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¥. Introdnction

An important issue on semantics of concurrent computation
and on programming language design refers to the choice of
synchronization primitives. In particular, an interesting
discussion has recently arosem about primitives based on
message passing and about primitives based on the existence
of shared mewory among processes /1,2/. The two classes of
primitives are shown as largely equivalent, or dual, in /1/
and it is argued that the choice should depend on efficiency
considerations with respect to the underlying hardvare. In
the case of distributed systems, where +tightly coupled
processes exist on the saze ncede and where processes on
different nodes are ozly loosely coupled, both classes of
primitives should be available on different lewels /2/, to
feflect the phisical structure of the systes. However, in
particular situations like after system reconfiquration due
to a failere, or when operating in debugging mode, it might
be necessary, or convenient, to execute one class of
primitives on a (virtual) machine providing only the other.
Thus the problem arises of ®translating® between the two
classes.

4 related issue is the high level description of
®"watable® abstract data types exhibiting concurrent

behaviour. As wusual one would Jlike to define such a
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behaviour as abstractly as possible, and to allow the
implementor to choose the most convenient sinchronization
mechanism. Then a synthesis problem must be solved: Given a
behaviour, determime if it is implementable using some set
of primitives; if yes, build a system (a programr) with the
required behaviour. Here we see an instance of an abstract
data type essentially as a process, and thus the whole issue
of the semantics of concurrent computation is brought in.
¥e want to emphasize that most models presently known (see
/37 for a clean and suggestive survey of some of them) are
based on an a priori, particular choice of syncrhonization
primitives and thus cannot be considered sufficiently
abstract from the abowve point of view. |

Another setting where a similar problem arises is in
giving the semantics of languages with pointers, or in
general where objects with shared parts can be built. &
possible semantics describes the heap in full detail /8%/. An
alternate point of view may be to represent the objects with
shared parts as synchronized processes, which can experience
sipultaneus transitions. This approach 1is rather convenient
in representing the state of the computation of a symbolic
interpreter /5,6/. B similar technique ®ay be used to
represent the relation between an object and one of its
parts as selected by an access function (for instance au
array and one of its elements). If no other form of sharing

or aliasing is present, the effect of a state change om &
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part may be extended to the main object only later, when the
access fumction returns. This technique allows to give a
simple applicative semantics of a language vwhere aliasing
and sharing are forbidden, but where access functions with
side effects, and their composition, are possible /7,8/.

In this paper we address only a very small portiom of the
above problems. Our definition of process behawviour is very
siwple-minded and automata_ like: A {possibly infipite) set
of states and a set of transitions. States are assumed as
directly observable, and synchronizatiom between different
processes is evidemced by the possibility of simultaneus
transitions om both processes. To wmake the forsmaliss
simpler, we consider the case of a universe of orly two
processes. However we foresee no problems in extexding our
results to the general case.

In the message-passing model, synchronous transitions of
different processes are labeled with the same sywbol of a
meéssage alphabet. Thus we consider only unbuffered message
passing primitives, i.e. primitives forcing LrOCess
synchronization (hand shaking or rendez-vous primitives’ . &
process may undergo a labeled transition only if the ¢ =
process sipultaneously erecutes an equally label o
transition.

In the shared memory model, the states of both processes
are obtained by making the cartesian product of a private

and of a shared set of states. Thus three set of states are
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present, two private set of states and a shared set of
states. B transition on a private set of states cause a
transition of only one process, while a transition on the
shared set of states cause two simultareous transitions on
both processes.

The wmain question we address is as follow. Given a
generic behaviour, can we find a suitable ‘pair of
message—passing processes and/or of shared memory processes
exhibiting this behaviour? The answer is vyes for
message-passing, and no for shared memory processes. In the
latter case we give necessary and sufficient conditions, aud
then we provide a symthesis procedure. Pinally we define an
abstractjon operation as a homomorphism between behaviours,
and wve prove that we can express a generic behaviour as the
abstraction of the bebaviour of a pair of shared BeROLY
PrOCesSSesS. A shared umemory implesentatiomn of the dining

philosophersprobler is given as an example.

2. The two models

In this paper we consider only the case of two
communicating processes. The global behaviour B of the two

processes may be Gefined as follows:

i



B = {52,5,0%4g,T)
vhere Sf and Sg are the (possibly denumerably infinite) sets
of states of the two processes
Qe;;sfx Sf is the set of global states.
qerg is the initial state.
bl QB X Q3 is the set of transitions.
Purthermore we require that
0% = ta 1 @, et
where T is the reflexive and transitive closure of
T; i.e. every state of 0® wmust be reachable from the
initial state.
Given tvo behaviours

2
B? = { S;sv va QBv oo T® ) and

28
BeB = ‘ Sia’ SZB' QB' qag e s )
8

with the same sets of states Sf, 5, and the same initial

state go, We say that B°c B®® ( B°®® js an extension of B® )

8' all
iff 0° c Q®, and TUe g Tee.

