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Abstract
We propose a special relativistic framework for quantum mechanics. It is based on introducing a
Hilbert space for events. Events are taken as primitive notions (as customary in relativity), whereas
quantum systems (e.g. fields and particles) are emergent in the form of joint probability
amplitudes for position and time of events. Textbook relativistic quantummechanics and quantum
field theory can be recovered by dividing the event Hilbert spaces into space and time (a foliation)
and then conditioning the event states onto the time part. Our theory satisfies the full Lorentz
symmetry as a ‘geometric’ unitary transformation, and possesses relativistic observables for space
(location of an event) and time (position in time of an event).

Quantum mechanics (QM) relies on time-conditioned quantities: observables conditioned on time in the
Heisenberg picture (e.g. X(t) is the position operator at time t) or states conditioned on time in the
Schrödinger one (e.g. |ψ(t)〉 is the state at time t). As such, it is inherently incompatible with the Poincaré
symmetry of special relativity. Indeed QM can be formulated in a relativistic covariant fashion only in very
specific circumstances, such as quantum field theory (QFT) when using Heisenberg picture operators acting
on a relativistic invariant state such as the field vacuum. In this paper we depart from this approach and
introduce a quantum mechanical theory of events, the geometric event-based QM (GEB), which is based on
a modification of the Born rule which leads to unconditioned spacetime quantities and hence is intrinsically
covariant. In QFT one starts from the dynamical equation of motion (either in the Hamiltonian formulation
or from a Lagrangian [1]) and quantizes the dynamical solutions imposing equal time commutation
relations. We take the opposite track: we start by defining an (unconditioned) purely kinematic Hilbert space
HE which is well suited to account for the symmetries of a relativistic theory [2–4]. A formal correspondence
with QM and QFT is then established by showing that the quantum evolutions defined by these theories can
be identified as special subsetHQM of the distributions ofHE which is determined not via dynamical
equations, but through purely geometrical constraints [5, 6].

The Hilbert spaceHE of GEB, rather than systems, can be thought to describe events [7]. In our approach
the event is taken as a primitive notion, i.e. not something that is derived from a pre-existing notion of (say) a
pre-existing particle that has been detected (as happens in QM). Indeed, in GEB the detection of particle at a
particular location in space and time by an inertial measuring device [8] is a way to identify the event itself,
and the particle (or, more generically, any quantum system) is a derived notion. A quantum system is then
interpreted as a probability amplitude for an event out of a sequence of events, which takes the place of the
‘sequence of events’5, which is the customary definition of ‘physical system’ in relativity where events are
often [9] taken as a primitive notion. Schrödinger had a similar observation: ‘it is better to regard a particle
not as a permanent entity but as an instantaneous event’ [10]. Jorge Luis Borges is, obviously, more
captivating: ‘the world is not a concurrence of objects in space, but a heterogeneous series of independent

5 In quantum theory, in the absence of trajectories, the concept of ‘same system’ (i.e. of a system that persists and is re-identifiable in
time) is highly problematic [68]: the GEB formalism reflects this fully, as the system persistence and re-identifiability is only enforced as
a probability amplitude.
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acts’ [11]. Examples of events (discussed below) are ‘a fermion with spin σ is detected at a time t and
position x⃗ in spacetime’, or ‘a boson is detected with energy E and momentum p⃗ ’. While we will be using
some of the formalism developed in [2, 3], our interpretation of the formulas and the conceptual framework
of GEB is fundamentally different. Relativistic versions of constrained QM [12–21] are also explored in [2–4,
22–34]. A different claim of ‘covariant quantum mechanics’ is in [35], where the Hilbert space is expressed
through position eigenstates of a time-evolved (Heisenberg picture) position operator. While there is some
similarity in the notation used, our approach is completely different: we do not use any dynamical assertion
(hence, no pictures) in our treatment.

The outline follows. In section 1 we introduce the Hilbert spaceHE and the Born rule for a single-event,
defining its relativistic observables, giving interpretations of the system 4D wave-function as unconditioned
properties of events and the Lorentz transformations. In section 2 we consider multiple events in a first
quantization and then in a second quantization Fock formalism. In section 3 we provide a formal connection
between GEB and QM by introducing a correspondence rule that enables one to map quantum trajectories
of the latter into distributions of the former. Conclusions and future perspectives are given in section 4.
Technical details are in appendices.

1. The Hilbert space of GEB and its canonical observables

In this section, the Hilbert spaceHE which provides the mathematical setting for describing spacetime events
is introduced. We start in section 1.1 by considering the simplest non trivial scenario, i.e. a Universe
characterized by a single (spinless) event, which is the building block for the general case presented in
section 2. In section 1.2 we discuss the covariance properties of the theory under Lorentz transformations,
while in section 1.3 we show how to generalize the analysis to include spinor degrees of freedom.

1.1. A Universe with a single event
In the formulation of GEB we are guided by the fundamental observation that spacetime is physically
meaningful only insofar as it is mapped by clocks and rods (clicks and ticks) which are events [36, 37]. From
this we can infer that there is no localization in time of an event without any energy and energy spread
(nothing can happen) and there is no localization in space of an event without momentum and momentum
spread (any event would be delocalized over the whole space): so, in addition to being characterized by
spacetime coordinates, any given event must also be connected to energy and momentum degrees of
freedom. Accordingly, the structure of the Hilbert spaceHE associated with a single event can be identified
by declaring that among the linear operators that acts on such space, there must exist (at least) a four
component vectorial observable X := (X 0,X1,X2,X3) that determines the 4-position x := (x0 = t, x⃗) in
spacetime of the event, and an associated 4-momentum operator P := (P0,P1,P2,P3) that instead defines the
corresponding energy-momentum values p := (p0 = E, p⃗) of the event6. (We use the overbar x to denote
contravariant 4-vectors, the underbar x for covariant ones, and the arrow x⃗ for spatial 3-vectors—see
appendix A) The existence of X and P is a minimal assumption of the theory: other observables can in fact be
introduced that describe extra (not kinematic) degrees of freedom of the event, something that for instance
will be revealed by the internal degree of freedom of an event-defined particle (say its spin) (see section 1.3).

We now impose the canonical commutation rules

[Xµ,Pν ] =−iηµν and [Xµ,Xν ] = [Pµ,Pν ] = 0 , (1)

with µ,ν ∈ {0,1,2,3} and η the metric diag(1,−1,−1,−1) (note the minus sign in the 00 commutator).
The rationale of this choice is that, on one hand, it allows us to satisfy Poincaré algebra [5]:

[Mµν ,Pρ] =−i(ηµρPν − ηνρPµ), (2)

[Mµν ,Mρσ] = i(ηνρMµσ − ηµρMνσ − ηµσMρν + ηνσMρµ), (3)

6 Notice that at this stage, as it happens in the axiomatic definition of QM, we do not provide any physical realization of X or P, i.e. a way
to detect the spacetime location and momentum of the event. It is intuitively clear however that these observables are related with the
conventional definitions of position and momentum of particles in QM: e.g. on one hand if one conditions on the time t of an external
clock, X conditioned on t is just the position measurement of a particle happening at some time t, the conventional position operator of
QM that describes a screen that is turned on at a certain (externally controlled) time; on the other hand, if one conditions on the position
x⃗ of a screen, then X conditioned on x⃗ is the time of arrival measurement of the particle at an active screen at position x⃗ [69, 70]. In the
non-relativistic case, time observables were studied in, e.g. [15, 70, 71].
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whereMµν := XµPν −XνPµ = (X∧ P)µν [38, 39] is the relativistic angular momentum tensor (the spatial
partMij with i, j ∈ {1,2,3}, containing the angular momentum tensor, the generator of rotations, and the
temporal partM 0j with j ∈ {1,2,3} containing the generator of boosts)7. On the other hand, the
condition (1) automatically imposesHE to be infinite dimensional and leads to the following spectral
decompositions

Xµ =

ˆ
d4xxµ|x〉〈x| , Pµ =

ˆ
d4p pµ|p〉〈p| , (4)

with |x〉 and |p〉 forming sets of generalized eigenstates each individually fulfilling delta-like orthogonality
conditions, i.e. 〈x ′|x〉= δ(4)(x ′ − x) and 〈p ′|p〉= δ(4)(p ′ − p), while being related by a 4D Fourier transform

|p〉=
ˆ

d4x
4π2 e

−ix·p|x〉 . (5)

(where a= (a0, a⃗), a= ηa= (a0,−a⃗) so that a · b= aηb= aµbµ, appendix A)8. The states |x〉 and |p〉 are 4D
extensions of the usual position and momentum eigenstates |⃗x〉, |⃗p〉 of QM: just as |⃗x〉 and |⃗p〉, both |x〉 and
|p〉 are not elements ofHE but objects that in functional analysis would correspond to distributions. Indeed
they belong to the rigged-extended versionH+

E ofHE that, together with the dense nuclear subspaceH−
E

formed by the intersection of the (dense) domains of X and P, defines the Gelfand tripleH−
E ⊂HE ⊂H+

E of
the model. (The Gelfand triple [40] is a collection of three objects: the Hilbert space itselfHE, the set of
distributions on the spaceH+

E , such as Dirac deltas identifying eigenvectors of continuous-variable
eigenvalue observables, and the nuclear elements of the Hilbert space, i.e. a dense subsetH−

E on which one
can apply the distributions.) As such, similarly to |⃗x〉 and |⃗p〉 in QM, we shall not assign to them a precise
physical interpretation. The best we can say is that |x〉 (|p〉) represent an (unphysical) absolute localization of
the event in spacetime (resp. energy-momentum space) which can be used to characterize the statistical
distributions of the elements ofHE via decompositions of the form

|Φ〉=
ˆ

d4x Φ(x) |x〉=
ˆ

d4p Φ̃(p) |p〉 , (6)

with the amplitudes

Φ(x) := 〈x|Φ〉 , Φ̃(p) := 〈p|Φ〉=
ˆ

d4x
4π2 e

ix·p Φ(x) , (7)

being square integrable functions (4D wave-functions)9. Quantum probabilities follow then directly from
the Born rule. In particular the probability that the measurement of the observable Xµ has result x on a event
state associated with the normalized vector |Φ〉 ∈ HE is

P(x|Φ) = |Φ(x)|2 = |〈x|Φ〉|2 . (8)

We interpret this as the probability distribution that the event happens at spacetime position x: this clarifies
that in our approach the vectors |Φ〉 are spacetime states, representing (in the position representation) the
probability amplitudes of the spacetime locations of the event. This is a different version of the Born rule
with respect to the QM-Born rule p(⃗x|ψ, t) = |〈⃗xS|ψS(t)〉|2 = |〈⃗xH(t)|ψH〉|2 (written in the Schrödinger S or
HeisenbergH pictures), which gives the conditional probability that a particle in state ψ is found at position x⃗
given that the time is t. Instead, in GEB, the probability (8) is unconditioned: it is a joint probability that the
event happens at position x⃗ and that the time is t for x= (t, x⃗). Analogously, in GEB we can also interpret
P(p|Φ) = |Φ̃(p)|2 = |〈p|Φ〉|2 as the probability that the event will carry an energy-momentum p, and

p(Φ1|Φ2) = |〈Φ1|Φ2〉|2 , (9)

7 This is the simplest choice to satisfy the Poincaré algebra, but it is not unique: one can still satisfy the commutation relations with
appropriate redefinitions of Pµ andMµν . For example, the instant form [5] arises from the requirement that the position andmomentum
are referred to some instant of time, as in the conventional (conditioned) formulation of quantum mechanics [57]: in the Schrödinger
picture the states are conditioned to time being t and the operators to t= 0, viceversa in the Heisenberg picture.
8 Notice that one can divide the four degrees of freedom (1 temporal and 3 spatial) of |x⟩ using tensor products |x⟩= |t⟩|⃗x⟩, as is done in
the nonrelativistic Page and Wootters formalism [12, 15] (and equivalent ones [22]) but, this tensor product structure is not absolute to
preserve Poincaré invariance: it is observable-induced [72–74], since observers in different reference frames will tensorize it differently.
9 Formally speaking the decomposition (6) holds for the dense subsetH−

E ofHE which together withH+
E define the Gelfand triple.
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as the probability to confuse the event |Φ2〉 as the event |Φ1〉 ∈ HE. (Again, these are both different from the
conventional QM Born rule: the first is again conditioned on time, P(E|ψ(t)) = |〈E|ψ(t)〉|2 is the probability
of finding the energy E with eigenstate |E〉, given that the state is ψ and the time is t; the second is
P(ψ1(t1)|ψ2(t2)) = |〈ψ1(t1)|ψ2(t2)〉|2 is the probability to confuse the state |ψ1〉 at time t1 with the state |ψ2〉
at time t2.)

