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Abstract. Public bike-sharing systems are a popular means of sustain-
able urban mobility, but their successful introduction in a city stands
or falls with their specific designs. What kind of bikes and docking sta-
tions are needed, how many and where to install them? How to avoid as
much as possible that stations are completely empty or full for some
period? Hence, a bike-sharing system can be seen both as a highly
(re)configurable system and as a collective adaptive system. In this pa-
per, we present two complementary strategies for the evaluation of bike-
sharing system designs by means of automated tool support. We use
the Clafer toolset to perform multi-objective optimisation of attributed
feature models known from software product line engineering and the re-
cently developed mean field model checker FlyFast to assess performance
and user satisfaction aspects of variants of large-scale bike-sharing sys-
tems. The combined use of these analysis approaches is a preliminary
step in the direction of automatic decision support for the initial design
of a bike-sharing system as well as its successive adaptations and recon-
figurations that considers both qualitative and performance aspects.

1 Introduction

More and more cities are deploying public bike-sharing systems (BSS) as a sus-
tainable urban mode of transportation [22]. The concept is simple: a user arrives
at a docking station, rents a bike, uses it for a while and returns it to a sta-
tion close to their destination; payment is either per trip or by subscription.
BSS potentially offer multiple benefits, among which the reduction of vehicular
traffic, pollution, noise and energy consumption. To improve the efficiency and
user satisfaction of BSS, the load between different stations should be balanced,
e.g. by using incentive schemes that influence the behaviour of users but also by
efficient redistribution of bikes among stations.

The current third generation technology-based BSS are very different from
the first generation free BSS introduced in Amsterdam roughly half a century
ago. Bicing , the well-known and successful BSS of the city of Barcelona, cur-
rently consists of over 6,000 bikes and 420 stations. There are now similar BSS
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in more than 500 cities worldwide. The largest can be found in China with upto
90,000 bikes and over 2,000 stations, one every 100 meters. Fourth generation
BSS are already being developed. These include movable and solar-powered sta-
tions, electric bikes and smartphone real-time availability applications [22]. In
the context of QUANTICOL (www.quanticol.eu) we collaborate with PisaMo
S.p.A., an in-house public mobility company of the Municipality of Pisa, which
introduced the BSS CicloPi in Pisa two years ago. This BSS, which currently
consists of roughly 140 bikes and 15 stations, was supplied by Bicincittà S.r.l.

The design of a BSS is multi-faceted and complex. First of all, BSS are
composed of many components, among which bikes and stations, but also human
users. The latter form an intrinsic part of the BSS and their individual patterns
of behaviour have a decisive impact on the collective usability and performance
of a BSS, which is highly dynamic. Furthermore, there are questions concerning
costs of installing and running a BSS, maintenance, specific user preferences and
needs and specificities of the city architecture. Hence, BSS can be seen as highly
(re)configurable systems and collective adaptive systems1 (CAS). Our long-term
goal is to be able to provide automatic decision support for the initial design
of a BSS to be deployed in a city, as well as for successive adaptations and
reconfigurations that consider both qualitative and performance aspects. In this
context, it is important to realise that the design and behaviour of the individual
entities from which a BSS is composed, may exhibit variability not only in the
kind of features but also in the quantitative characteristics of features.

In [3–6], we studied product lines of BSS and their bikes, respectively. In this
paper, we make use of these product lines to analyse different configurations.
Software product line engineering (SPLE) is an engineering approach aimed
at cost-effectively developing a variety of (software-intensive) products from a
common reference model or architecture, i.e. that together form a (software)
product line. Commonalities and differences are defined in terms of features
and variability models encode exactly those combinations of features forming
valid products. Actual product configuration during application engineering is
thus reduced to selecting desired options in the variability model. We extend
the product lines from [3, 4, 6] by explicitly taking feature attributes and feature
cardinalities into account. The former enrich variability models with quantitative
constraints, while the latter allow us to explicitly distinguish BSS configurations
by the specific number of stations and bikes of each variant that are used.

We will first perform multi-objective optimisation of a BSS variability model
with the recently developed toolset Clafer [1], after which we will study the use
of the recently developed on-the-fly mean field model checker FlyFast [18, 20]
to analyse behavioural and performance aspects of BSS configurations. Clafer-
MOO(Visualizer) [23] allows to compare system configurations (variants) with
respect to various quality dimensions (e.g. cost), select the most desirable one
and analyse the impact of reconfigurations on a variant’s quality dimensions.