2.1 The message-passing model

L pair of message-passing processes is defined as follows
B = (s, s}, s, sp, a, 2P, 2, M)
wvhere
Sr and S{qare the (possibly denumerably infinite) sets of

states of two processes,
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89 € ng and 8D e s} are the initial states,
??g;sf X 5?'(i = 1,2) are the private transitions of the two
processes,
B is a (possibly denmmerably infinite) message alphabet,

tHcs’ ¥ 5'r 3 0 s) x5 XA are the labeled transitions.

A process may execute private transitions independently
from the state of the other process, wvhereas labeled
trangitioms wmust be executed simultaneouwsly by the two
processes. Thus the behaviour B of this model {is the
following

M .
C=sl' a=1,2

s
gy = (8 , s2)
08

T

it

{a 1 (9o.9 ) eT¥} where

i

[ ({sye395 €5; ,S?}) t (s ,S;) & Tﬁ L1
{ ({s;4+8;) 05y 05;)) I (s ss;) € T?} U
[ ((5..5,) ,(sh.s)))1Fa ek (s,,8],a},(s,.5),ale T}

wvhere si,sfesg (i = 1,2)
B

"

T = { {g eq') i 9. Q:,E.Q

and (g ,9')e ¥ }

A pair of shared memory processes is defined as follows
S = g gﬁsv Sﬁs’ S;g s?’ S’f, Sgy Pﬁ & Pl g ng Tzs' tg )

vhere

i b
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Sf and SE are the (possibly denumerably infimite) private
sets of states of the two processes
Sf is the (possibiy denumerably infinite} set of
connon states
sfesf, sfesi, sges§ are the initial states
xﬁg;sf ) S? {2 = 1,2.3)  are the transitions of the three

sets of states above.

The states of each process are obtained by making the
cartesian product of the private and the shared set of
states. However it is possible to put some constraints on
these pairs of states, by prohibiting some of them. (See
/97 for a formalism using constraints ¢o ZJescribe the

concurrent behaviour of loosely coupled processes)

PP¢sS? X S (i = 1,2)
are the sets of alloved states of the two processes.

0f course we must have (sg . sg } e P; (i = 1,2} .

The behaviour B of this model is obtained as follows
8 . w5 ,z _
5. =P (1= 1,2)
The set of possible states @5 consists of all pairs of
states which have the same shared component

0% = Usyy s3de (550 5300 1 (550 50 € BP, (3= 1,2y 1,

g



-8
and all possible transitions are
T<g%x g®
T = [ (W84, 5300 (530 5300, ((s), s3)e (S5, 530)) |
8y, 5,)e TS, s,= 5], S;= 53 or

é 14 s
8= 8,5 (Sg, 5;) Tf s B3 S5 Or

—— ‘ — 4 ¢ [
81T Sy. 5,= Sy (sg, 53)e Tg}

Pinally
do= (P , s9), (s, s$))

08 = (g 1 (go, g1 T*

T=1(1(3,9) I g, g’e0®and (q, g’ )e T 3

3. Copparison of the two Bodels

In this sectiom we show that the message-passing model is
more general than the shared memory model. In fact we can
prove that it is always possible to find a suitable pair of
Ressage-passing processes having a given behaviour, whereas

this is not true for the shared pemory model.

Theorep 3.1 Given a global behaviour B of two Processes,
it is alvays possible to find a pair of Bessage_passing

processes having this behaviour.
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Proof outline Let
B = (57, 52, 0% g, T)

then we can comstruct a pair of Bessage passing processes
m= (s, s’ st, s, n, 1, T, M)
where

s? = sf d=1,2

]
=
[Le]
6 v
2
£
[+ ]
s

52 = qg, i =1,2) vhere g,
A is any (possibdly imfinite} alphabet
Ti= g (1= 1,2)

Tf’ is obtained from T by associating wvith evervy
transition ((s,, s,), (s,» S;)) of T two transitions
4

(840 s;, a) and (5,0 S, @) of T, with a different label

for every pair of transitions of Tfu

In order to describe how to obtain a pair of share?
hemory processes with a given behaviour, we need some
definitions.
Let

B = (s, s5. 0% qo, 1)
be a global behaviour. We define a relation

R csP x s
such that

(s;0 5;) e By if£73s,, sieS) ((s,, s,), (si., si)eT

and s, # s

B relation Rzgs:’x Sfcan be defined in a similar way.
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#e can prove

Lemsa 3.1 Let (0P )", B% and ¥ c(sPu s8)z be the

reflexive, symmetric and - transitive closures of the
relations QB, Byand B, defined above. 3 neceséary condition
for the existence of a pair of shared memory processes with
a given behaviour B is that

.1 (08Pn (20 %5y =1

¥here I is the identity relation.