A direct consequence of equation (1) are the Heisenberg–Robertson [41] uncertainty relations

∆Xµ∆Pν ⩾ 1/2 δµν , (10)

with δ the Kronecker delta, which for µ,ν = 0,1,2,3 have to be fulfilled by the statistical distributions P(x|Φ)
and P(p|Φ) for all choices of the normalized vector |Φ〉 ∈ HE. These equations effectively translate in strict
mathematical form our initial observation that no event can be spacetime localized without energy and
momentum spread. While for µ= 1,2,3, equation (10) is the usual Heisenberg uncertainty relation [42], for
µ= 0 it takes a special role [43, 44]: as a matter of fact it cannot [45] be derived in QM, where time is a
parameter and not an observable. (Indeed, in the Mandelstamm–Tamm uncertainty relation [46]∆t takes
the role of a time interval (the minimum time interval it takes for a system to evolve to an orthogonal
configuration), not of a statistical uncertainty due to quantum stochasticity.) Here, instead, time X0 is a
quantum observable, and we can assign to∆X 0∆P0 ⩾ ℏ/2 the Heisenberg–Robertson interpretation. (The
acute objections [45, 47] against this type of interpretation of the time-energy uncertainty were formulated
in the framework of QM. In GEB, these objections do not apply.) This interpretation is a purely kinematical
statement, not a dynamical one: P0 is not some system’s Hamiltonian, but it is the energy devoted to the
event. The connection between the energy and a Hamiltonian (dynamics) is here only enforced as a
constraint on the physical states, see below. We use constraints that select the dynamics instead of dynamical
equations. This type of approach is quite traditional in the relativistic literature [2–6, 22–34]. Indeed, even
the Einstein equations can be seen as constraints on the spacetime and on the stress-energy tensor rather
than dynamical equations in the traditional sense.

1.2. Lorentz transforms
Relativistic QM, e.g. QFT, can be written in a covariant fashion only in very specific situations. Indeed, as
discussed above, the Born rule probability when calculated in the Schrödinger, Heisenberg or interaction
picture, is a conditional probability, conditioned on time. As such, in contrast to what it is claimed
sometimes (e.g. [48]), QM probabilities are not covariant: they refer to a specific spacetime foliation, and a
Lorentz transform cannot be simply applied to something defined on a single foliation slice. In QFT one can
recover covariance if one writes the observables in the interaction picture in terms of creation and
annihilation operators that have a spacetime dependence of the form e±ix·p. But observables by themselves
are not sufficient to obtain quantum probabilities or expectation values: they must be applied to states. QM
states explicitly depend on a foliation (at time t in the Schrödinger picture, at time t= 0 in the Heisenberg
picture, and at a foliation determined by the state-evolution operator in the interaction picture). For this
reason, one cannot in general apply a Lorentz transform to a quantum state. There is an important
exception, customarily employed in QFT, where one uses states that are eigenstates of the Hamiltonian,
e.g. the vacuum state. They are invariant for the dynamics, and hence can be easily Lorentz-transformed as
they are left invariant.

In contrast, the GEB formalism we introduce here is fully covariant as the canonical observables of the
theory are trivially transformed using a unitary representation of the Lorentz group. To clarify this fact let us
consider two inertial observers O and O′ sitting on different reference frames R and R′ connected via the
transformation matrix Λ of the Lorentz group so that, given x= (t, x⃗) and x ′ = (t ′, x⃗ ′) the coordinates that
they assign to the same event one has

x ′ = Λx , (11)

(e.g. if O′ has velocity v along the x-axis with respect to O′, then t ′ = γ(t− vx), x ′ = γ(x− vt), y ′ = y, and
z ′ = z). Under these conditions it follows that given a state event S, they will describe it as two different
elements |Φ〉=

´
d4xΦ(x)|x〉 and |Φ ′〉=

´
d4xΦ ′(x)|x〉 of the spaceHE whose 4D wave-functions

amplitudes are related by the identity

Φ ′(x) = Φ(Λ−1x) , (12)

see appendix B. Accordingly, we can relate the vectors |Φ〉 and |Φ ′〉 as

|Φ ′〉= UΛ|Φ〉 , (13)

4
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where UΛ is the unitary mapping that represents Λ inHE, i.e. the transformation associated with the
generatorsMµν of equation (2). Equation (13) ensures that both observers will assign the same scalar
products to any two couples of states, i.e.

〈Φ ′
1|Φ ′

2〉= 〈Φ1|Φ2〉 , (14)

which implies that the probabilities (9) are invariant under change of reference frames. This is in line with
the fact that the Born rule probabilities in GEB refer to the occurrence of events in spacetime (rather than the
conditional probabilities on a foliation at a specific time t): they are unconditioned and hence invariant. As a
direct consequence of (12), the spacetime probability distributions (8) that O′ and O associate with S, i.e. the
functions P(x|Φ ′) = |Φ ′(x)|2 and P(x|Φ) = |Φ(x)|2 respectively, are transformed as any scalar field

P(x|Φ ′) = P(Λ−1x|Φ) . (15)

[Actually, the P are probability densities, but they transform as scalar fields for Lorentz transformations, since
the 4-volume element is invariant.] Similarly for the energy-momentum distributions we get Φ̃ ′(p) = Φ̃(Λp)
and hence P(p|Φ ′) = P(Λ−1p|Φ), (these last follow directly from the identity (B7) of appendix B). A direct
consequence of these relations is that any statement O and O′ make on the expectation values of these
observables on the states ofHE (or on their higher momenta like those appearing in (10)) are automatically
covariant under Lorentz (and more generally Poincaré) transformations. This can be made more explicit
(appendix B) using the 4D ‘Heisenberg picture’ where the mapping (13) results in the following connection
between the canonical observables of O and O′

X
′
= U†

ΛXUΛ = ΛX , (16)

P
′
= U†

ΛPUΛ = ΛP . (17)

1.3. Spinor
As discussed above, extra (non-kinematic) degrees of freedom can be included into the theory. This can be
done for instance by promoting the generalized eigenvectors |x〉, |p〉 to spinor vectors |x,σ〉, |p,σ〉 with σ a
spinor index (e.g. taking values 1,2,3,4) that fulfill generalized orthogonality conditions

〈x ′,σ ′|x,σ〉= δσ,σ ′ δ(4)(x ′ − x) ,

〈p ′,σ ′|p,σ〉= δσ,σ ′ δ(4)(p ′ − p) . (18)

Accordingly, the decomposition (6) of the event state is

|Φ〉=
∑
σ

ˆ
d4x Φ(x,σ) |x,σ〉=

∑
σ

ˆ
d4p Φ̃(p,σ) |p,σ〉, (19)

where now the amplitudes Φ(x,σ) := 〈x,σ|Φ〉 (resp. Φ̃(p,σ) := 〈p,σ|Φ〉) when properly normalized define
the joint probability P(x,σ|Φ) = |Φ(x,σ)|2 (resp. P(p,σ|Φ) = |Φ̃(p,σ)|2) of finding |Φ〉 in location x (with
momentum p) and spin value σ. Under these conditions the identity (13) which relates the description of the
observer O and O′ still holds by updating (12) with

Φ ′(x,σ) =
∑
σ ′

S−1
σ ′,σ(Λ)Φ(Λ

−1x,σ ′) , (20)

where now Sσ,σ ′(Λ) is the unitary matrix representation of the Lorentz transform in the spinor space [38].

2. Multiple events

The Hilbert spaceHE spanned by the vectors (19) describes a single spacetime event. The extension to the
case of multiple events is obtained by considering tensor products of such space, possibly equipped with
proper symmetrisation rules that account for the statistical properties of the particles that are defined
through them (see below). An important advantage of this construction is that the transformations under
the Lorentz group follow directly from those established for those of the single-event model (13). Indeed
given |Φ[n]〉, |Φ[n] ′〉 ∈ H⊗n

E the vectors used by the observers O and O′ to describe the same state of n events,
they will be connected via the mapping

|Φ[n] ′〉= U⊗n
Λ |Φ[n]〉 , (21)

5
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with UΛ being the unitary operator that represents the matrix Λ of equation (11) for a single event. Of course
with this choice, each individual event is connected to its own time of occurrence, whereas interpretations of
the covariant formalism in terms of particles are problematic [2, 49] because the ‘time of a particle’ is a
meaningless concept [45]. In the following paragraphs we discuss the different types of multi-event models
that arise from the above formalization and show how this analysis can be lifted to a higher level of
complexity by constructing an effective QFT version of GEB, through Fock space (second quantization).

2.1. Distinguishable vs Indistinguishable events
The simplest example of a multi-event model is represented by an Universe of n distinguishable spacetime
events, i.e. events that define n distinguishable particles. In this case any normalized vector |Φ[n]〉 ofH⊗n

E

qualifies for a proper GEB state of the model, with the decomposition (19) being replaced by

|Φ[n]〉=
∑

σ1,...,σn

ˆ
d4x1 · · ·d4xn Φ[n](x1,σ1; . . . ;xn,σn)|x1,σ1; . . . ;xn,σn〉 (22)

=
∑

σ1,...,σn

ˆ
d4p1 · · ·d4pn Φ̃[n](p1,σ1; . . . ;pn,σn)|p1,σ1; . . . ;pn,σn〉 , (23)

where |x1,σ1; . . . ;xn,σn〉 stands for
⊗

j |xj,σj〉 with |xj,σj〉j the 4-position and spin eigenstate of the j-th event

so that Φ[n](x1,σ1; . . . ;xn,σn) is the wave-function which yields the joint probability

P[n](x1,σ1; . . . ;xn,σn) = |Φ[n](x1,σ1; . . . ;xn,σn)|2 , (24)

of revealing the jth event in spacetime position xj with spin σj, for all j. — similar definitions apply also to
|p1,σ1; . . . ;pn,σn〉 and Φ̃[n](p1,σ1; . . . ;pn,σn) of equation (23).

Consider next the scenario of n indistinguishable spacetime events, i.e. events that are used to define n
identical particles. We describe the states of such models via vectors (22) which induce the Bosonic or
Fermionic character of the derived particles through the property of being either completely symmetric or
completely anti-symmetric under exchange of the key indexes. Specifically a Bosonic n-event GEB model is

described by the completely symmetric linear subsetH(n,S)
E ⊂H⊗n

E spanned by the vectors (22) with
amplitudes probabilities Φ[n](x1,σ1; . . . ;xn,σn) that are invariant under an arbitrary permutation p of the n
systems labels, i.e.

Φ[n](xp(1),σp(1); . . . ;xp(n),σp(n)) = Φ[n](x1,σ1; . . . ;xn,σn) , ∀p , (25)

(a condition that automatically carries over to the 4D momentum wave-function). A Fermionic n-event GEB

model, instead, will be described by the completely anti-symmetric linear subsetH(n,A)
E ⊂H⊗n

E formed by
vectors with amplitudes that fulfill the identity

Φ[n](xp(1),σp(1); . . . ;xp(n),σp(n)) = sign[p]Φ[n](x1,σ1; . . . ;xn,σn) , ∀p , (26)

with sign[p] being the sign of the permutation p.

2.2. Fock space representation
The above construction can only deal with a fixed, predetermined number n of events. To analyze situations
where n is, itself, a quantum degree of freedom, we need to escalate to a Fock space. The starting point of this
construction is to introduce a ‘4D-vacuum’ state vector |0〉4 which represents the state of a Universe where
there are no events at any spacetime location, and by defining raising and lowering operators [2, 4] a†x,σ , ax,σ
that act as creators/annihilators of spacetime events in the theory. Properly symmetrized versions of the
generalized 4-position eigenstates will now be expressed as reiterated applications of the a†x,σ ’s on |0〉4, i.e.

|x1,σ1; . . . ;xn,σn〉 7→ 1√
n!

a†x1,σ1
· · ·a†xn,σn

|0〉4 , (27)

while the generalized 4-momentum eigenstates |p1,σ1; . . . ;pn,σn〉 as

|p1,σ1; . . . ;pn,σn〉 7→ 1√
n!

a†p1,σ1
· · ·a†pn,σn

|0〉4 , (28)

with a†p,σ and ap,σ connected with a†x,σ , i.e. the operators

a†p,σ :=

ˆ
d4x
4π2 e

−ip·xa†x,σ , ap,σ :=

ˆ
d4x
4π2 e

ip·xax,σ . (29)
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The consistency of the representation is enforced by assigning proper commutation relations to the raising
and lowering operators (appendix C). Specifically, the Bosonic/Fermionic character follows by requiring

Bose: [ax,σ,a
†
x ′,σ ′ ] = δσ,σ ′δ(4)(x− x ′), [ax,σ,ax ′,σ ′ ] = 0,

Fermi: {ax,σ,a†x ′,σ ′}= δσ,σ ′δ(4)(x− x ′), {ax,σ,ax ′,σ ′}= 0, (30)

which automatically translate into analogous relations for the a†p,σ , ap,σ , i.e.

Bose: [ap,σ,a
†
p ′,σ ′ ] = δσ,σ ′δ(4)(p− p ′), [ap,σ,ap ′,σ ′ ] = 0,

Fermi: {ap,σ,a†p ′,σ ′}= δσ,σ ′δ(4)(p− p ′), {ap,σ,ap ′,σ ′}= 0. (31)

Accordingly, in the Fock state representation equations (22) and (23) can be expressed as

|Φ[n]〉= 1√
n!