1 These are systems consisting of a large number of spatially distributed heterogeneous
entities with decentralised control and varying degrees of complex autonomous be-
haviour able to adapt to changing circumstances.



Model checking is a widely used, powerful approach to the automatic veri-
fication of concurrent, distributed systems, including performance aspects. It is
an efficient procedure that, given an abstract system modelM, decides whether
M satisfies a (temporal) logic formula Φ. Currently, the integration of mean
field and fluid approximation techniques with model-checking [8, 9, 17, 18, 20] is
receiving increased attention as a way to obtain highly scalable formal methods
supporting the design of large-scale CAS for which performance aspects are es-
sential to their desired behaviour. Mean field approximation techniques originate
in statistical physics and biochemistry where they are used to analyse large-scale
phenomena like particle interaction and chemical reactions between molecules of
different substances. The key idea of such approximation techniques is to replace
the actual stochastic or probabilistic interactions in a system, which often lead
to a combinatorial explosion of possibilities, by an approximation of the aver-
age system behaviour over time in terms of the numbers (fractions) of elements
present in a population. In our setting, we assume that the elements have a
small number of local states, and we consider the number (fraction) of elements
(agents) that are in a particular local state [16, 21]. The change over time of
these fractions can be defined as the solution of a set of ordinary differential
equations or, in our case, difference equations, given an initial state of the over-
all system, and approximate its evolution over time. Informally speaking, the
larger the populations in the system, the better the quality of the approxima-
tion. Typically their size is in the order of hundreds, thousands or even better,
millions.

A more technical introduction to mean field and fluid approximation can
be found in [10]. For what concerns mean field model checking, the idea is to
analyse the properties of the behaviour of a single agent in the context of the
overall system behaviour (approximated as described before). The difficulty in
model-checking the properties of such an agent is that the probabilities involved
in its behaviour are not constant but may, e.g., depend on the changing fractions
of specific agents in the system over time. So the probabilities in the model of the
agent under study are time-dependent or time-inhomogeneous, or more formally
time-inhomogeneous discrete time Markov chains (IDTMC). In [20], we analysed
performance aspects of a BSS with homogeneously distributed resources.

An important characteristic of BSS is the probability that stations are empty
or full, since these situations generate distress among users and discourage them
to use the BSS. In an online survey conducted by Froehlich [13] on the Bicing
BSS in Barcelona in 2009 about the experience of users with bike sharing, it
turned out that 75% of the users stated commuting as a motivation to sign up
for membership. Moreover, the same users identified “finding an available bike
and a parking slot” as the two most important problems encountered (76% and
66% of the 212 respondents, respectively). These problems should therefore be
addressed in the best possible way within the obvious budget constraints of cities,
and at the same time keeping the number of kilometres made by vans that are
involved in the (unavoidable) redistribution of bikes as small as possible.



We thus use the on-the-fly mean field model checker FlyFast [18, 20] for the
analysis of properties of selected stations in a BSS and for a mean field anal-
ysis of the BSS [21]. This prototypical tool was developed for the analysis of
discrete time Markov population models. This differs from fluid model-checking
approaches developed for the analysis of continuous time Markov population
models as in [8, 9, 17] which moreover use a global model-checking approach, i.e.
an approach in which a formula is analysed for all states. The latter approach al-
ways requires a full state space search, whereas an on-the-fly approach generates
only as much of the state space as necessary to analyse the property. Especially
in case of conditional reachability properties this may be much more efficient.
On-the-fly mean field model checking on discrete time Markov population mod-
els can also be used to approximate global fluid model checking of continuous
Markov population models under certain conditions (see [19] for further details).

The paper is organised as follows. In §2 we define a variability model of a BSS
and analyse it with ClaferMOOVisualizer in §3. In §4 we capture BSS behaviour
in a Markov population model and analyse it with FlyFast in §5. §6 outlines how
to combine these approaches in a future decision support system for BSS design.

