
crease of yellow ones during the cold storage is due to biological degra-
dation of chlorophyll (Cefola and Pace, 2015; Cefola et al., 2010;
Watkins, 2006), as also described by Palumbo et al. (2022). Indeed, in
Fig. 5A, data of total chlorophyll and ammonia content reported in
Palumbo et al. (2022) are presented. The total chlorophyll content of
rocket leaves showed a significant reduction (42.4 %) during the stor-
age.

Additionally, postharvest chlorophyll breakdown may contribute to
ammonia accumulation in vegetable tissues (Amodio et al., 2018)
which is highly correlated to hue angle variations (related to leaves yel-
lowing) in rocket leaves stored at 10 °C, already demonstrated by
Palumbo et al. (2022) and Mastrandrea et al. (2016). As for ammonia
content, at harvest samples showed very low values (6.11 ± 2.42 μg
NH4

+/g of fresh weight), but a significant increase was recorded at the
end of storage (132.51 ± 8.67 μg NH4

+/g of fresh weight) (Fig. 5B).
High levels of ammonia may cause tissue damage with visible senes-
cence effects, influencing the overall quality of the product.

Because of their strict relation to the senescence of the product, both
chlorophyll and ammonia content may be considered objective markers
for quality loss of rocket leaves (Palumbo et al., 2022).

These qualitative associations between greenish and yellowish con-
tents of rocket leaves are known but not easy to be translated into an ex-
act description of the corresponding green and yellow regions of the
colour space. The proposed approach exploits the Machine Learning
technique to quantitatively identify the regions of the colour space that
must be observed to monitor the quality of the product.

These results are clearly visible also by looking at the score plot ob-
tained by PCA analysis, that uses as variables the values of the C5 and
C9 obtained by the 4 methods and the chlorophyll and ammonia data
(Fig. 6).

The first and the second components accounted for 66.2 % and 20.4
% of the total variance respectively, displaying a different distribution
of marketable and non-marketable samples in the PCA quadrants (Fig.
6A): the formers were mostly clustered at the left side, while the non-
marketable ones at the right side along the first component.

In the PCA score scatter plot, all the methods in the higher-left and
lower-left quadrants showed a significant correlation with the chloro-
phyll content of rocket leaves which presented negative component 1
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Fig. 4. The figure shows the rectangular regions defined by the minimum and
maximum values of the colours belonging to clusters 4, 5 and 9 in the rectangu-
lar (A) and polar representation (B). In both figures, the symbol of diamond rep-
resents the mean point of each region while the square represents the centroid
of the same region. In the polar representation the regions related to different
clusters have an empty intersection while they largely overlap in the rectangu-
lar representation.

and 2 and was found in the lower-left quadrant of the score plot; on the
other hand, the ammonia content, that is placed in the lower-right
quadrant of the score plot, was correlated significantly to the methods
placed in the same quadrant (Fig. 6B).

The relationships between clusters values of the 4 methods and the
chemical attributes (chlorophyll and ammonia content) were explored
by the heatmap reported in Table 2: the methods M2-C9-P, M2-C9-R
and M3a-C9-R, in the higher-left quadrants, and M3a-C9-P and M3b-
C9-P, in the lower-left quadrant, showed higher correlations with the
chlorophyll content than the others in the same quadrants, while the
ammonia content was highly correlated to the methods M1-C5-R, M4-
C5-R and M4-C9-R. Even for what concern the correlation with chloro-
phyll content, M2 e M3 exhibit a high correlation at a very low compu-
tational cost (3 ms). The differences between C5 and C9 do not appear
to be relevant. Instead, for what concern ammonia, the two clusters
provide very different performances. C9 seems to poorly correlate with

ammonia while C5 is much more effective in estimating this property of
the product. In particular, the presence of C5 evaluated using the M1,
applied to the rectangular representation, exhibits a very high correla-
tion with ammonia content. The C5 is characterized by a strong separa-
tion from the other ones in the ab-plane of the CIELab colour space. The
corresponding colour region defined by the M1 and the rectangular rep-
resentation remains well separated and have a relevant extension in the
colour plane that could explain this high correlation.