∑
σ1,...,σn

ˆ
d4x1 · · ·d4xn Φ[n](x1,σ1; . . . ;xn,σn) a

†
x1,σ1

· · ·a†xn,σn
|0〉4 (32)

=
1√
n!

∑
σ1,...,σn

ˆ
d4p1 · · ·d4pn Φ̃[n](p1,σ1; . . . ;pn,σn) a

†
p1,σ1

· · ·a†pn,σn
|0〉4 , (33)

with Φ[n](x1,σ1; . . . ;xn,σn) and Φ̃[n](p1,σ1; . . . ;pn,σn) retaining the same probabilistic meaning given in
equation (24).

It is important to stress that the 4D-vacuum |0〉4 is a distinct state from the 3D-vacuum |0〉3 used in QFT.
Indeed |0〉3 represents a configuration in which there are no particles at a specific time (time t in the
Schrödinger picture or t= 0 in the Heisenberg one), whereas |0〉4 has no events at any time. The QFT
vacuum |0〉3 is the ground state of a field. As such, it is the spatial part (in some foliation) of the GEB state
relative to a zero 4-momentum event: |0〉3 =foliate(a†p=0|0〉4). It is not the spatial part of |0〉4. The state |0〉4
represents no events, whereas a†p=0|0〉4 represents a zero 4-momentum event which corresponds to a uniform

distribution of zero-energy events in all spacetime a†p=0|0〉4 =
´
d4x a†x |0〉4: in other words, there is a

difference between saying ‘nothing happens everywhere and everywhen’ (i.e. the QFT vacuum |0〉3 at all
times), and saying ‘nothing happens anywhere and at any time’, the Aristotelian void |0〉4.

Also, the GEB raising and lowering operators are completely different from the QFT ones, and it is not
just a matter of adding the temporal degree of freedom: ap 6= ap0 ⊗ a⃗p (the right-hand-side would give
incorrect commutators). The QFT ones are obtained from the canonical quantization of the harmonic
oscillator, namely starting from the dynamics. Here, instead, we are introducing the raising and lowering
operator from the kinematics, namely the ones that applied to the 4-vacuum create the position (or
momentum) eigenstates. The QFT operators lose their meaning when one changes the dynamics (e.g. by
adding interactions), whereas ours do not. However, as in QFT, also in GEB the raising and lowering
operators can be used to define a number operator.

Thanks to Fock space, we can now have states with superpositions of different numbers of events, i.e.

|Φ〉=
∑
n⩾0

αn|Φ[n]〉 , (34)

with |Φ[0]〉 := |0〉4 and αn probability amplitudes, so that |αn|2|Φ[n](x1,σ1; . . . ;xn,σn)|2 (resp.
|αn|2|Φ̃[n](p1,σ1; . . . ;pn,σn)|2) is the joint probability density of having n detection events and that they
happen at spacetime locations x1, . . . ,xn (resp. momenta p1, . . . ,pn) and with spins σ1, . . . ,σn (|α0|2 being the
probability of no event).

The Lorentz transformations are a straightforward extension of (21). Indeed, indicating with UΛ the
unitary mapping that represents Λ in Fock space, given |Φ〉 and |Φ ′〉 the states two observers O and O′ assign
to same state event, we can write

|Φ ′〉= UΛ|Φ〉 , (35)

by requiring that the vacuum state is left invariant by UΛ, UΛ|0〉4 = |0〉4, and by imposing

UΛa
†
x,σU

†
Λ =

∑
σ ′

S−1
σ,σ ′(Λ) a

†
Λx,σ ′ , (36)

or, equivalently,

UΛa
†
p,σU

†
Λ =

∑
σ ′

S−1
σ,σ ′(Λ) a

†
Λp,σ ′ . (37)

7



New J. Phys. 25 (2023) 023027 V Giovannetti et al

3. QM/GEB correspondence

QM is a physical theory of systems while GEB is a physical theory of events: in this section we shall see that
these two different approaches can be connected by associating the dynamical quantum trajectories of QM to
elements of the distributions setH+

E of GEB. For the sake of simplicity we start in section 3.1 by considering
the special case of a single event universe showing that it can be put in correspondence with the QM
description of a point-like single particle system. The generalization to multi-event scenario will instead be
addressed in section 3.2 and in section 3.3 where we shall make use of the Fock space representation
introduced in section 2.2.

3.1. Single-particle/single-event correspondence
In QM the temporal evolution of a single particle described by an observer O sitting in his reference frame R,
is obtained by assigning a 3D+1 spinor wave-functionΨQM(⃗x,σ|t) which extends both in time and in space.
The unitary character of the dynamics ensures that 3D norm of this function is a constant of motion.
Accordingly, setting ∑

σ

ˆ
d3x|ΨQM(⃗x,σ|t)|2 = 1 , ∀t ∈ R (38)

the functionΨQM(⃗x,σ|t) can be interpreted as the conditional probability amplitude that the observer O will
find the particle at position x⃗ with spin σ, given that time is t. A natural correspondence between the single
particle states of QM and the single event states of the GEB formalism can hence be established by
interpretingΨQM(⃗x,σ|t) as a 4D spinor wave-function

ΨQM(x,σ) := ΨQM(⃗x,σ|t) , (39)

and then using the following mapping

ΨQM(x,σ) ∈QM 7→ |ΨQM〉 :
!
=
∑
σ

ˆ
d4xΨQM(x,σ) |x,σ〉 . (40)

The exclamation mark is a reminder that, with the normalization (38), the vector |ΨQM〉 has an infinite
norm, in contrast to |Φ〉 of (6). Indeed the square integrability of the GEB wave-functions Φ(x,σ) is
incompatible with (38) obeyed by the QM wave-functionΨQM(x,σ): in general an element |Φ〉 ofHE will
exhibit modulations with respect to t that in QM would be interpreted as unphysical losses and gains of
probability during the temporal evolution of the particle but which are perfectly allowed at the kinematic
level in the GEB formalism (and they can then be removed at the dynamical level, see below).

Because of their infinite norm, the vectors |ΨQM〉 introduced above are not elements ofHE and cannot be
interpreted as proper event states of GEB. The mapping (40) associates the QM wave-functionsΨQM(⃗x,σ|t)
ofO to distributions of GEB. This fact is explicitly shown in appendix D: here we point out that equation (40)
identifies only a proper subsetHQM ofH+

E . Examples of elements ofH+
E which are not inHQM are provided

for instance by the generalized position and momentum eigenvectors |x〉 and |p〉 which clearly cannot be
expressed as in (40) with 3D normalized QM solutionsΨQM,σ (⃗x|t). We also noticeHQM can be identified via
geometric constraints analogous to those adopted in [2, 3, 12, 22, 26, 39, 50–53]. Specifically one has

|ΨQM〉 ∈ HQM ⇐⇒


K|ΨQM〉= 0 ,

|ΨQM〉 6= 0 ,
(41)

where K is a constraint operator that encodes the QM dynamics (as discussed in appendix E we can also add
extra constrains that force |ΨQM〉 to represent 3D+1 spinor wave-functions that fulfill assigned initial
conditions for a given observer O). We stress that in contrast to previous literature [2, 3, 30, 39] where the
solutions of constraint equations are interpreted as history states for systems, in GEB they are used to identify
distributions which define event states. Another difference with previous approaches is that for the purpose
to generalizing the analysis to the multi-event scenarios, in our construction we find it convenient to work
with constraint operators which are explicitly self-adjoint and semidefinite-positive, i.e. K⩾ 0. Of course this
choice can be enforced without loss of generality since given J a generic operator fulfilling (41) we can always
identify a positive semi-definite one that does exactly the same e.g. by taking K= J†J exploiting the fact that

J|ΨQM〉= 0 ⇐⇒ J†J|ΨQM〉= 0 . (42)

8
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For non-relativistic models, the QM dynamics takes always the form of a Schrödinger equation which
can be cast in the form (41) along the lines detailed e.g. in in reference [15]. Unfortunately, there does not
appear to be a similarly general method to describe the relativistic dynamics10, but one should use covariant
constraints to avoid ruining the theory’s covariance. Indicating with□ := ∂2t −∇2 the D’Alembert operator,
in the case of spinless particle of massm this can be done for instance by invoking the Klein–Gordon (KG)
equation

(□+m2)ΨQM(⃗x|t)
∣∣∣
+
= 0 , (43)

filtering out its positive energy solutions (see appendix F). For the case of a massive spin 1/2 particle instead
one can use the Dirac equation

4∑
σ=1

(iγσ ′,σ · ∂−mδσ ′,σ)ΨQM(⃗x,σ|t) = 0 , (44)

with ∂ := (∂/∂t,−∇⃗) and γ := (γ0,γ1,γ2,γ3) the Dirac matrices (see equation (A11)). Adopting the
position representation Pµ → i∂µ, both equations (43) and (44) can be turned into a constraint of the
form (41) for the associated distributions |ΨQM〉11. Specifically, in the case of the positive-energy KG
equation (43) one can identify the constraint operator K of (41) with the self-adjoint operator

JKG+ :=

ˆ
d4p (Θ(p0) p · p−m2)|p〉〈p| , (45)

whereΘ(x) is the Heaviside step function (see appendix F) or with its positive definite counterpart

KKG+ := J2KG+ =

ˆ
d4p

(
Θ(p0) p · p−m2

)2
|p〉〈p| . (46)

Similarly, for the Dirac equation: we can directly translate (44) into (41) by identifying K with the
operator

JD := γ · P−m=
∑
σ,σ ′

ˆ
d4p (γσ,σ ′ · p−m δσ,σ ′)|p,σ〉〈p,σ ′| , (47)

(which is not self-adjoint), or with its associated positive semi-definite counterpart

KD := J†DJD =
4∑

σ=1

ˆ
d4p λ2σ(p) |ϕσ(p)〉〈ϕσ(p)| , (48)

with |λσ(p)| being the singular eigenvalues of JD and the generalized vectors |ϕσ(p)〉 forming an
orthonormal set

〈ϕσ ′(p ′)|ϕσ(p)〉= δσ,σ ′ δ(4)(p ′ − p) , (49)

(see appendix G). One of the advantages of adopting the above definitions for the constraint operator K is
that all of them are Lorentz invariant quantities (this is clearly evident for (47), while for (45) an explicitly
proof for proper Lorentz transformations is given in appendix F). Accordingly, the elements ofHQM

identified by one observer O via equation (41) will be related with those assigned by the observer O′ via the
same unitary transformation (13) that links their state event descriptions, i.e.

|Ψ ′
QM〉= UΛ|ΨQM〉 , (50)

or equivalently

Ψ ′
QM(x,σ) =

∑
σ

S−1
σ ′,σ(Λ)ΨQM(Λ

−1x,σ ′) , (51)

(the spinless case being obtained by simply removing S and neglecting the σ terms), which via (39) properly
describes how to relate the QM 3D+1 spinor wave-functionsΨ ′

QM(⃗x,σ|t) andΨQM(⃗x,σ|t) the observers
assign to the same single-particle trajectory (see figure 1).

10 A guideline, suggested byWigner and Bargmann, is to consider as physical fields the ones that correspond to irreducible representations
of the Poincaré group [38].
11 An interactionwith an external electromagnetic field can be described through theminimal coupling substitution ofPµ withPµ + eAµ,
with e the particle charge and Aµ the em 4potential.).
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Figure 1. Schematic representation of the connection that links the 3D+1 spinor wave-functionsΨ
[n]
QM (⃗x1,σ1; . . . ; x⃗n,σn|t) and

Ψ
[n] ′
QM (⃗x1,σ1; . . . ; x⃗n,σn|t) of QM, that two observers O and O′ assign to an n-particle state in their own reference frames: thanks

to the QM/GEB correspondence (40) such connection can be expressed via the unitary mapping (50) (green arrow) that links the
associated GEB distributions (54). The blue arrow elements represent the association of 3D+1 spinor wave-functions of QM with
their 4D spinor GEB counterparts, given in (39) for n= 1 and (52) for n> 1; the red arrow elements instead represent the
connection between 4D spinor wave-functions and the distributions ofHE.

3.2. Multi-event QM/GEB correspondence
To generalize the correspondence (40) to the multi-event case we need to address the problem that in QM the

wave-functionΨ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) of a n particle system is associated with n independent 3D spatial

coordinates (plus possibly n spinor components) but with a single time-coordinate. It is hence not at all clear
how to map such terms into elements (or distributions) ofH⊗n

E which instead possess n independent time
coordinate values. In the case where the n particles are not interacting, we can use the fact that

Ψ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) can always be expressed as linear combinations of products of time-dependent

single-particles, i.e.