2 Attributed Feature Model of BSS

The de facto standard variability model in SPLE is a feature model [24]. A feature
characterises a stakeholder visible piece of functionality of a product or system
and a feature model provides a compact representation of all possible products of
a product line or configurable system in terms of their features (behaviour is not
captured). However, there may be hundreds of features or configurable options,
which easily leads to superfluous or contradictory variability information (e.g.
‘false’ optional or ‘dead’ features). There is a lot of work on computer-aided
analyses of variability models to extract valid products and detect anomalies [7].

Graphically, features are nodes of a rooted tree and relations between them
regulate their presence in products: optional features may be present provided
their parent is; mandatory features must be present provided their parent is;
exactly one alternative feature must be present provided their parent is; at least
one or feature must be present whenever their parent is; a requires constraint
indicates that the presence of a feature requires that of another; an excludes con-
straint indicates that two features are mutually exclusive. We identify a product
P from the product line with a non-empty subset PF of the set F of features.
Deciding whether a product satisfies a feature model can be reduced to Boolean
satisfiability (SAT), which can be effectively computed with SAT solvers [2].

In this paper we consider a BSS with three types of stations.We assume
stations with capacity 15 to be located in the city centre (C), those with capacity
5 in the periphery (P) and those with capacity 10 in between (M, for middle).
We define configuration 1 of a size in the order of that of the BSS in Barcelona
in 2009 [13]: 330 stations of which 100 of type P, 150 of type M and 80 of type C.
Subsequently, we present analyses of reconfiguring it into 397 stations of which
200 of type P, 150 of type M and 47 of type C (defined as configuration 2).



Once we equip features with attributes (e.g. capacity(Centre) = 15) we
obtain an attributed feature model [7]. Now a product P is a non-empty subset
PF ⊆ F that moreover satisfies the additional quantitative constraints over fea-
ture attributes (e.g. capacity(DockingStation) ≤ 10). Complex quantitative
constraints require satisfiability modulo theories (SMT) solvers like Z3 [11].

We consider the attributed feature model of a BSS depicted in Fig. 1, which
we obtained by adding attributes to the feature model of the bike-sharing prod-
uct line of [3, 4] (ignoring, mainly, the user feature) and replacing its Bike feature
with the attributed feature model of the bikes product line of [6] (ignoring the
computational unit feature). We extracted all features and values for the cost
(in euros) and capacity attributes from documents received from Bicincittà. The
values for customer satisfaction (c_sat) instead are estimates based on discus-
sions with PisaMo and Bicincittà. Our research aims to replace them by more
realistic values obtained from performance analyses like those we perform in §5.

Fig. 1. Attributed feature model of a BSS.

3 Variability Analysis of BSS

In this section, we present initial variability analyses over the above BSS model.
We use the attributed feature modelling capabilities of the lightweight textual
SPL modelling language Clafer [1] and its extension ClaferMOO(Visualizer) [23].
Each feature can have attributes and quality constraints can be specified globally
or in the context of a feature. Hence we can associate a price to each feature and
a global constraint that only allows products (feature configurations) whose total



costs remain within a predefined threshold value. If more than one attribute is
associated with a feature this may result in multiple such optimisation objectives.

The ClaferMOO extension of Clafer was specifically introduced to support
attributed feature models with complex multi-objective optimisation goals. The
latter have a set of solutions, known as the Pareto front, that represents the
trade-offs between several conflicting objectives. Intuitively, a Pareto-optimal
solution is such that no objective can be improved without worsening another.
A set of Pareto-optimal variants generated by ClaferMOO can be visualised (as a
multi-dimensional space of optimal variants) and explored in the interactive on-
line tool ClaferMOOVisualizer, which was specifically designed for SPL scenarios.

Fig. 2. Bubble graphs of Pareto fronts for Bike configurations (left) and the BSS (right).

We first focus on the bike feature in Fig. 1 in isolation. Figure 2(left) depicts
the result of optimising it by minimising the cost of a product while at the same
time maximising customer satisfaction. If we inspect the nine resulting variants
in detail, we see that variants 1 and 7 are very costly, since these concern electric
bikes. We conclude that variants 2–5 offer reasonable customer satisfaction at an
affordable cost. These are exactly the variants without Engine but with Energy.