Fig. 7 shows the values estimated by the CVS against the values
measured in the laboratory for chlorophyll (A) and ammonia (B) con-
tent on unpackaged and packaged rocket leaves using as variables of
the models the values provided by the methods M1-C5-R and M3b-C9-
P. The accuracy of predictions, expressed in Pearson's correlation coef-
ficient, were interesting (r = 0.82 for chlorophyll and r = 0.89 for am-
monia). They are similar to those obtained by the Random Forest
model developed in Palumbo et al., (2022) (about r = 0.85 and 0.91
for chlorophyll and ammonia, respectively). The advantage of the
methods proposed in this paper is that they are computationally sim-
pler and faster than the Random Forest model.

In literature, there are several examples vision systems integrating
machine learning models that proved to simplify the development of
CVS and to provide better performance and greater flexibility. Dange et
al. (2023) proposed a novel approach to predict the quality of grape us-
ing a CNN-based model and considering colour as an additional indica-
tor. By evaluating the size of grapes in images acquired by a computer
vision system, they predicted the quality of grapes at different stages of
harvesting. The accuracy range of grape quality prediction by the CNN-
model was among 90% and 92%, demonstrating a good level of perfor-
mance. Additionally, the authors compared the performances of the
model with different classifiers, showing the importance of selecting
appropriate algorithm based on specific performance criteria. Ismail
and Malik (2022) proposed a machine vision system based on deep
learning techniques to offer a non-destructive and cost-effective solu-
tion for automating the freshness and appearance of apples and ba-
nanas. They compared the performance of several deep learning models
(ResNet, DenseNet, MobileNetV2, NASNet and EfficientNet) and the av-
erage accuracy of the system was about 99.2% and 98.6% using Effi-
cientNet model for apples and bananas test sets, respectively.
Torkashvand et al. (2017) evaluated a novel methodology about the ex-
trapolative ability of multiple linear regressions (MLR) and artificial
neural networks (ANN) to estimate firmness of kiwifruit together with
nutrients concentrations such as nitrogen, potassium, calcium along
with magnesium. As results, the MLR model predicted firmness of fruit
with a higher accuracy than the ANN model, but when they added the
application of the N/Ca ratio as input dataset in the ANN model, it en-
hanced the prediction firmness of fruit compared to the MLR model.

All the methodologies used in these studies are computationally
complex and difficult to be understood by humans. This paper proposes
simpler methodologies for the construction of predictive algorithms
that are easily understandable by operators, at the cost of light losses in
performances. Further research is needed about the best way to exploit
the contribution of machine learning methodologies in realizing real-
world systems that provide useful performance in industrial systems
while remaining fully understandable by humans.

3.2. Chlorophyll and ammonia content prediction

The methods that reported the highest correlations with chlorophyll
and ammonia contents were used to build two PLS models to predict
these two quality markers of rocket leaves (Table 3).

Results showed good prediction of chlorophyll (Model 1) and am-
monia (Model 2) content by using as predictors the values of the meth-
ods M3b-C9-P and M1-C5-R, respectively. In detail, the Model 1 with R2

of 74 % in calibration and 70 % in validation was obtained for chloro-
phyll content. Higher performances were obtained with the Model 2 to
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Table 1
Relationships between the quality levels of packaged and unpackaged rocket leaves and the studied clusters 5 (C5) and 9 (C9) obtained by 4 different
methods (M1, M2, M3a, M3b, M4) in both polar and rectangular representations. The values represent, for each method, the mean of presence (in terms of
percentage, %) of image colours belonging to the studied clusters.

Method
Representation Clusters Quality Level

5 4 3a 2 1 P-value

very good good fair poor very poor

Presence percentage (%)

M1 polar 5 0.00053 c 0.00075 c 0.00089 c 0.00684 b 0.01638 a ****
9 0.12830 c 0.16343 a 0.12125 c 0.16444 a 0.14662 bc ****

rectangular 5 0.00074 c 0.00103 c 0.00131 c 0.00916 b 0.01927 a ****
9 0.39882 b 0.44795 a 0.37086 c 0.37985 bc 0.34676 d ****

M2 polar 5 0.20719 e 0.22294 d 0.23866 c 0.33814 b 0.37348 a ****
9 0.79280 a 0.77705 b 0.76133 c 0.66185 d 0.62652 e ****

rectangular 5 0.15652 d 0.17772 c 0.18929 c 0.29372 b 0.33330 a ****
9 0.84347 a 0.82227 b 0.81076 b 0.70627 c 0.66669 d ****