Ψ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) =

∑
ℓ⃗

αℓ⃗ Ψ
(ℓ1)
QM (⃗x1,σ1|t) · · ·Ψ(ℓn)

QM (⃗xn,σn|t) , (52)

where given ℓ⃗= (ℓ1, . . . , ℓn), αℓ⃗ are time-independent probability amplitudes, and where for j= 1, . . . ,n,

Ψ
(ℓj)
QM(⃗xj,σj|t) is the 3D+1 wave-function describing the evolution of the j-th particle of the system.

Equation (52) is the key to generalize (40) as it allows us to formally associateΨ[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) to a

4D spinor wave-function with n distinct time coordinates via the construction

Ψ
[n]
QM(x1,σ1; . . . ;xn,σn) :=

∑
ℓ⃗

αℓ⃗ Ψ
(ℓ1)
QM (⃗x1,σ1|t1) · · ·Ψ(ℓn)

QM (⃗xn,σn|tn) , (53)

and then using such term to identify the distribution |ΨQM〉 via the identity

|Ψ[n]
QM〉 :

!
=

∑
σ1,...,σ2

ˆ
d4x1 · · ·

ˆ
d4xn × Ψ

[n]
QM(x1,σ1; . . . ;xn,σn) |x1,σ1; . . . ;xn,σn〉 (54)

(where, again, ‘!’ is a reminder of the non-normalization). While the choice of the single-particles QM spinor

wave-functionsΨ
(ℓj)
QM(⃗xj,σj|t) and of the coefficients αℓ⃗ entering in (52) are in general not unique, the

vector (54) does not depend on such freedom ensuring that the connection betweenΨ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t)

and |Ψ[n]
QM〉 is one-to-one (see appendix H.1). Vice versa, given |Ψ[n]

QM〉 one can recover the QM spinor 3D

wave-functionΨ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) via the identity

Ψ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) = 〈x1,σ1; . . . ;xn,σn|Ψ[n]

QM〉
∣∣∣
t1=···=tn=t

. (55)

As in the single-event case we can identify the distributions (54) by means of a geometric constraint (41)
induced by an n-body operator K[n]. To identify such a term we start form individual single particle
constraint terms K j that are explicitly positive semidefinite (i.e. Kj ⩾ 0), and take K[n] as their sum

K[n] =
n∑

j=1

Kj (Kj ⩾ 0) . (56)

10
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The positivity requirement on the individual K j is an important ingredient as it ensures that the kernel of
K[n] coincides with the intersection of all the kernels of the single-particle constraints, i.e.

K[n]|Ψ[n]
QM〉= 0⇔ Kj|Ψ[n]

QM〉= 0 , ∀j= 1, . . . ,n , (57)

which automatically implies that the only acceptable solutions to (57) must have each individual particle
evolving according to its own dynamical constraint (the model being interaction free for now). Observe also
that as equation (56) is symmetric under exchange of the particle indexes it has no problem to act as
constraint operator also in the case the particles are indistinguishable (in particular it does not mix the

complete symmetric partH(n,S)
E ofH⊗n

E with the complete anti-symmetric partH(n,A)
E ). For instance, in the

case of a Bosonic model governed by the positive energy KG equation (43), the positivity requirement on the
K j forces us to select (46) (instead of (45)) as the proper single particles terms: accordingly, for this model the
n-body constraint operator K[n] can be identified with

K[n]
KG+ :=

n∑
j=1

(KKG+)j =

ˆ
d4p1 · · ·

ˆ
d4pn

n∑
j=1

(
Θ(p0j ) pj · pj −m2

)2
|p1; . . . ;pn〉〈p1; . . . ;pn| .

(58)

Similarly for Fermionic models we should identify the single-particle terms K j with the operator (48) instead
of (47). Accordingly in this case n-body constraint operator K[n] becomes

K[n]
D :=

n∑
j=1

(KD)j =
∑
σ1

ˆ
d4p1 · · ·

∑
σn

ˆ
d4pn

n∑
j=1

λ2σj
(pj)|ϕσ1(p1); . . . ;ϕσn(pn)〉〈ϕσ1(p1); . . . ;ϕσn(pn)| . (59)

If the QM dynamical equations that rule the equation of motion of the particles are relativistically
covariant as in the cases of equations (58) and (59), then the identities (50) and (51) that in the single
particle case allows us to connect the distributions of the observers O and O′, translate into

|Ψ[n] ′

QM〉= U⊗n
Λ |Ψ[n]

QM〉 , (60)

and

Ψ
[n] ′
QM(x1,σ1; . . . ;xn,σn) =

∑
σ1,...,σn

S−1
σ ′
1 ,σ1

(Λ) · · ·S−1
σ ′
n ,σn

(Λ)Ψ
[n]
QM(Λ

−1x1,σ
′
1; . . . ;Λ

−1xn,σ
′
n) , (61)

respectively. Notice also that setting t1 = · · ·= tn = t in the last one, invoking equations (52) and (53) we

obtain the connection between the spinor 3D wave-functions of QMΨ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) and

Ψ
[n] ′
QM(⃗x1,σ1; . . . ; x⃗n,σn|t), that O and O′ would assign to the same quantum trajectory of the n particles—see

figure 1 for a schematic representation of this identity and appendix H.2 for a technical discussion.

3.3. QM/GEB correspondence in Fock space
In this section we generalize the correspondence (40) to the Fock space representation of GEB discussed in
section 2.2. At variance with what we did in sections 3.1 and 3.2, here we start by first introducing the
constraint operator (41), and then show that the associated solutions can be directly connected to those of
QFT.

3.3.1. Constraint operators
To connect GEB to QFT, start by considering the case of a Bosonic model where each individual particle
evolves according to the positive energy KG equation (43). As we have seen in the previous section, in the
first quantization formalism the constraint operator of the model is provided by (58). When the total
number of particles is fixed to n, the first quantization version of the constraint operator (58) assigns a

contribution
(
Θ(p0) p · p−m2

)2
to each particle with 4-momentum p, specifically

K[n]
KG+ |S(p1; . . . ;pn)〉=

n∑
j=1

(
Θ(p0j ) pj · pj −m2

)2
|S(p1; . . . ;pn)〉 , (62)

11
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with |S(p1; . . . ;pn)〉 the symmetric version of |p1; . . . ;pn〉 (see appendix C). Exploiting the
correspondence (C5), Equation (62) can now be turned into its second quantization form by identifying

K[n]
KG+ with the Fock operator

K(Fock)
KG+ :=

ˆ
d4p

[
Θ(p0) p · p−m2

]2
a†pap , (63)

with a†p , ap the creation and annihilation operators that obey the canonical commutation rules (30).
In the Fermionic case we proceed in similar fashion. In this case, from (59), we see we need to introduce a

Fock number operator that counts how many particles of the system are in single particle states described by
the vectors |ϕσ(p)〉. To construct such a term we introduce a new collection of annihilation operators

aϕσ(p) :=
4∑

σ ′=1

u∗σ ′,σ( p⃗) ap,σ ′ , (64)

with uσ,σ ′(p) the unitary matrices that connects the vectors |ϕσ(p)〉 with the vectors |p,σ〉 (see appendix G).
By construction they fulfill the same anti-commutation rules of a†p,σ and ap,σ , i.e.

{aϕσ(p),a
†
ϕ ′
σ(p

′)
}= δσ,σ ′ δ(4)(p− p ′) , {aϕσ(p),aϕ ′

σ(p
′)}= 0 , (65)

so that a†ϕσ(p)
aϕσ(p) is exactly the number operator we are looking for. Accordingly we can construct the Fock

counterpart of (59) by taking

K(Fock)
D :=

4∑
σ=1

ˆ
d4p λ2σ(p) a

†
ϕσ(p)

aϕσ(p) , (66)

which, via equation (64), can also be expressed as

K(Fock)
D =

4∑
σ ′,σ ′ ′=1

ˆ
d4p Dσ ′,σ ′ ′(p) a†p,σ ′ap,σ ′ ′(p) , (67)

with

Dσ ′,σ ′ ′(p) :=
4∑

σ=1

uσ ′,σ( p⃗)λ
2
σ(p)u

∗
σ ′ ′,σ(p) =

4∑
σ=1

(γ†σ ′,σ · p)(γσ,σ ′ ′ · p)+m2δσ ′,σ ′ ′

−m(γ†σ ′,σ ′ ′ + γσ ′,σ ′ ′) · p , (68)

where we used (G4) and (G8).

3.3.2. Connection with the QFT solutions

Here we analyze the solutions of the geometric constraint (41) that follow from the definitions of K(Fock)
KG+ and

K(Fock)
D given in the previous section, i.e.

ˆ
d4p

[
Θ(p0)p · p−m2

]2
a†pap |ΨQM〉= 0 , (69)

for the Bosonic model, and

4∑
σ=1

ˆ
d4p λ2σ(p) a

†
ϕσ(p)

aϕσ(p) |ΨQM〉= 0 , (70)

for the Dirac one.
It is clear that in both scenarios the no-event state, that in the theory is represented by 4D vacuum state

|ΨQM〉= |0〉4 is an allowed solution. It corresponds to the trivial case of no particles (Bosons for (69) or
Fermions for (70)) at all times. To discuss the other solutions in what follow we shall address first the Bosonic
case that allows for some simplification due to the absence of spinor components.

12
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3.3.2.1. Bosonic model
Express the vector |ΨQM〉 that appears on the r.h.s. of equation (69) as the one given in (34) (with no spin),
namely

|ΨQM〉 :
!
=
∑
n

αn√
n!

 n∏
j=1

ˆ
d4xj a

†
xj

 |0〉4Ψ[n]
QM(x1, . . . ,xn) =

∑
n

αn√
n!

 n∏
j=1

ˆ
d4pj a

†
pj

 |0〉4Ψ̃[n]
QM(p1; . . . ;pn)

(71)

withΨ
[n]
QM(x1, . . . ,xn) and Ψ̃

[n]
QM(p1; . . . ;pn) connected via 4D Fourier transform:

Ψ
[n]
QM(x1, · · ·) =

 n∏
j=1

ˆ
d4pj
4π2

e−ipj·xj

 Ψ̃
[n]
QM(p1, · · ·) . (72)

The functional dependence of the operator K(Fock)
KG+ upon the number operator a†pap suggests to analyze

equation (69) in the 4-momentum representation (71) instead of the position representation (72). Indeed
when acting on a†p1

· · ·a†pn |0〉4, a
†
pap generates a multiplicative factor

∑n
j=1 δ(pj − p) that allows us to translate

the constraint (69) into a constraint on the momentum-representation (33) of the wavefunction as

Φ̃
[n]
QM(p1; . . . ;pn)

 n∑
j=1

(
Θ(p0j )pj · pj −m2

)2

= 0 . (73)

Such equation forces Ψ̃[n]
QM(p1; . . . ;pn) to have support only for values of the pj momenta that satisfy the

on-shell condition pj · pj =m2 with p0j ⩾ 0. Specifically using

δ(p · p−m2) = [δ(p0 + Ep)+ δ(p0 − Ep)]/(2Ep) , (74)

Ep := +
√
|⃗p| 2 +m2 , (75)

we can express the most general solution of (73) as

Ψ̃
[n]
QM(p1; . . . ;pn) =

(
Πn

j=1δ
(
pj · pj −m2

))
f [n](p1; . . . ;pn) =

(
Πn

j=1δ(p
0
j − Epj)

) f [n]( p⃗1; . . . ; p⃗n)

2Ep1 · · ·2Epn
, (76)

with f [n](⃗p1; . . . ; p⃗n) := f [n](p1; . . . ;pn)
∣∣∣
p0j =Epj

(77)

and f [n](p1; . . . ;pn) an arbitrary function which nullifies for p0j < 0 and that, in virtue of the implicit
symmetry of (72), can always be forced to be completely symmetric under exchange of the indexes. The
position representation (71) of the solution can now be recovered replacing equation (76) into
equation (72), i.e.

Ψ
[n]
QM(x1, . . . ,xn) =

∏
j

ˆ
d3pj

(2π)3/2
ei( p⃗j ·⃗xj−Epj tj)

 f [n]( p⃗1, . . . , p⃗n)√
8πEp1 · · ·

√
8πEpn

. (78)

To put these solutions in correspondence with the QFT solutions of the corresponding Bosonic KG field
equation we observe that in the Schrödinger picture, the general QFT solutions of a (positive-energy)
Bosonic KG field equation writes as [54]

|ψQM(t)〉=
∑
n

βn√
n!