Now that we selected the bike configuration(s), we turn to the rest of the BSS
in Fig. 1. Recall that we are interested in comparing BSS configurations with
different distributions of docking stations over a city. Therefore, we make use of
the possibility to add feature cardinalities to a feature model specified in Clafer.
We allow between 33 and 39 docking stations,2 upto 10 stations of type P, 15 of
type M and 8 of type C for the first configuration, upto 20 stations of type P,
15 of type M and 4 of type C for the second configuration and we use additional
constraints to prohibit mixing the two configurations of docking stations. For
this to work, we actually clone the features Periphery, Middle and Centre thus
allowing us to distinguish the stations used in one configuration from those used
in the other. This is a novel use of feature cardinalities and feature cloning.

Figure 2(right) depicts the result of optimising the model just described by
minimising a product’s cost while at the same time maximising both customer
2 There is no technical limitation, but for ease of presentation and to speed up the
computation we divided the number of stations and all costs by a factor 10.



satisfaction and capacity. This results in 84 variant configurations, coming from
the three optional features Maintenance, Redistribution and Reward and all
possibilities to reconfigure configuration 1 (33 stations: 10 of type P, 15 of type
M, 8 of type C) into a variant configuration with upto 39 stations, of which
upto 20 of type P, upto 15 of type M and upto 4 of type C, thus including
configuration 2. Variants 1–5 all concern configuration 2, while variants 80–84
all concern configuration 1. If we inspect these variants in detail, it turns out
that configuration 2 has slightly less capacity than configuration 1 (310 vs. 320),
offers much higher user satisfaction (732–782 vs. 654–704) at a generally higher
cost (50500–57500 vs. 48500–55500). Note that the actual cost of a BSS with
configuration 1 or 2 must be multiplied by 10 and, moreover, the cost of the
bikes must be added. For capacities of 3100–3200 parking slots, some 1550–1600
bikes are needed [12]. Bike variants 2–5 cost between 223 and 403 euro per bike.

4 BSS as a Markov Population Model

For the analysis of performance-related aspects we now define the BSS as a
Markov population model. Our model is inspired by the bike-sharing model of
Fricker and Gast [12], which is a continuous time model based on homogeneous
space where all locations are equally accessible to the users. We however use
discrete time variants of this model. In the simple case, the model consists of
N stations, each with a capacity of K parking slots. The number of bikes in
the system is constant at s bikes per station on average, amounting to sN bikes
in total. In every time step each station has the same probability that a user
requests a bike. The probability that a bike is returned to a station depends on
the number of bikes in circulation (i.e. not parked). Figure 3 shows a graphical
representation of the model of a single bike station with K parking slots.

Y 0 Y 1 YK− 1 YK

drop dropdrop

take taketake

· · ·

Fig. 3. A bike station.

Following [12], we denote the stochastic process composed of N stations in
parallel by Y N (i) = (Y N

0 (i), . . . , Y N
K (i)), but in our case this denotes a discrete

time Markov process where i denotes the discrete time step. Each element Y N
k (i)

in the vector denotes a random variable that gives the fraction of the total
number of stations that have k bikes parked in it at time step i. In the following
we address the request and return rates, assuming that we reached the system
state (y0, y1, . . . , yK).



Bikes requested. Assume there is one request of a bike per time unit per station
on average, and for simplicity, assume that one time unit corresponds to 1 hour.
Then we have in total, for the whole system, on average, N requests for bikes per
hour. The arrival of requests to the set of stations in which exactly k bikes are
parked is then Nyk. If such a request indeed arrives at a station with k parked
bikes, then the fraction of stations yk decreases with 1/N and the fraction of
stations yk−1 increases with 1/N . For technical reasons a time unit of 1 hour is
too long to obtain accurate results using a mean field approximation in discrete
time in the context of this BSS model. In what follows we therefore rescale the
time units to smaller ones, adjusting the probabilities of occurrences of requests
per time unit accordingly. In particular, we use λ to denote the number of re-
quests per hour and assume time units of two minutes, obtaining the probability
of a request for a bike in a time unit as λ/30.