Proof outline  States of the behaviour which are in the
rejation ( QB}*S correspond to states of the model with the
sake shared comrponent, while states in the relation
{ ﬁ§5@ R;®} correspond to states wi%h ac same private
component. Thus condition {3.1 means that two states with
the same shared component and the same private component are
identical.

If a behaviour B = ¢{ Sf . Sf’, QB ¢ Jo T ) satisfies
condition (3.1} we can construct a pair of shared nemoiy
processes

S = (S}, S, S5, sP, s2, S$y Byo By, T7, T, TS )
vhose bebaviour B = ¢ Sf, gf, 08, Jo, T ) is an extension of

Ba

Outline of the construction The states in Sf and 3:

correspond to the eguivalence classes of Rfs u 5%° in Sfan&
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Sf respectively, while the states in Sgcorrespon& to the
equivalence classes of ( 0%*>. 1n p, ana P, ve put all
pairs, whose equivalence classes have ronempty intersection.
Since the intersection contains at most one element {(due to
condition (3.1)), every pair in Py { P, ) corresponds to
exactly one state sf { sf } of the bebhaviour B. Thus the
sets of states §f = P, and §f = P, in the behaviour B of S
can be identified with the sets s, and sf in the given
behaviour B. Furthermore, we put a pair ( s}, s?@ in T7 iff

there exists a tramsition (( sf, si), { sf, gf)) in T with s8=

s
1'

8

sss) and s; = (s's

1!

8
2

S

= (s S;) for some s, and S3. Similarly

for T.. We put a pair ¢ s3 e s’s) in T, iff there exists a
2 3 3 3

hed B ol ot S
tramsition (( s, sf), { sfﬁ sgﬁ) in T with s8 = { s;. sg),

1
8 s o 8 . s .5 18 _ S LIS o .
s, = (85, S;). s, = (s;, s5) and s, = ( s, sf} for some s7

S
2

0®c3® and TCF

and s°. It is easy to see that we have

by construction.

The pair of shared memory processes obtained with the
construction above is in a sense pinimal as specified by the

following theores.

Theorem 3.2
Given a behaviour B satisfying condition (3.1}, let E be
the behaviour of the pair of shared memory processes

constructed as above. There exists no pair of shared memory
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processes with a behaviour B’'such that

BeBech

Proof outlipe If a pair with behaviour B! exists, its sets
of states st P S;S and S;S Bust bé obtained with the "sase
construction above. Tc have B°c B, we must have 0°8c 02 or
FecT, but if we remove any element from 68 or T we obtain a

pair whose behaviour is not an extensionwof Ba

e can mnow express our main result as a corollarvy.
Corollary 3.1

Given a behaviour B satisfying condition (3.1}, let E be
the behaviocur of the pair of shared memory processes
constructed as abowve. If B = B them this construction is a
synthesis procedure. If B # B then behaviour B cannot be

implemented with a pair of shared memory processes.

Proof Obvious.

Finally we can show that no conditiom is required if we
w
allow abstraction, di.e. if we allow to map many states of
the shared memory processes into the same state of the
A

bebaviour.

Theorea 3.3 Given a global behaviour B, it is always

possible to find a pair of shared memory processes having it

a2 abstract behaviour.
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Proof outline
The private parts of the two processes are a singleton:
] s
sy, =181 ,58,=1(s71,

vhereas
s 8 s .
5,= 07, T; = T.
A1l pairs of states of the two processes are allowed. The

abstraction is defined by mapping every state { 5., s3).

where sg = { sf, gf ) of the first process linto &f » and
every state ( Bf, 55) of the second process into gf»

Hote that, although the two processes of the previous proof
bave, in gemeral, many more sStates than in the abstract
bebaviour, the two processes have as many global states as

the abstract behaviour.