∏
j

ˆ
d3xj c

†
x⃗j

 |0〉3Ψ[n]
QM(⃗x1, . . . , x⃗n|t) , (79)

where βn are normalized amplitude probabilities, |0〉3 is the 3D vacuum state of the field (not to be confused
with the 4-vacuum state |0〉4 of GEB) and the c†x⃗ ’s are Bosonic creation operators fulfilling the equal-time
canonical commutation rules

[c⃗x, c
†
x⃗ ′ ] = δ(3)(⃗x− x⃗ ′), [c⃗x, c⃗x ′ ] = 0 . (80)

13
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In the above expressionΨ
[n]
QM(⃗x1, . . . , x⃗n|t) are (observer dependent) 3D+1 wave-functions that (under

proper normalization conditions) define the joint probabilities of finding at time t, n particles in x⃗1, . . ., x⃗n:
their temporal dependence is fixed by the single-particle dispersion relation defined in equation (75) and is

computed in equation (H6). Our goal is to show that the GEB solutions (72) with Ψ̃
[n]
QM(p1; . . . ;pn) as in

equation (76) can be put in correspondence with (79) by taking βn = αn and setting

ψ̃
[n]
QM( p⃗1, . . . , p⃗n) :=

f [n]( p⃗1, . . . , p⃗n)√
8πEp1 · · ·

√
8πEpn

, (81)

in equation (H6). To verify this fact notice that for fixed value of n⩾ 1 one can invoke equations (C3)–(C5)

to map the 4D wave-functionΨ
[n]
QM(x1, . . . ,xn) of equation (78) onto a QM 3D+1 wave-function of n

Bosonic particles via equation (55): this exactly reproduces the QFT solutionΨ
[n]
QM(⃗x1, . . . , x⃗n|t) of

equation (H6) when we impose (81).

3.3.2.2. Fermionic model
Similar considerations apply to the Fermionic case. Here the functional dependence of the constraint

operator K(Fock)
D upon the number operator a†ϕσ(p)

aϕσ(p) suggests to expand the general solution (34),
namely

|ΨQM〉 :
!
=
∑
n

αn√
n!

∏
j

4∑
σj=1

ˆ
d4xj a

†
xj,σj

Ψ
[n]
QM(x1,σ1; . . . ;xn,σn)|0〉4 , (82)

in terms of the creation operators a†ϕσ(p)
, i.e.

|ΨQM〉=
∑
n

αn√
n!

∏
j

4∑
σj=1

ˆ
d4pj a

†
ϕσj

(pj)

Ψ̃
[n]
QM(ϕσ1(p1); . . . ;ϕσn(pn))|0〉4 , (83)

with the spinor wave-functionsΨ[n]
QM(p1,σ1; . . . ;pn,σn) that are connected with those of the 4-position

representation via the identity

Ψ
[n]
QM(x1,σ1; . . . ;xn,σn) =

∏
j

ˆ
d4pj
4π2

e−ipj·xj
4∑

σ ′
j =1

uσ ′
j ,σj

( p⃗j)

 Ψ̃
[n]
QM(ϕσ ′

1
(p1); . . . ;ϕσ ′

n
(pn)) . (84)

Replacing (83) into (70) we get

Ψ̃
[n]
QM(ϕσ1(p1); . . . ;ϕσn(pn))

 n∑
j=1

λ2σj
(pj)

= 0 , (85)

which due to the positivity of the terms λ2σj
(pj) has solutions of the form

Ψ̃
[n]
QM(ϕσ1(p1); . . . ;ϕσn(pn)) =

(
Πn

j=1δ(λσj(pj))
)
f [n](p1,σ1; . . . ;pn,σn)

=
(
Πn

j=1δ(p
0
j − E

(σj)
pj )

)
f [n]( p⃗1,σ1; . . . ; p⃗n,σn) ,

where E(σ)p =−Ep for σ = 1,3 and E(σ)p = Ep for σ = 2,4 with Ep =
√
|⃗p|2 +m2, see equation (G7), and

where f [n](p1,σ1; . . . ;pn,σn) are arbitrary functions that can always be assumed to completely anti-symmetric
under particle indexes exchange, and where finally

f [n]( p⃗1,σ1; . . . ; p⃗n,σn) := f [n](p1,σ1; . . . ;pn,σn)
∣∣∣
p0j =E

(σj)

pj

. (86)

Substituting this into (84) we hence obtain

Ψ
[n]
QM(x1,σ1; . . . ;xn,σn) =

∏
j

ˆ
d3pj

(2π)3/2

4∑
σ ′
j =1

uσ ′
j
,σj

( p⃗j)
√
2π

× e
i( p⃗j ·⃗xj−E

(σ ′
j )

pj
tj)

 f [n]( p⃗1,σ
′
1; . . . ; p⃗n,σ

′
n) . (87)

14
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To establish a formal correspondence between (82) and the solutions of QFT we observe that the 3D+1
spinor wave-function of n Fermionic particles that obey the Dirac equation is given by vectors of the form

|ψQM(t)〉=
∑
n

βn√
n!

∏
j

4∑
σj=1

ˆ
d3xjc

†
x⃗j,σj

Ψ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t)|0〉3, (88)

with creation operators that obey equal-time anti-commutation rules, i.e.

{c⃗x,σ, c†x⃗ ′,σ ′}= δ
(3)
σ,σ ′ δ(⃗x− x⃗ ′), {c⃗x,σ, c⃗x ′,σ ′}= 0 . (89)

and 3D+1 spinor wave-functionsΨ[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) defined in equation (H9). Invoking once more

equations (C3)–(C5) we can hence conclude that equation (84) corresponds to (88) by setting βn = αn and
ϕ[n]( p⃗1,σ ′

1; . . . ; p⃗n,σ
′
n) of equation (H9) equal to f [n]( p⃗1,σ ′

1; . . . ; p⃗n,σ
′
n). Note that here we also consider

possible entanglement between different spinor components, whence the n integrals in (88), which are not
usually included in QFT treatments. Superpositions of a particle and an antiparticle are typically considered
unphysical because one supposes that superselection rules will prevent them. However, such states have been
proposed [55, 56], suggesting that superselection rules are never fundamental, but only practical limitations.

3.3.3. Lorentz transform
We conclude the section stressing that also in the Fock formalization of the model, the constrained operators
are Lorentz invariant quantities, allowing us to extend the identity (35) also to the elements |ΨQM〉
ofHQM, i.e.

|Ψ ′
QM〉= UΛ|ΨQM〉 , (90)

indicating that in GEB Lorentz transforms can be done entirely using unitary representations of the Lorentz
group as described above, according to Wigner’s prescription for symmetry transformations, entirely at the
kinematic level. This is clearly different to what happens in QFT where we quantize ‘on shell’, namely, the
quantization procedure contains the dynamics. This implies for instance that the state c†

p⃗
|0〉3 lives in a L2(R3)

space of on-shell states, namely states whose energy is Ep. In order to Lorentz transform such state, one must
first derive the new hyperboloid that satisfies E ′2

p − p ′2 =m2 in the new frame and then quantize in the new

frame obtaining c†
p⃗ ′ |0〉3 in the new frame (the vacuum being Lorentz invariant).

4. Conclusions

In conclusion we presented an alternative framework (GEB) for special relativistic QM. The full axiomatic
structure of QM (e.g. its statistical interpretation through the Born rule) is applied covariantly. The
quantization is performed axiomatically in GEB, constructing a Hilbert space for events, rather than the
customary QFT approach of quantizing the solutions of the dynamical equations. The usual textbook
relativistic QM and QFT are obtained by conditioning over the temporal degrees of freedom of the GEB
event states.

We have not considered interactions here: as in relativistic QM and QFT, interactions pose significant
additional challenges (understatement!) that will be tackled in future work. Other covariant approaches that
derive from Dirac forms [5] typically work only for free particles (since the Hamiltonian ends up in the boost
generators): the ‘no-interaction theorem’ [57–59]. Our approach might, instead, be able to consider
interactions, since we impose the dynamics only through a constraint, which is a procedure known to bypass
the no-interaction theorem [24, 25, 39, 51, 60]. Moreover, GEB does not employ a quantization on the
free-field dynamical equation solutions, so it might perhaps be able to describe interacting fields without the
usual perturbative approach, if we will ever be able to devise appropriate, solvable, constraint equations. GEB
replies affirmatively to a question raised by Kuchăr [61] on whether the constraint formalism is able to
describe localized relativistic particles (a completely different solution, based on the Newton–Wigner
mechanism, is in [62]). Finally, it can treat situations that do not admit a Hamiltonian formulation [19]
(such as solutions to the KG equation without positive-energy restriction, appendix F, or generic solutions of
Einstein’s field equations [6, 50, 63, 64]), since, as shown above, the constraint procedure does not require
Hamiltonians to describe the dynamics.

Of course, we do not claim that QFT is inadequate: the formulation provided here is, as shown above, a
(slight) extension of it and in all situations considered in this paper an equivalent QFT description exists
(mutatis mutandis). It may perhaps be used to clarify some longstanding problems, such as Haag’s theorem
[65] or particle localization [65, 66] by recognizing that a localized particle (that stays localized for a period
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of time) is not a physical state (it does not satisfy the constraints), but it can be connected to a kinematic state
that can be used as an eigenstate of an observable.

We believe that GEB opens new exciting avenues.
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Appendix A. Notation and conventions used

A.1. Physical Units
We use natural units setting ℏ= 1 and c= 1.

A.2. Spacetime coordinates
To represent 4D real vectors we use the notation

a := (a0,a1,a2,a3) = (a0, a⃗) , (A1)

with a0 the time-like component and a⃗ the associated space-like 3D vector

a⃗ := (a1,a2,a3) . (A2)

Greeks labels are employed to indicate the four components of a, and roman labels to indicate the three
components of a⃗; e.g. aµ with µ= {0,1,2,3} indicates the µ-th term of a, while ai with i= {1,2,3} indicates
the i-th term of a⃗. Lower indexes 4D vectors are defined as

a := (a0,a1,a2,a3) = (a0,−a⃗) , (A3)

which are connected with their upper indexes counterpart via the transformations

a= η a , a= η a , (A4)

with η the 4× 4 diagonal matrix

η := diag(1,−1,−1,−1) , (A5)

defining the metric tensor of the theory whose elements are represented with the symbol ηµν = ηµν . Recall
next that given Λ a 4× 4 real matrix associated to a generic Lorentz transformation we have

ΛTηΛ = η , (A6)

from which it follows that given the 4-vectors a and b the product

a · b := aηb=
3∑

µ=0

aµbµ , (A7)

is an invariant quantity, i.e. a · b= a ′ · b ′ with a ′ = Λa and b
′
= Λb (notice that the same term can also be

computed as aηb or as a · b).
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Special examples of 4-vectors are provided by the 4-position and 4-momentum

x := (t, x⃗) , p := (p0, p⃗) , (A8)

by the associated differential term ∂µ = ∂
∂xµ

, i.e.

∂ = (∂0,∂1,∂2,∂3) = (∂/∂t,−∇⃗) . (A9)

Then,

Xµ =

ˆ
d4x xµ|x〉〈x|, Pµ =

ˆ
d4p pµ|p〉〈p| ⇒

〈x|p〉= e−ipµxµ/(4π2), namely

〈x0|p0〉= 〈t|E〉= e−iEt

√
2π
, 〈x1|p1〉= 〈x|px〉=

e+ipxx

√
2π

, · · ·

|x〉 ≡ c†x |0〉4 =
ˆ

d4p

4π2
eipx|p〉=

ˆ
d4p

4π2
eipxc†p|0〉4

c†x =

ˆ
d4p

4π2
eipx c†p, cx =

ˆ
d4p

4π2
e−ipx cp

c†x⃗ =

ˆ
d3p

(2π)3/2
e−i⃗p·⃗x c†

p⃗
, c⃗x =

ˆ
d3p

(2π)3/2
ei⃗p·⃗x c⃗p . (A10)

The γµ matrices are given by

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A11)

with σi being the Pauli operators.

Appendix B. Connecting different reference frames

Consider first the simple case of a single spin-less event space. Let O and O′ be two inertial observer whose
coordinates are linked as in equation (11) of the main text with the 4× 4 matrix Λ representing an element
of the Lorentz group. Let Φ(x) the wave-function of a state event S as described by O. To show that the
observer O′ in his reference frame will describe it as the function Φ ′(x) of (12) assume that Φ(x) gets its
maximum value Φmax for x= x0, i.e. Φmax =Φ(x0). The observer O′ will assign to such point the coordinate
x ′0 = Λx0 that represents the value at which Φ ′(x) reaches its maximum, i.e.