Bikes returned. The number of bikes that can be returned depends on the num-
ber of bikes in use, which can be obtained as the total number of bikes minus
those that are parked in the stations. The total number of bikes is sN , where s
is the average number of bikes per station and N the total number of stations.
The average number of bikes parked in the stations is

∑N
k=1 kyk, so the number

of bikes in transit can be expressed as N(s−
∑N

k=1 kyk). We further assume that
the average travel times, i.e. the time during which a bike is used for one trip, is
1/µ and that stations to which bikes are returned are selected at random. Under
these assumptions, assuming for simplicity that µ = 1, a bike is returned to a
station with k ≤ K − 1 bikes with rate ykµN(s−

∑N
k=1 kyk) per hour. If such a

bike is indeed returned to a station with k ≤ K−1 bikes, then yk is decreased by
1/N and yk+1 is increased by 1/N . As before, we will work with time steps of two
minutes, which means that we work with µ/30 and that the probability to return
a bike to a station with k bikes in one time step is yk(µ/30)N(s −

∑N
k=1 kyk).

In all experiments in the sequel, one time unit corresponds to 1/30th of an hour
(i.e. 2 minutes).

We extend this basic model by introducing the populations P, M and C of
stations, as anticipated in §2. Recall that next to a different capacity, each also
has a different location in the city. These locations are characterised by different
usage patterns of bikes by commuters. Such patterns were observed in data about
usage in real BSS such as the one in Barcelona [13]. Most commuters live in the
suburbs and take the bike in the morning to go to their work or to school in the
centre and go homewards somewhere in the afternoon or towards the evening.
This leads to clearly distinguishable usage patterns that show complementary
behaviour: stations in the periphery have a high request rate in the morning
whereas those in the centre, with some delay, have a high return rate. These
flows are reversed in the afternoon and towards the evening. The stations in the
middle show a more stable pattern as requests and returns are more balanced.

We model the flow of commuters between the periphery and the centre dur-
ing daytime by a combination of oscillating functions. The latter are modelled



as populations within the same specification framework3. Their definition is in-
spired by the oscillatory process defined in [15]. Figure 4(left) shows three periods
of 12 hours each, reflecting periods during which the BSS is most used (we omit
night time). The early morning of the first day period starts around time step
100. The curves show the change in request and return rates in the periphery and
centre stations over the period, with a clear peak in the morning and a smaller,
more distributed peak during the afternoon and evening hours. The rates oscil-
late around the average request rate λ = 1 and return rate µ = 4. For request
rate 1 this means 330(= N) requests per hour for the total system. When mod-
ulated by the oscillations, the number of requests varies between 0.5×N = 115
and 1.3×N = 440 per hour, assuming that each request corresponds to finding
a bike. In data about the BSS in Barcelona (which has twice as many bikes and
total capacity than in our model) the number of requests goes up to 1000 per
hour in the morning. So given the capacity and number of bikes used in our
model, these numbers seem in line with those in the literature.

Besides the modulation of request and returns during day in the various
locations, also the number of stations located in the various parts of the city is
of importance. Recall that we defined two configurations in §2. We furthermore
assume that initially each station of type P is filled with 3 bikes, those of type
M with 5 bikes, and those of type C with 7 bikes, leading to an average number
of s = 3×100 + 5×150 + 80×7

330 = 1610
330 ≈ 4.8788 bikes per station.

Figure 5 shows the variation of the fraction of stations of type P with 0, 1,
2, 3, 4 and 5 bikes parked, respectively, over a time horizon of 300 time units,
comparing the average of 500 stochastic simulation runs in Fig. 5(left) with a
mean field approximation of the model in Fig. 5(right). The results show a good
correspondence. For the precise conditions of the model under which this happens
we refer to [21]. In the case of the BSS model these conditions are satisfied as
long as the population sizes used in the model are sufficiently large4. Recall that
mean field models provide an approximative result on the average behaviour of
a system. Individual simulations, in particular of models with relatively small
populations, may show varying behaviour due to stochastic variability.

5 Examples of Performance Features of BSS

This section contains exemplary performance analyses over the BSS model of §4.

5.1 Normalised Activity/Bicycle Data

One way to characterise usage patterns of stations is by their average filling
degree over time. Froehlich et al. call this normalised activity/bicycle (NAB)
3 The input language of the FlyFast model-checker used for the analysis is described
in [18, 20] and consists of a simple high level language for Markov population models
from which the mathematical structures on which the model-checking algorithms
are based are automatically generated in an on-the-fly fashion.