M3a polar 5 0.16327 d 0.17472 d 0.18858 c 0.27137 b 0.30264 a ****
9 0.83672 a 0.82527 a 0.81141 b 0.72863 c 0.69735 d ****

rectangular 5 0.12073 d 0.13578 c 0.14621 c 0.23119 b 0.26607 a ****
9 0.87926 a 0.86421 b 0.85378 b 0.76880 c 0.73392 d ****

M3b polar 5 0.17793 d 0.18900 d 0.20609 c 0.29534 b 0.32366 a ****
9 0.22341 a 0.19918 b 0.19192 b 0.14904 c 0.13697 c ****

rectangular 5 0.12913 d 0.14746 c 0.16002 c 0.26392 b 0.30112 a ****
9 0.16967 b 0.18999 a 0.14444 c 0.18574 a 0.19132 a ****

M4 polar 5 0.18734 e 0.20148 d 0.21638 c 0.30907 b 0.34268 a ****
9 0.20359 bc 0.22448 a 0.19776 c 0.20940 b 0.20097 c ****

rectangular 5 0.09040 d 0.11072 c 0.12132 c 0.24132 b 0.29544 a ****
9 0.22129 c 0.29558 b 0.23595 c 0.36851 a 0.37268 a ****

For each quality level, the mean values followed by different letters (a, b, c, d, e) are significantly different (P-value <0.05) according to Student-Newman-Keuls
(SNK) test.
Significance: **** = significant at P-value ≤0.0001.

a Limit of marketability.

Fig. 5. Changes in chlorophyll (A) and ammonia (B) contents of rocket leaves
during 18 days of storage at 10 °C. Each data is the mean value of 60 sam-
ples ± standard deviation.

predict the ammonia content (R2 of 0.83 and 0.72 in calibration and
validation, respectively). Similar performances were achieved by the
prediction reported in Palumbo et al. (2022), in which Random Forest
model was used (R2

v = 0.77 and 0.80 for packaged and unpackaged
samples, respectively). Hendrawan et al. (2023) measured the chloro-
phyll content of Moringa leaves using machine vision and an optimized
artificial neural network with high performances in validation
(R = 0.97). Higher performances were obtained by Cavallo et al.,
(2017), in which the combination of CVS and a Random Forest model
provided a very interesting predictive model (R2

v = 0.90). In our work,
M3b-C9-P provides lower performances for chlorophyll prediction than
Hendrawan et al. (2023), Palumbo et al. (2022) and Cavallo et al.,
(2017), but the methodology adopted provided simpler algorithms, eas-
ily interpretable by humans, and a lower computational speed (about 3
ms against the more than 20 ms of the random forest model). Addition-
ally, while no relevant correlation was identified in Palumbo et al.
(2022) for ammonia content, often used as another senescence indica-
tor in leafy vegetables, the novel approach allowed to obtain a signifi-
cant prediction of this parameter by M1-C5-R, the simplest model that
has a computational time of 1 ms. There are no research works about
the prediction of ammonia content in rocket leaves through the analysis
of images acquired by a CVS to compare to our results. The possibility
to evaluate this senescence parameter in a consistent and objective
way, may be useful in the food processing industry to monitor the qual-
ity and shelf life of rocket leaves. In the future, once the methodology
has been explored by other works, it would be useful to have a direct
comparison of all results.

4. Conclusions

The present research addresses two limits of machine learning
models: their computational complexity and their being not under-
standable by humans. The most effective machine learning method-
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Fig. 6. PCA loading plot (A) and score scatter plot (B) carried out on the values of clusters 5 (C5) and 9 (C9) in the polar (P) or rectangular (R) representation obtained
by the 4 methods adopted (M1, M2, M3a, M3b, M4). The abscissa and ordinate axes represent respectively the first and the second component with different percent-
age of the total variance. In A, each quadrant of the PCA represents the different distribution of marketable (5-4-3) and non-marketable (2-1) samples; in B, correla-
tions among chlorophyll and ammonia contents and all the methods adopted (M1, M2, M3a, M3b, M4) are displayed.