Φ′(x′0) = Φ′(Λx0) = Φmax =Φ(x0) =⇒ Φ′(Λx0) = Φ(x0),

which leads exactly to (12).
Let us now introduce the vectors |Φ〉 and |Φ ′〉 ofHE that O and O′ will assign to the state S, i.e.

|Φ〉=
ˆ

d4x Φ(x)|x〉 , (B1)

|Φ ′〉=
ˆ

d4x Φ ′(x)|x〉=
ˆ

d4x Φ(Λ−1x)|x〉=
ˆ

d4x Φ(x)|Λx〉 , (B2)

(Figure 2). By direct inspection one can be easily verify that these vectors fulfill the identity (13) of the main
text by identifying the unitary transformation UΛ with the operator

UΛ =

ˆ
d4x|Λx〉〈x|=

ˆ
d4x|x〉〈Λ−1x| , (B3)

U†
Λ =

ˆ
d4x|x〉〈Λx|=

ˆ
d4x|Λ−1x〉〈x| , (B4)

where the second identity in the first line follows by a simple chance of integration variables, while the
second line is obtained by taking the adjoint of the first. Notice that UΛ and U†

Λ verify the conditions

UΛ|x〉= |Λx〉 , 〈x|UΛ = 〈Λ−1x| , (B5)
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Figure 2. Figurative representation of the state |Ψ⟩, its time-conditioning at time t0 that gives the state |ψ(t0)⟩, and its relativistic
boost |Ψ ′⟩ to the reference R′ (dashed lines). The boosted reference (x ′, t ′) is obtained through a hyperbolic transformation
(Lorentz transform) from the (x, t) reference, pictorially represented with the dashed lines. The foliation in the (x, t) reference
gives the usual (conditioned) state |ψ(t0)⟩ of textbook quantum mechanics. A similar foliation in the (x ′, t ′) reference (not
pictured) is required for the quantum state at time t′ in the new reference.

U†
Λ|x〉= |Λ−1x〉 , 〈x|U†

Λ = 〈Λx| , (B6)

which represent the counterparts of (11) at the level of the generalized eigenstates of the position operator X.
Analogously for the generalized eigenvectors of the momentum operator P we get

UΛ|p〉= |Λp〉 , 〈p|UΛ = 〈Λ−1p| , (B7)

U†
Λ|p〉= |Λ−1p〉 , 〈p|U†

Λ = 〈Λp| . (B8)

The first for instance can be derived recalling equation (4) and observing that

UΛ|p〉=
ˆ

d4x
4π2 e

−ix·p|Λx〉=
ˆ

d4x
4π2 e

−i(Λ−1x)·p|x〉= |Λp〉 , (B9)

where in the last identity we exploit the invariance of the product (A7) under Lorentz transform, i.e.

a · b= a ′ · b ′, for a ′ = Λa and b
′
= Λb.

Consider next the expectation values of a generic operatorΘ on S. The observer O will compute this as

〈Θ〉= 〈Φ|Θ|Φ〉 , (B10)

while O′ will see this as

〈Θ〉 ′ = 〈Φ ′|Θ|Φ ′〉= 〈Φ|U†
ΛΘUΛ|Φ〉 , (B11)

which of course needs not to be the same as 〈Θ〉. Notice that we can also rewrite 〈Θ〉 ′ = 〈Φ|Θ ′|Φ〉 where
now

Θ ′ = U†
ΛΘUΛ , (B12)

is a sort of 4D ‘Heisenberg-picture’ that allows us to transform the operators instead of the states in moving
from the reference frame of O to the one by O′. In particular we shall say thatΘ is invariant under Lorentz
transformations ifΘ ′ =Θ for all choices of Λ, i.e.

U†
ΛΘUΛ =Θ , ∀Λ , (B13)

while, given a collection of operators A0,A1,A2,A3 we shall call A= (A0,A1,A2,A3) a vectorial operator if

U†
Λ A UΛ = ΛA , ∀Λ . (B14)

From (A6) it then follows that given A and B arbitrary vectorial operators the operator A ·B is invariant.
Important examples of vectorial operators are provided by the canonical operators X and P of the theory, as
anticipated in equations (16) and (17) of the main text. To see this explicit observe for instance that from (4)
and (B12) we get

(Xµ) ′ = U†
ΛX

µUΛ =

ˆ
d4x xµ|Λ−1x〉〈Λ−1x|=

ˆ
d4x (Λx)µ|x〉〈x|= (ΛX)µ , (B15)
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which leads to (16). We notice that the above expressions can be used to show that the UΛ’s admit as
generators operatorsMµ,ν entering in (2): for example, a y-axis rotation by an angle θ is generated by
UΛ = e−iθM13

withM13 = X1P3 −X3P1 so that U†
ΛX

3UΛ = X3 cosθ+X1 sinθ ; a x-axis directed boost by a

rapidity v is generated by UΛ = e−ivM 01
withM 01 = X1P0 −X 0P1 so that UX1U† = X1 coshv+X 0 sinhv (the

hyperbolic trigonometric functions appear because of the extra minus sign in [Xµ,Pν ] =−iηµν). We stress
also that (16) and (17) are fully consistent with the setting of the problem. In fact indicating with 〈X〉 and
〈X〉 ′ the mean position that O and O′ assign to the same event state we notice that they are connected via the
identity

〈X〉 ′ := 〈Φ|X ′|Φ〉= 〈Φ|ΛX|Φ〉= Λ〈Φ|X|Φ〉= Λ〈X〉 , (B16)

which is exactly what you would aspect from equation (11). Of course the same result can be obtained by
working in the Schrödinger picture: in this case in fact we get

〈X〉 ′ = 〈Φ ′|X|Φ ′〉=
ˆ

d4x x |Φ ′(x)|2 =
ˆ

d4x x |Φ(Λ−1x)|2 =
ˆ

d4x Λx |Φ(x)|2 = Λ〈X〉 , (B17)

where in the third identity we used (12).

B.1. Spinors
In the presence of spinorial degree of freedom, the 4D spinor wave-functions Φ ′(x,σ ′) and Φ(x,σ) assigned
by the observers O′ and O′, will be connected as in equation (20). This implies that equations (B3) and (B4)
are replaced by

UΛ =
∑
σ,σ ′

S−1
σ,σ ′(Λ)

ˆ
d4x|Λx,σ ′〉〈x,σ|=

∑
σ,σ ′

S−1
σ,σ ′(Λ)

ˆ
d4x|x,σ ′〉〈Λ−1x,σ| , (B18)

U†
Λ =

∑
σ,σ ′

Sσ,σ ′(Λ)

ˆ
d4x|x,σ ′〉〈Λx,σ|=

∑
σ,σ ′

Sσ,σ ′(Λ)

ˆ
d4x|Λ−1x,σ ′〉〈x,σ| , (B19)

so that

UΛ|x,σ〉=
∑
σ ′

S−1
σ,σ ′(Λ)|Λx,σ ′〉 , (B20)

U†
Λ|x,σ〉=

∑
σ ′

Sσ,σ ′(Λ)|Λ−1x,σ ′〉 , (B21)

and

UΛ|p,σ〉=
∑
σ ′

S−1
σ,σ ′(Λ)|Λp,σ ′〉 , (B22)

U†
Λ|p,σ〉=

∑
σ ′

Sσ,σ ′(Λ)|Λ−1p,σ ′〉 . (B23)

Appendix C. Multi-event tensor representation and Fock representation

Recall that the projectors Π(n,S) and Π(n,A) associated with the completely symmetricH(n,S)
E and the

completely anti-symmetricH(n,A)
E subspaces ofH⊗n

E , can be expressed as

Π(n,S) =
1

n!

∑
p

Vp , Π(n,A) =
1

n!

∑
p

sign[p]Vp , (C1)

where the sums over p run on the set of permutations of n elements, and Vp is the unitary operator which
represents p onH⊗n

E .
As mentioned in the main text the n event states of Bosonic QM/GEB are by vectors |Φ[n]〉 of (22) with

4D spinor wave-functions Φ[n](x1,σ1; . . . ;xn,σn) obeying the symmetry condition (25) and normalization
condition ∑

σ1,...,σn

ˆ
d4x1 · · ·d4xn|Φ[n](x1,σ1; . . . ;xn,σn)|2 = 1 . (C2)
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Since these vectors belong to the completely symmetricH(n,S)
E subspace ofH⊗n

E we have |Φ〉=Π(n,S)|Φ〉
which exploiting (C1) allows one to equivalently rewrite equation (22) as

|Φ[n]〉= 1√
n!

∑
σ1,...,σn

ˆ
d4x1 · · ·d4xnΦ[n](x1,σ1; . . . ;xn,σn)|S(x1,σ1; . . . ;xn,σn)〉 , (C3)

with

|S(x1,σ1; . . . ;xn,σn)〉 :=
1√
n!

∑
p

Vp|x1,σ1; . . . ;xn,σn〉

=
1√
n!

∑
p

|xp(1),σp(1); . . . ;xp(n),σp(n)〉 (C4)

the completely symmetric counterpart of |x1,σ1; . . . ;xn,σn〉. In the Fock space representation
|S(x1,σ1; . . . ;xn,σn)〉 is the vector (not |x1,σ1; . . . ;xn,σn〉) that is formally expressed as the application of
sequences of the Bosonic creation operators a†x,σ ’s to the 4-vacuum state, i.e.

a†x1,σ1
· · ·a†xn,σn

|0〉4
∣∣∣
BOS

≡ |S(x1,σ1; . . . ;xn,σn)〉 , (C5)

which replaced into (C3) leads to (32) (to justify (C5) notice that due to the commutation rules (30) the two
family of states on the l.h.s. and the r.h.s. of the above equation have the same symmetry under permutation
of indexes and the same scalar products).

Similar considerations apply for the Fermionic case where the 4D spinor wave-function appearing in (22)
fulfill the anti-symmetric relation (26). Invoking hence the fact that they are elements of the completely

anti-symmetricH(n,A)
E subspace ofH⊗n

E we have now |Φ〉=Π(n,A)|Φ〉, which allows one to replace
equation (C3) with

|Φ[n]〉= 1√
n!

∑
σ1,...,σn

ˆ
d4x1 · · ·d4xnΦ[n](x1,σ1; . . . ;xn,σn)|A(x1,σ1; . . . ;xn,σn)〉 , (C6)

with

|A(x1,σ1; . . . ;xn,σn)〉 :=
1√
n!

∑
p

sign[p]Vp|x1,σ1; . . . ;xn,σn〉=
1√
n!

∑
p

|xp(1),σp(1); . . . ;xp(n),σp(n)〉

the vector that is now identified by sequences of Fermionic creation operator a†x,σ ’s to the 4D-vacuum
state, i.e.

a†x1,σ1
· · ·a†xn,σn

|0〉4
∣∣∣
FER

≡ |A(x1,σ1; . . . ;xn,σn)〉 , (C7)

leading once more to (32).

Appendix D. More on the QM/GEB correspondence

Here we analyze in detail the technical aspects of the QM/GEB correspondence introduced in section 3.
Specifically we shall show that the vectors |ΨQM〉 introduced in equation (40), while not being elements of
HE, form a special subsetHQM of the distributions setH+

E of the theory, i.e. the rigged-extended version of
HE which we introduce when discussing the generalized position and momentum eigenvectors of GEB.

We have already commented the fact that the normalization condition (38) implies that the |ΨQM〉’s
of (40) have a divergent norm. This automatically excludes them from the Hilbert spaceHE. To prove that
they are distributions, we need to show that there exists a dense subsetD ofHE formed by (normalized)
vectors |Φ〉 such that the quantity 〈ΨQM|Φ〉 exists and is finite. To exhibit such subset let first introduce the
spectral decomposition of the QM Hamiltonian H which is ruling the dynamical evolution of the
single-particle of the problem (i.e. the generator which is responsible for the time evolution of the 3D
wave-functionΨQM(⃗x|t)). We will consider explicitly the case where H has a (possibly degenerate)
continuous spectrum but the analysis can be easily applied to the cases of discrete spectra (or even mixed
discrete/continuous spectra). Accordingly, we write

H :=

ˆ
dE

∑
k

E|E,k〉〈E,k| , (D1)
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with the discrete variable k accounting for the degeneracy of the E-energy level, and where {|E,k〉}E,k are the
generalized orthonormal eigenvectors that fulfill

〈E ′,k ′|E,k〉= δk,k ′δ(E− E ′) , (D2)

with δk,k ′ the Kronecker delta symbol. Similarly to [12, 15], we now adopt a spacetime foliation that separate
the temporal coordinate ofHE vs the spatial ones via a tensor product, writing

|x〉= |t〉|⃗x〉 , (D3)

(notice that while this choice breaks the covariance of the theory, this is not a problem as in our case we shall
compute scalar products between vectors which are explicitly invariant quantities). We then expand a generic
normalized element ofHE in the following form

|Φ〉=
ˆ

dE
∑
n,k

cn,k(E)|n〉|E,k〉 , (D4)

where we introduced a discrete complete orthonormal set {|n〉}n for the temporal axis while we adopted the
generalized eigenstates {|E,k〉}E,k of the QM Hamiltonian H to expand the spatial degree of freedom of the
system. In the above equation cn,k(E) are probability amplitudes fulfilling the normalization condition

ˆ
dE

∑
n,k

|cn,k(E)|2 = 〈Φ|Φ〉= 1 , (D5)

Now we defineD to be set of vectors ofHE which admits a decomposition (D4) with coefficients cn,k(E) that,
besides (D5), fulfill also the extra constraint

∑
n

√ˆ
dE

∑
k

|cn,k(E)|2 <∞ , (D6)

(to see thatD is dense observe that such space contains all the vectors |Φ〉 with cn,k(E) 6= 0 only for a finite set
of values of n). Expressing now |ΨQM〉 of equation (40) in terms of the same spacetime foliation used
in (D4), i.e.