4 In the simulation we used population sizes multiplied by a factor 10, so considering
3300 stations instead of 330. This has nothing to do with the factor 10 scaling in §3.
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Fig. 5. Fractions of stations of type P with 0 to 5 bikes, indicated respectively by YP0
to YP5: (left) simulation average over 500 runs and (right) mean field approximation.

data [13]. These filling degrees are usually collected from data observed in real
systems, but we obtain them from the mean field analysis of the model as follows:

NAB =

∑Ki

k=1 yikk

Ki
× N

Ni

where i ∈ {P,M,C} denotes the type of stations, Ki the capacity of stations of
type i, yik the fraction of type-i stations with k bikes parked in it of the total
number of stations N and Ni the number of stations of type i. The multiplication
with N

Ni
is because we are interested in the filling degree of type-i stations and

not in the total number of stations N , whereas yik gives the fraction with respect
to the total number of stations N . For instance, let YP1, . . . ,YP5 denote the
fractions of the total number of stations N of stations of type P with 1, 2, 3, 4
and 5 bikes, respectively, where Kp = 5 is the capacity of such stations. Then
BP = YP1×N + 2×YP2×N + 3×YP3×N + 4×YP4×N + 5×YP5×N
is the total number of bikes parked in stations of type P. This gives on average



ABP = BP/NP bikes parked per station, where NP is the number of stations
of type P, and ABP/Kp is the filling degree of such a station of type P.

We now compare the NAB of configurations 1 and 2 defined in §2. The NAB
of configuration 1, for an average request rate of one bike per station per hour
and an average trip duration of 15 minutes, is shown in Fig. 6(left) for a period
of approximately 3 days of 12 hours each (night time is omitted). We clearly
see the pattern of fluctuations of request rates also appear in the fluctuations
in the filling degrees of the stations. Furthermore, a decrease in filling degree in
the stations in the periphery in the morning corresponds to a slightly delayed
increase in filling degree in the stations in the centre. The delay is due to the
time it takes to cycle from the periphery to the centre. The reverse is happening
in the evening when commuters go back home. Interestingly, the stations in the
middle area show a more stable filling degree than those in the centre and in the
periphery. Both patterns have been observed also in real data from the BSS in
Barcelona [13].

The NAB of configuration 2 is shown in Fig. 6(right). In order to compare
the configurations under the same assumptions on bike requests we have to cor-
rect for this fact in the model of configuration 2 because the request of bikes in
the model are expressed per station. So we divide the requests (and returns) in
the periphery for each station by 2, and double the requests (and returns) per
station for those in the centre. Under these assumptions, the figure shows that
in configuration 1 the stations in the periphery are in general less empty, but
that the filling degree of those in the centre now fluctuates much more. Larger
fluctuations might require more frequent interventions from BSS operators to re-
balance the distribution of bikes. The situation in the periphery seems improved,
but perhaps there are now more stations and bikes than really necessary. Many
other BSS configurations and situations can be investigated. For example the
effect on the average filling degree of an increase in requests for bikes when the
density and number of stations and bikes is increased or the effect on resource
usage and related implications on user satisfaction and costs of different distri-
butions of stations over the various areas of the city. We limited ourselves here
to only some examples due to space limitations.

Mean field based models provide an approximation of the average behaviour
in a computationally efficient way compared to a simulation based approach.
Moreover, the analysis time is independent of the number of stations in the
BSS, meaning that the approach easily scales to BSS with a size in the order
of those found in Chinese cities. The approximations are actually better for
BSS with more stations because this reduces the stochastic variability of system
behaviour. Just as an indication of the evaluation times we would like to mention
that the analysis in Fig. 6 takes less than a second to perform.

5.2 Properties of Individual Stations in the Context of the System

In the previous section, we analysed performance aspects of the BSS as a whole.
However, also the behaviour of individual stations in the context of the overall
BSS can provide valuable insight into the level of service that is provided to its
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customers. We provide some examples of properties of individual stations that
may be relevant and that have been obtained by applying the mean field model
checker FlyFast, developed by some of the authors of the current paper [18, 20].