¥e point out that the pair of shared memory processes
with abstract behaviour B described in the proof of Theorem
3.3, might be considered as dual of the pair of message
passing processes with the same behaviour described in the
proof of Theorem 3.1. In fact, both pairs of processes have
the same global states and global tramsitions, and in both
cases the processes have no private transitions.
Pinpally, it would be possible to investigate unmder which
conditions we might derive from a given behaviour a pair of
messagde passing processes with private transitions, or more

than one transition labelled with the same symbol. Dually,
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wve might want to derive from a given behaviour a pair of

shared memory processes with more than one private state.

b.hn example: the diming pbilosophers

In this section we apply informally the ideas of the
Previous two sections to an evawple with more than two
processes. There are six processes: the philosophers Phe,
Ph®, Ph#, and the forks F®, P!, P2, yhose global behaviour
is described as follows.
Every philoscpher Phihas four states: t; , 1:. -~ an? e,
meaning, respectively that the i--th philosopher is thirkiu-.
that he has picked up his left fork Pi,that ue has picked up
his right fork F&*% and that he has picked up both F' angd ?L*’
{ Of course the + operation is modulo 3 ). Evexry fork P;
has two states: d; and u; , meaning respectively, that the
fork 1is down, and it has been picked up by an adiacent
philosopher.
The initial global state is < detodstydaty>. The othex
states of QBare all states reachable from the initial state

by applying the following tramsitions

oueditiaoo e ...llil;.—«
OWWt;‘&s‘*r.’ “’) oooriuiquo

aaal{ d&.“‘ﬂ..’ v o-qet‘ “(:4-2"
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o-ou"‘e;ui‘qo. ““) ou.di t"_a"*lco

These transitions mean that a philosopher capm pick wup the
two forks ome at a time in any order, and when he has

finished eating, he puts down both forks simultaneously.

Hote that there are states such as < uplyusl,u,l,> from
which there is no outgoing tramsition, thus corresponding to

a deadlock situation.

This global behaviour can be easily represented within

the message passing mnodel. We need three alphabets 4¢, A2,

A2, where alphabet ' is comson among the philosopher Phe

and his two adjacent forks. Thus a philosopher will always
have a simultaneus transition with bhis adjacent forks. The

trapsitions for the s-th itovk and philosopher are

P
i
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vhere wgnﬁk,gx,éz,ﬁge At (i = 0,1,2), and a transition of -
with multiple labels such as &/, f3i4... means that this
transition can be executed if simultaneocusly the processes
Ph* and F*'perfors a transition labeled with &;, or F'"! and
Ph“i perfore a transition labeled with /3;;, and so on.

Hote that, in extending to more than two processes the
nessage passing wodel defined in the previous sections, we
allow synchronization of several processes: in fact, a
process may undergo a transition labeled with a symbol of an
alphabet A only if simultaneously all other processes which
share alphabet A& with it underge an egually labeled
transition. In this example every transition involves three
processes, however some transitions might involve only pairs
of processes. For instance a philosopher might exchange a
ressage only with his left fork im order +to perform the
tramsition t; ~-> 1, or r; —> e;, since these tramsitions

do not depend on the state of the right fork.

Going on to the shared memory model, we might show that
the global behavicour does pot satisfy some conditions
similar to those given in the previous section, and thus nc
shared BReWOry processes exist with this behaviour.
Intuitively, since a fork has only two states, every
transitions should alwvays influence both ad jacent
philosophers.

It is possible however to define the shared memory
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processes in such a way that they have as abstract behaviour
the behaviour given above. Every philosopher Ph' shares
with his two adjacent forks a process S¢ with the following

state transition diagram

A philosopher has mo private part, and thus his abstract
states are the states of his shared part st with the obvious
mapping
s3 ~=> t;, s7 -=> 1;, 8% —> 1, sf —> e; .
A fork P' has two shared parts s apa 3¢ {(i.e. the two

shared processes associated with the two ad jacent

philosophers } and no private part. The pairs of states of
(-4

s and Si are mapped into the abstract states as followus
(s?,st) -=>d;, (s, s?z) —> u,

(st ,sp) -=> &, (st,.,s?) —>u,

(s, st) -—>4d;, (s, st) —>u,

{ s2, 0 s ) ~=>d;, (SEs sp) —> u,

(82,0 52 ) ——>uy, (83, 88) —> u,

(s, 82 ) -=>u, (s, s?) —>u

HBissing pairs of states are not allowed.
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Hote that the global states and transitions of <these
processes with shared memory are isomorphic with the global
states and trapsitioms of the reguired behaviour. The same
is true, of course, for the wmessage passing processes
defined above, and thus it is easy to put labels of the
latter in corrispondence with shared transitions of the
ﬁ«omer& For instance, label &;corresponds to tramsition

& 2

{ s’e 5. ), 1abe+1)/a¢-€'o€ s‘.", sf’), and so on.

R
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