ologies (Random Forest models or Convolutional Neural Networks
are just a couple of the most popular examples) behaves as black-box
and it is impossible to interpret their behaviour and to explicit the
reasons that lead to their decisions. This lack of transparency is a seri-
ous weakness that justify why relevant research (under the general la-
bel of eXplanable Artificial Intelligence) is currently working on
methodologies that make these models comprehensible. The ap-
proach proposed in this paper explores the possibility of extracting
and explicating information hidden into an effective machine learn-
ing model developed to classify visual quality and to estimate internal

properties of rocket leaves. This information provided useful hints to
develop methods fully understandable by humans that achieve the
same results with lower computational costs. An effective Random
Forest model, developed in previous experiments to classify visual
quality and to estimate chlorophyll and ammonia contents in rocket
leaves, has been analysed to point out a set of relevant colours that
correlate with the characteristics of interest. These colours have been
used to automatically identify regions in the ab-plane of the CIELab
colour space that can be exploited by simple and easily understand-
able methods that accomplish the same classification and estimations

8
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Significance: ns = not significant; * significant for P ≤ 0.05; ** significant for P ≤ 0.01; *** significant for P ≤ 0.001; **** significant for P ≤ 0.0001.

Table 2
Significance: ns = not significant; * significant for P ≤ 0.05; ** significant for P ≤ 0.01; *** significant for P ≤ 0.001; **** significant for
P ≤ 0.0001.
The heatmap shows the correlations between values of clusters 5 (C5) and 9 (C9) in the polar (P) or rectangular (R) representation obtained with the 4 dif-
ferent methods (M1, M2, M3a, M3b, M4) and chlorophyll and ammonia contents in rocket leaves. A different colour code is used to represent the strong of
correlations; r is the Pearson's correlation coefficient.

of interest. These relevant colour regions evaluate significant traits of
the product at hand and are comprehensively related to chemical and
physical changes induced by senescence. The simple methods built
using these colour regions as features allow the tuning of computa-
tional complexity according to the requirements of the application,
with minimal performance loss compared to the original Random
Forest model.

The proposed approach was able (i) to identify relevant clusters of
colours that are informative about the properties of the product at
hand; (ii) to select the clusters more significant to estimate the desired
properties; (iii) to describe shape and size of regions of the ab-plane in
the CIELab colour representation corresponding to the clusters of inter-
est. These results were achieved using automatic processing without the
cumbersome and error-prone trial-and-error process required by man-
ual design and selection of features.

These features were the input for objective and sound computa-
tional schemes with different execution times. Humans can choose the
best trade-off between efficacy and efficiency, depending on the appli-
cation constraints. All methods provided a good separation of mar-
ketable samples from non-marketable ones with computation times
(from 1 ms to 22ms) lower than the Random Forest model (25ms). In
particular, two of the considered methods, M3b-C9-P and M1-C5-R,
provided good prediction of chlorophyll (R2

v = 0.70) and ammonia
(R2

v = 0.72) contents, respectively. Chlorophyll and ammonia assess
the state of product in an objective and robust way. The computation

times of the two methods (3ms for M3b-C9-P and 1 ms for M1-C5-R) are
much lower than the 25ms of the Random Forest model. The results of
the experiments can be easily interpreted in terms of known processes
occurring during the senescence of the product. Moreover, the identi-
fied well-grounded objective colour cues could be used to improve indi-
cations provided to human operators during their training on the qual-
ity evaluation task.
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Fig. 7. Values of chlorophyll (A) and ammonia (B) content measured in the lab-
oratory vs. values estimated by the CVS on unpackaged and packaged rocket
leaves, using as variables of the model the methods M3b-C9-P and M1-C5-R, re-
spectively.

Table 3
Root Mean Square Error (RMSE) and the coefficient of determination (R2)
in calibration (c) or validation (v) of the partial least square regression
(PLSR) models predicting chlorophyll and ammonia contents of rocket
leaves.
PLSR models Predictors RMSEc R2 RMSEv R2

Model 1 (chlorophyll content
prediction)

M3b-C9-P 6.23 0.74 7.04 0.70

Model 2 (ammonia content
prediction)

M1-C5-R 20.27 0.83 27.58 0.72
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