|ΨQM〉=
ˆ

dt

ˆ
d3xΨQM(⃗x|t)|t〉|⃗x〉=

ˆ
dt|t〉|ψ(t)〉 , (D7)

with

|ψ(t)〉=
ˆ

d3xΨQM(⃗x|t)|⃗x〉 , (D8)

we notice that

〈Φ|ΨQM〉=
ˆ

dt

ˆ
dE

∑
n,k

c∗n,k(E)〈n|t〉〈E,k|ψ(t)〉=
ˆ

dt

ˆ
dE

∑
n,k

c∗n,k(E)〈n|t〉αk(E)e
−iEt

=
√
2π

ˆ
dE

∑
n,k

c∗n(E)αk(E)〈n|π(E)〉, (D9)

where in the second identity we introduced the probability amplitudes

αk(E)e
−iEt := 〈E,k|ψ(t)〉 (D10)

of the state |ψ(t)〉 with e−iEt being their associated dynamical phase (remember that {|E,k〉}E,k are
eigenvectors of the system Hamiltonian), and where in the third identity we introduce the vectors

|π(E)〉 := 1√
2π

ˆ
dte−iEt|t〉 . (D11)

Observe that this last is a distribution for the temporal coordinate (indeed it is the Fourier transform of
position coordinates), that fulfills the orthonormalization rule

〈π(E ′)|π(E)〉= δ(E− E ′) . (D12)
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As a matter of fact we can identify |π(E)〉 as a generalized eigenstate of the canonical momentum of the
temporal position axis. Accordingly, we can interpret 〈π(E)|n〉 as the momentum amplitude probability
distribution of |n〉 evaluated at momentum E. Remember next that {|n〉}n is a basis that we can choose freely.
We now take such basis as the orthonormal set of the spectrum of the Harmonic oscillator which allows us to
explicitly compute the value of 〈π(E)|n〉 as

〈π(E)|n〉= π−1/4

√
2nn!

exp[−E2/2]Hn(E) , (D13)

where for the sake of simplicity we are expressing here the function in renormalized units where all the
physical constants are set equal to 1, and where Hn(x) are the Hermite polynomials. Now the only
fundamental aspect of the problem here is that we can put an upper bound on such terms, independently of
the choice of n and E. In particular we can show that

〈π(E)|n〉⩽ 〈π(E) = 0|n= 0〉= 1

π1/4
. (D14)

Hence invoking the Cauchy–Schwarz inequality, we can now bound the term (D9) as follows:

|〈Φ|ΨQM〉|⩽
√
2π

∑
n

ˆ
dE

∑
k

∣∣c∗n,k(E)αk(E)〈n|π(E)〉
∣∣⩽ √

2π

π1/4

∑
n

ˆ
dE

∑
k

∣∣c∗n,k(E)αk(E)
∣∣

⩽
√
2π

π1/4

∑
n

√ˆ
dE

∑
k

|c∗n,k(E)|2 , (D15)

which is finite due to equation (D6).

Appendix E. Initial conditions

The constraint equation (41) merely selects all possible distributions which are compatible with an assigned
QM dynamical law. One can add extra constraints that enforce possibly observer dependent ‘initial’ (rather,
boundary) conditions or better specify the system evolution. For instance we can identify the element of
HQM associated to the QM quantum trajectory of a spin-less single-particle which at time τ as measured for
the observer O, corresponds to a certain target 3D spinor wave-function ψ0(⃗x,σ), by looking for the |ΨQM〉
fulfilling (41) which verifies the extra condition

Πτ |ΨQM〉=
∑
σ

ˆ
d3x ψ0(⃗x,σ)|x,σ〉

∣∣∣
t=τ

, (E1)

with Πτ =
∑

σ

´
d4x δ(t− τ)|x,σ〉〈x,σ| being a generalized projector onHE.

Appendix F. Constraint operator for the KGmodel

In the absence of the energy constraint the general solution of the KG equation

(□+m2)ΨKG(x) = 0 , (F1)

expressed in term of spacetime coordinates of an inertial observer O is given by the sum of two independent
contributions

ΨKG(x) = Ψ+
KG(x)+Ψ−

KG(x) , (F2)

Ψ±
KG(x) :=

ˆ
d3p

(2π)3/2
e∓iEpt+i⃗p·⃗xψ(±)( p⃗) , (F3)

with Ep :=
√
|⃗p|2 +m2 and with the functions ψ(±)( p⃗) fixed by imposing boundary conditions. Without

introducing extra structure on the problem, equation (F2) is not compatible with unitary evolutions
predicted by QM since, as discussed below, the two parts can be seen as time evolutions according to two
different Hamiltonian (e.g. givenΨKG,1(x) andΨKG,2(x) solutions of (F1) we get

´
d3xΨ∗

KG,1(x)ΨKG,2(x) is
an explicit function of t). Yet one still use equation (40) to associate toΨKG(x) a distribution |ΨKG〉 of GEB
and observe that the resulting vector can be identified with the solutions of an eigenvalue equation (41)

JKG|ΨKG〉= 0 , (F4)
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with constraint operator

JKG := P · P−m2 =

ˆ
d4p (p · p−m2)|p〉〈p| , (F5)

that is explicit Lorentz invariant. From the equation (F2) it follows that we can be written as |ΨKG〉 the sum
of two terms

|ΨKG〉=
ˆ

d4xΨKG(x) |x〉= |Ψ+
KG〉+ |Ψ−

KG〉 , |Ψ
±
KG〉 :=

ˆ
d4xΨ±

KG(x) |x〉 , (F6)

which also satisfy (F4), i.e.

JKG|Ψ±
KG〉= 0 . (F7)

Selecting the positive (negative) energy solutions of (F2) corresponds to identifyingΨKG(x) with just the
componentΨ+

KG(x) (resp.Ψ
−
KG(x)), i.e. to imposing ψ(−)( p⃗) = 0 (resp. ψ(+)( p⃗) = 0) as boundary condition

of the problem. By construction, these special functions can be seen as solutions of ordinary Schrödinger
equations with single-particle Hamiltonian H :=

√
m2 −∇2, i.e.

i∂tΨ
+
KG(x) =HΨ+

KG(x) , (F8)

(the same holds also forΨ−
KG(x), choosing−H as Hamiltonian). Therefore,Ψ+

KG(x) represents a proper
unitary temporal evolution that preserves equal time, 3D scalar products.

A better insight on the properties of the distributions |Ψ±
KG〉 can be gained by rewriting (F6) as

|Ψ±
KG〉 :=

ˆ
d4pΨ±

KG(p) |p〉 , (F9)

whereΨ±
KG(p) =

´
d4x
4π2 e

ix·p Ψ̃±
KG(x) is the 4D Fourier transform of Ψ̃±

KG(x) which, by explicit computation, is
given by

Ψ̃±
KG(p) :=

√
2πδ(p0 ∓ Ep)ψ

(±)( p⃗) . (F10)

Introducing the orthogonal projectors

Π+ :=

ˆ
d4pΘ(p0)|p〉〈p| , (F11)

Π− := 1E −Π+ =

ˆ
d4pΘ(−p0)|p〉〈p| , (F12)

that identify the positive/negative energy subspaces ofHE, we note that they admit |Ψ±
KG〉 as eigenvectors

that solve the identities

Π+|Ψ+
KG〉= |Ψ+

KG〉 , Π−|Ψ−
KG〉= |Ψ−

KG〉 . (F13)

or equivalently

Π−|Ψ+
KG〉= 0 , Π+|Ψ−

KG〉= 0 , (F14)

Thanks to (F7) this allows us to uniquely identify |Ψ+
KG〉 as the special vectors which are in the intersection of

the kernels of JKG and Π−, i.e.

JKG+ |Ψ+
KG〉= 0 , (F15)

with the new constraint operator

JKG+ := JKGΠ
+ −m2Π− =Π+JKG −m2Π− =

ˆ
d4p

[
Θ(p0) p · p−m2

]
|p〉〈p| , (F16)

(note the−m2Π− term!) reported in equation (45) of the main text. Notice that such a term is explicitly
self-adjoint (J†KG+ = JKG+), but not positive semidefinite (indeed its generalized eigenvaluesΘ(p0) p · p−m2
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can take any real values for proper choices of the 4-momentum p). Similarly the negative energy terms can be
uniquely identified by writing JKG− |Ψ−

KG〉= 0 with

JKG− := JKGΠ
− −m2Π+ =Π−JKG −m2Π+ (F17)

=

ˆ
d4p

[
Θ(−p0) p · p−m2

]
|p〉〈p| . (F18)

Consider next what happens when we introduce a new observer O′ sitting in a reference frame R′ whose
4D coordinates x ′ are connected with those of O via the mapping (11). Due to the explicit covariant
structure of (43), in the new reference frame the general solutionΨKG(x) is replaced by the new function

Ψ ′
KG(x) = ΨKG(Λ

−1x) , (F19)

which corresponds to the identity (51) which at the level of the correspondence (40), leads to equation (50)
of the main text. To verify that the same holds for the positive (negative) solutions as well, the important
observation is that these functions do not mix under Lorentz transformations. Specifically one can verify that
Ψ ′

KG(x) still maintain the same structure of (F2),

Ψ ′
KG(x) = Ψ ′+

KG (x)+Ψ ′−
KG (x) , (F20)

with new positive and negative energy terms

Ψ ′±
KG (x) =

ˆ
d3p

(2π)3/2
e∓iEpt+i⃗p·⃗xψ ′(±)( p⃗) , (F21)

that are associated with those of O via the same coordinate change of (F19), i.e.

Ψ ′±
KG (x) = Ψ±

KG(Λ
−1x) . (F22)

For instance assuming Λ to represent a boost along the x direction (i.e. t ′ = γ(t− vx), x ′ = γ(x− vt), y ′ = y,

and z ′ = z) we get ψ
′(±)( p⃗) = ψ(±)(γ(p1 ± vEp),p2,p3))

γ(Ep±vp1)
Ep

which shows the independence ofΨ ′+
KG (x)

(Ψ ′−
KG (x)) fromΨ−

KG(x) (resp.Ψ
+
QM(x)). An important consequence of the property (F22) is that it implies

that we can drop the negative energy terms in equation (F2) without affecting the Lorentz invariance of
equation (43) hence ensuring that also the non explicitly covariant equation (F8) yields Lorentz covariant
solutions (this is exactly what we need to show that equation (50) also applies in the special case where we
focus on the positive (negative) solutions of the KG equation (43)).

We now briefly comment on the physical significance of the negative energy solutions of the
Klein–Gordon (KG) equation. Remember that the wave equation (□−m2)f(t, r⃗) = 0 has solutions with
spacetime dependence f= g(⃗r− v⃗t)+ h(⃗r+ v⃗t), with v⃗ the propagation velocity (both signs of the velocity
must appear in the general solution as the wave equation contains only v2). One can expand g and h in terms

of plane waves ei⃗k·(⃗r±⃗vt) ≡ ei(⃗k·⃗r−ωt), where the frequency ω ≡∓k⃗ · v⃗ can be positive or negative depending on
the propagation direction of the wave with respect to the wave vector k⃗. With an appropriate choice of sign in
the definition of ω, one can consider a negative-frequency wave as an advanced solution to the wave equation
and a positive-frequency wave as a retarded solution, since these solutions can be obtained from one another
by time reversal. Usually the advanced solution is discarded (set to zero) appealing to some vague notion of
causality, e.g. [75], but more careful analyses [76, 77] interpret the retarded solutions as a prediction based
on past boundary conditions and the advanced solutions as a retrodiction based on future boundary
conditions. Then the choice of which frequency sign to choose (or even a combination of the two [77]) is
dictated purely by the available boundary conditions. Clearly, past boundary conditions are more useful in
general. One can discard the negative frequency solutions by imposing, in addition to the KG equation of
motion, an additional physical condition of positive-energy (as was done in the main text).

In closing we comment on the ‘negative probability densities’ that historically have plagued the
acceptance of the KG equation (notoriously, it was discovered, but then discarded, by Schrödinger [78, 79]).
This problem ensues from the observation that, if one defines a four-current for the KG wave-function ψ1 as
jµ = ψ∗

1∂
µψ1 −ψ1∂

µψ∗
1 , it does satisfy a conservation equation ∂µjµ = 0, but the density j0 (representing a

putative probability density) is not positive definite (and should be interpreted as a charge density). It is not
such j0 that should take the role of a probability density of the particle position at a certain time, but rather
|ψ1(x)|2 that is the probability density of finding a particle-detection event at spacetime position x= (t, x⃗): a
joint probability for both the position and for time, rather than a conditioned probability for the position,
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given the time. As such, |ψ1(x)|2 is a scalar quantity, not the temporal component of a 4-current, and needs
not satisfy any current conservation. Moreover, it is obviously always positive definite. In contrast, in the case
of the Dirac field, one can build also a (conserved) probability current (see below).