Probability of a station getting full or empty within the time of arrival
An example of a property of an individual station, operating in the context of
the global system, is the question of how likely it is that a station gets full (or
empty, respectively) within approximately 30 minutes (corresponding to 15 time
steps) corresponding to the usual maximal free allowance in a BSS, i.e. no fee
is due for trips shorter than 30 minutes. In other words, this property could
provide some insight in the likelihood that a station selected as destination by a
user gets full between the time the user departs and the maximal free allowance.
For a station in the periphery with a capacity of 5 parking slots, this property



can be formalised in PCTL [14] as

P=?( tt U≤15 YP5 ) (P1)

where YP5 a periphery station that is full, i.e. having 5 bikes parked. A similar
property can be formulated for a station getting empty replacing YP5 by YP0.
Figure 7(left) shows the results for a selected destination station in state YP3, so
there are still 5− 3 = 2 parking slots free at the destination at the time the user
departs. Note that this probability depends on the time at which property P1 is
evaluated because of the evolution of the system over time and that the figure
shows its evaluation at times ranging from 0 to 1000 time units. The interested
reader is referred to [20] for further details on the mean field model-checking
algorithms for such properties. Similarly, Fig. 7(right) shows the probabilities
for a destination station to get empty within 30 minutes when it currently has
two bikes parked in its slots.

A more sophisticated nested property, P2, considers the situation in which,
within 30 minutes a destination station in the periphery: (i) gets full, but then,
with high probability (≥0.99) has a free slot within 6 minutes, or (ii) does not
get full, but then, with low probability (≤0.01) gets full within 6 minutes.

This property can be formalised in PCTL as follows:

P=?( tt U≤15 ((YP5 ∧ P≥0.99(YP5 U≤3 ¬YP5)) ∨
(¬YP5 ∧ P≤0.01(¬YP5 U≤3 YP5))) ) (P2)

The result of checking P2 against a BSS with an initial state of the selected
individual destination station and which has two empty parking slots available
(i.e. the local state is YP3) is shown in Fig. 4(right). Property P2 is evaluated
at times ranging from 0 to 1000 time units. We clearly see that there are periods
during which the likelihood to find a free slot at the destination station in the
periphery is 1, which thus indicates a very good level of service indeed. But
there are also periods during which this likelihood reduces considerably. These
are peak times when the level of service for what concerns finding free slots to
park a bike in the periphery drops to a much lower level. Note that P2 formalises
the probability with which a user can expect to find a free parking slot at a
station in the periphery within 30 minutes from departure. Similar properties
can be verified for stations in other parts of the city. Property P2 took just a few
seconds to be analysed, which is a very good result given the size of the system
and the nested form of the formula.

6 Discussion and Future Work

In this paper, we presented two approaches for the evaluation of BSS designs
by means of automated tools in a rather orthogonal way. We performed vari-
ability analysis (by multi-objective optimisation) on system configurations and
performance analysis (by mean field model checking) on behavioural models.



We focussed on a simplistic comparison of two different BSS configurations with
respect to their cost, user satisfaction and capacity (in terms of parking slots)
to illustrate the ideas. In the future, we intend to strengthen the integration of
these two approaches and use the outcome of performance analyses as input for
variability modeling. Think, e.g., of measuring the user satisfaction for specific
configurations and feeding the resulting values into the variability model. Clearly,
the probability of finding an empty (or full) docking station, based on the capac-
ity of a BSS configuration, may directly impact user satisfaction. The resulting
combined use of analysis approaches can trigger the development of automatic
decision support for the design of BSS as well as for successive adaptations and
reconfigurations. This is not merely an utopia, since we showed that the use of
recently developed scalable performance analysis methods (i.e. on-the-fly mean
field model checking in discrete time) proposed in this paper easily scale to BSS
of realistic size.

Acknowledgements We thank Michele Loreti, who is the developer of FlyFast.
We also thank Bicincittà S.r.l. and Marco Bertini from PisaMo S.p.A. for gen-
erously sharing with us relevant information concerning bike-sharing systems in
general and Pisa’s CicloPi bike-sharing system in particular.

References

1. K. Bąk, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wąsowski. Clafer: unifying
class and feature modeling. Software & Systems Modeling, 2015.

2. D. Batory. Feature Models, Grammars, and Propositional Formulas. In J. Obbink
and K. Pohl, editors, SPLC, volume 3714 of LNCS, pages 7–20. Springer, 2005.

3. M. H. ter Beek, A. Fantechi, and S. Gnesi. Challenges in Modelling and Analyzing
Quantitative Aspects of Bike-Sharing Systems. In T. Margaria and B. Steffen,
editors, ISoLA, volume 8802 of LNCS, pages 351–367. Springer, 2014.

4. M. H. ter Beek, A. Fantechi, and S. Gnesi. Applying the Product Lines Paradigm
to the Quantitative Analysis of Collective Adaptive Systems. In Proceedings 19th
International Conference on Software Product Lines (SPLC’15), pages 321–326.
ACM, 2015.

5. M. H. ter Beek, S. Gnesi, and F. Mazzanti. Model Checking Value-Passing Modal
Specifications. In A. Voronkov and I. Virbitskaite, editors, PSI, volume 8974 of
LNCS, pages 304–319. Springer, 2015.

6. M. H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. Statistical Analysis
of Probabilistic Models of Software Product Lines with Quantitative Constraints.
In Proceedings 19th Software Product Line Conference (SPLC’15), pages 11–15.
ACM, 2015.

7. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated Analysis of Feature
Models 20 Years Later: a Literature Review. Information Systems, 35(6), 2010.

8. L. Bortolussi and J. Hillston. Fluid Model Checking. In M. Koutny and I. Ulid-
owski, editors, CONCUR, volume 7454 of LNCS, pages 333–347. Springer, 2012.

9. L. Bortolussi and J. Hillston. Fluid Model Checking. arXiv:1203.0920v2, 2013.
10. L. Bortolussi, J. Hillston, D. Latella, and M. Massink. Continuous approximation of

collective system behaviour: A tutorial. Performance Evaluation, 70:317–349, 2013.



11. L. de Moura and N. Bjørner. Z3:An efficient SMT solver. In C. Ramakrishnan and
J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

12. C. Fricker and N. Gast. Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity. EURO Journal on Transportation and
Logistics, pages 1–31, 2014.

13. J. Froehlich, J. Neumann, and N. Oliver. Sensing and Predicting the Pulse of
the City through Shared Bicycling. In C. Boutilier, editor, Proceedings 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI’09), pages 1420–1426.
Morgan Kaufmann, 2009.

14. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

15. R. Hayden. Scalable Performance Analysis of Massively Parallel Stochastic Sys-
tems. PhD thesis, Imperial College London, April 2011.

16. J.Hillston.Fluid flow approximation of PEPAmodels. InProceedings 2ndConference
on the Quantitative Evaluation of Systems (QEST’05), pages 33–43. IEEE, 2005.

17. A. Kolesnichenko, P.-T. de Boer, A. Remke, and B. R. Haverkort. A logic for
model-checking mean-field models. In Proceedings 43rd Conference on Dependable
Systems and Networks (DSN’13), pages 1–12. IEEE, 2013.

18. D. Latella, M. Loreti, and M. Massink. On-the-fly Fast Mean-Field Model-
Checking. In M. Abadi and A. Lluch-Lafuente, editors, TGC, volume 8358 of
LNCS, pages 297–314. Springer, 2014.

19. D. Latella, M. Loreti, and M. Massink. On-the-fly fluid model checking via discrete
time population models. In M. Beltrán, W. Knottenbelt, and J. Bradley, editors,
EPEW, volume 9272 of LNCS, pages 193–207. Springer, 2015.

20. D. Latella, M. Loreti, and M. Massink. On-the-fly PCTL fast mean-field ap-
proximated model-checking for self-organising coordination. Science of Computer
Programming, 110:23–50, 2015.

21. J.-Y. Le Boudec, D. McDonald, and J. Mundinger. A Generic Mean Field Con-
vergence Result for Systems of Interacting Objects. In Proceedings 4th Conference
on the Quantitative Evaluation of Systems (QEST’07), pages 3–18. IEEE, 2007.

22. P. Midgley. Bicycle-Sharing Schemes: Enhancing Sustainable Mobility in Urban
Areas. Background Paper CSD19/2011/BP8, Commission on Sustainable Devel-
opment, United Nations Department of Economic and Social Affairs, May 2011.

23. A. Murashkin, M. Antkiewicz, D. Rayside, and K. Czarnecki. Visualization and ex-
ploration of optimal variants in product line engineering. In Proceedings 17th Inter-
national Software Product Line Conference (SPLC’13), pages 111–115. ACM, 2013.

24. P. Schobbens, P. Heymans, and J. Trigaux. Feature Diagrams: A Survey and a
Formal Semantics. In Proceedings 14th Conference on Requirements Engineering
(RE’06), pages 136–145. IEEE, 2006.