Appendix G. Constraint operator for the Dirac model

The Dirac equation for the spinor wave-functionΨQM(⃗x,σ|t) of single particle is a collection of the four
differential equations reported in equation (44). By taking the 4D Fourier transform we can turn them into
the equivalent form

4∑
σ=1

(γσ ′,σ · p−m δσ ′,σ)Ψ̃QM(p,σ) = 0 , (G1)

with

Ψ̃QM(p,σ) =

ˆ
d4x

4π2
exp[ip · x]ΨQM(⃗x,σ|t) . (G2)

Contracting the index σ ′ of (G1) with the matrix elements of the invertible matrix γ0, we can further modify
equation (44) into the identity

4∑
σ=1

Mσ ′,σ(p)Ψ̃QM(p,σ) = 0 , (G3)

where

Mσ ′,σ ′ ′(p) :=
4∑

σ=1

γ0σ ′,σ(γσ,σ ′ ′ · p−m δσ,σ ′ ′) , (G4)

are elements of the self-adjoint (yet not positive) 4× 4 matrix

M(p) :=

(
(p0 −m)1 −σ⃗ · p⃗
−σ⃗ · p⃗ (p0 +m)1

)
, (G5)

with eigenvalues

λσ(p) := p0 − E(σ)p , (G6)

where given Ep =
√
|⃗p|2 +m2 we introduced the quantities

E(σ)p :=


−Ep for σ = 1,3 ,

Ep for σ = 2,4 ,
(G7)

Equation (G1) can hence be interpreted as an eigenvector equation which, for any assigned p, selects
eigenvectors ofM(p) which are associated with null eigenvalues (λσ(p) = 0). More precisely castingM(p) in
diagonal form

Mσ ′,σ ′ ′(p) =
4∑

σ=1

uσ ′,σ( p⃗) λσ(p) u
∗
σ ′ ′,σ( p⃗) , (G8)

with uσ,σ ′( p⃗) the elements of a 4× 4 unitary matrix (see the end of the section for explicit expressions), it
follows that the most generic solution of equation (G1) can be written as

Ψ̃QM(p,σ) =
4∑

σ ′=1

δ(p0 − E(σ
′)

p )ασ ′( p⃗) uσ,σ ′( p⃗) , (G9)

with ασ ′( p⃗) arbitrary functions, i.e.

ΨQM(⃗x,σ|t) =
ˆ

d3p

(2π)
3
2

ei⃗p·⃗x
4∑

σ ′=1

uσ,σ ′( p⃗)√
2π

e−iE(σ
′)

p t ασ ′( p⃗) , (G10)
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at the level of the 3D+1 spinor wave-function.
Expressed as in equation (G1) it is easy to verify that, at the level of the GEB distribution

|ΨQM〉=
∑4

σ=1

´
d4xΨQM(⃗x,σ|t)|x,σ〉, the Dirac equation (44) corresponds to the identity JD|ΨQM〉= 0

with JD as in equation (47). Indeed, to show this, we need the fact that thanks to (4) Ψ̃QM(p,σ) provides the
4D-momentum spinor wave-functions expansion of |ΨQM〉, i.e. |ΨQM〉=

∑4
σ=1

´
d4p Ψ̃QM(p,σ)|p,σ〉. As

mentioned in the main text the operator JD is not a self-adjoint: this is a direct consequence of the fact that
for all i= 1,2,3 the matrices γi are anti-Hermitian (indeed (γi)† =−γi = γi), while γ0 is Hermitian, so that
J†D =

∑4
µ=1(γ

µ)†Pµ −m=
∑4

µ=1 γµPµ −m 6= JD. Notice however that exploiting the fact that γ0γ0 = 1,

and γ0γi =

(
0 σi
σi 0

)
, we can write

JD = γ0J(H)D , (G11)

where given the matrix elementsMσ ′,σ ′ ′(p) of equation (G4) J(H)D is the self-adjoint operator

J(H)D :=
∑

σ ′,σ ′ ′

ˆ
d4p Mσ ′,σ ′ ′(p)|p,σ ′〉〈p,σ ′ ′| . (G12)

Equation (48) finally follows by using equation (G8) observing that the vectors

|ϕσ(p)〉 :=
4∑

σ ′=1

uσ ′,σ( p⃗)|p,σ ′〉 , (G13)

obey generalized orthonormal conditions (49) thanks to the unitary properties of the matrix elements
uσ ′,σ( p⃗): indeed with this choice equation (G12) becomes

J(H)D =
4∑

σ=1

ˆ
d4p λσ(p) |ϕσ(p)〉〈ϕσ(p)| , (G14)

and hence

KD = J†DJD =
(
J(H)D

)2
=

4∑
σ=1

ˆ
d4p λ2σ(p) |ϕσ(p)〉〈ϕσ(p)| . (G15)

We conclude reporting explicit expressions for the |ϕσ(p)〉:

|ϕ1(p)〉 :=
1√
2

√
1− m

Ep
|p, s1(n̂)〉−

|⃗p|√
1− m

Ep

|p, s2(n̂)〉

 , (G16)

|ϕ2(p)〉 :=
1√
2

√
1+

m

Ep
|p, s1(n̂)〉+

|⃗p|√
1+ m

Ep

|p, s2(n̂)〉

 , (G17)

|ϕ3(p)〉 :=
1√
2

√
1− m

Ep
|p, s3(n̂)〉+

|⃗p|√
1− m

Ep

|p, s4(n̂)〉

 , (G18)

|ϕ4(p)〉 :=
1√
2

√
1+

m

Ep
|p, s3(n̂)〉−

|⃗p|√
1+ m

Ep

|p, s4(n̂)〉

 , (G19)

where for n̂ := p⃗/|⃗p|, |p, sσ(n̂)〉 are the orthonormal vectors

|p, s1(n̂)〉 :=
1√
2

(√
1+ n3 |p,1〉+ n1 + in2√

1+ n3
|p,2〉

)
, (G20)

|p, s2(n̂)〉 :=
1√
2

(√
1+ n3 |p,3〉+ n1 + in2√

1+ n3
|p,4〉

)
, (G21)
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|p, s3(n̂)〉 :=
1√
2

(√
1− n3 |p,1〉− n1 + in2√

1− n3
|p,2〉

)
, (G22)

|p, s4(n̂)〉 :=
1√
2

(√
1− n3 |p,3〉− n1 + in2√

1− n3
|p,4〉

)
. (G23)

Observe that via equation (G13) these identities implicitly define the matrix elements uσ,σ ′( p⃗): for instance
we get

u1,1( p⃗) =
1

2

√
1− m

Ep

√
1+ n3 , u2,1( p⃗) =

1

2

√
1− m

Ep

n1 + in2√
1+ n3

, (G24)

u3,1( p⃗) =−1

2

|⃗p|√
1− m

Ep

√
1+ n3 , · · · (G25)

If one appropriately normalizes the state, one can recover, just as for Bosons, a scalar probability density
for each spinor component, since the Dirac equation implies the KG one:
(γµpµ +m)(γνpν −m) = (pµpµ −m2)14. In addition, one can, as usual, also introduce a conserved
4-current jµ ≡Ψ†(x)γ0γµΨ(x) = Ψ̄(x)γµΨ(x), whereΨ is the column vector of the conditioned spinors in
the position representation, namely the column of position-representation amplitudes. Since the zeroth
component j0 =Ψ†(x)Ψ(x) is positive definite, it can be given a probabilistic interpretation as the
conditional probability density of finding a particle at position x⃗, given that time is t, where x= (t, x⃗).

Appendix H. Extra observations on the multi-event QM/GEB correspondence

This section is dedicated to making explicit some technical aspects of the QM/GEB correspondence in
multi-event scenario discussed in section 3.2. We start by showing that the vector (54) is uniquely defined;
then we verify that equation (61) gives the right prescription to compute the evolution of a QM 3D+1 spinor
wave-function under Lorentz transformations.

H.1. Uniqueness of the the multi-event QM/GEB correspondence
Here we prove that the vector (54) is uniquely defined.

To begin with recall that, for all t, the QM spinor 3D wave-functionΨ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) of n

particles can be expressed as

Ψ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) = 〈⃗x1,σ1; . . . ; x⃗n,σn|ψ[n]

QM(t)〉 , (H1)

where

|ψ[n]
QM(t)〉=

∑
σ1,...,σn

ˆ
d3x1 · · ·

ˆ
d3xnnΨ

[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t)|⃗x1,σ1; . . . ; x⃗n,σn〉 , (H2)

is the associated wave-vector, and |⃗xj,σj〉 the generalized 3D position eigenvectors of the j-th particle.
Recalling then that we are dealing with non-interacting systems, we can now write

|ψ[n]
QM(t)〉= U1(t)⊗ ·· ·⊗Un(t)|ψ[n]

QM(0)〉 , (H3)

where for j= 1, . . . ,n, Uj(t) stands for the QM unitary transformation that rules the free evolution of the j-th

particle. Equation (H3) leads to equation (52) by expressing |ψ[n]
QM(0)〉 in terms of an arbitrary local basis for

the n particles, i.e.

|ψ[n]
QM(0)〉=

∑
ℓ⃗

αℓ⃗ |ψ
(ℓ1)
QM 〉⊗ · · · ⊗ |ψ(ℓn)

QM 〉 , (H4)

and using the identities

Ψ
(ℓj)
QM(⃗xj,σj|t) := 〈⃗xj,σj|Uj(t)|ψ

(ℓj)
QM〉 . (H5)

Replacing this into (53) and (54) we finally arrive to

|Ψ[n]
QM〉=

∑
σ1,...,σ2

ˆ
d4x1 · · ·

ˆ
d4xn|x1,σ1; . . . ;xn,σn〉〈⃗x1,σ1; . . . ; x⃗n,σn|U1(t1)⊗ ·· ·⊗Un(tn)|ψ[n]

QM(0)〉,
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which explicitly shows that |ΨQM〉 carries no functional dependence upon the specific choice of the local

basis {|ψ(ℓ)
QM〉}ℓ used in (H4).

As an application of the above identities we report here the special cases of particles obeying to the
positive energy KG equation and the Dirac equation. For the KG equation, setting

ψ̃
[n]
QM( p⃗1, . . . , p⃗n) :=

∑
ℓ⃗αℓ⃗ψ

(ℓ1)( p⃗1) · · ·ψ(ℓ2)( p⃗n) and replacing (F3) into equation (52) we get

Ψ
[n]
QM(⃗x1, . . . , x⃗n|t) =

ˆ
d3p1

(2π)3/2
· · · d3pn

(2π)3/2
ei( p⃗1 ·⃗x1+···+p⃗n ·⃗xn)e−i(Ep1+···+Epn )t ψ̃

[n]
QM( p⃗1, . . . , p⃗n) , (H6)

with associated 4D GEB spinor wave-function

Ψ
[n]
QM(x1, . . . ,xn) =

ˆ
d3p1

(2π)3/2
· · · d3pn

(2π)3/2
ei( p⃗1 ·⃗x1+···+p⃗n ·⃗xn)e−i(Ep1 t1+···+Epn tn) ψ̃

[n]
QM( p⃗1, . . . , p⃗n) . (H7)

Similarly for the Dirac equation from equation (G10), setting

ϕ[n]( p⃗1,σ
′
1; . . . ; p⃗n,σ

′
n) :=

∑
ℓ⃗

αℓ⃗ ασ ′
1
( p⃗1) · · ·ασ ′

n
( p⃗n) , (H8)

we get

Ψ
[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) =

ˆ
d3p1

(2π)3/2
· · · d3pn

(2π)3/2

4∑
σ ′
1 =1

uσ ′
1 ,σ1

( p⃗1)√
2π

· · ·
4∑

σ ′
n=1

uσ ′
n ,σn( p⃗n)√
2π

ei( p⃗1 ·⃗x1+···+p⃗n ·⃗xn)

× e−i(E
(σ ′

1 )
p1

+···+E
(σ ′

n )
pn )t ϕ[n]( p⃗1,σ

′
1; . . . ; p⃗n,σ

′
n) . (H9)

which at the level of GEB corresponds to

Ψ
[n]
QM(x1,σ1; . . . ;xn,σn) =

ˆ
d3p1

(2π)3/2
· · · d3pn

(2π)3/2

4∑
σ ′
1 =1

uσ ′
1 ,σ1

( p⃗1)√
2π

· · ·
4∑

σ ′
n=1

uσ ′
n ,σn( p⃗n)√
2π

ei( p⃗1 ·⃗x1+···+p⃗n ·⃗xn)

× e−i(E
(σ ′

1 )
p1

t1+···+E
(σ ′

n )
pn tn) ϕ[n]( p⃗1,σ

′
1; . . . ; p⃗n,σ

′
n) . (H10)

H.2. Lorentz transformations
Equation (H1) represents the (time-dependent) 3D+1 spinor wave-function that an observer O would
assign to describe the state of the n particles on his reference frame R. Assuming the dynamical evolution is
relativistic consistent (e.g. the particles obey KG or Dirac dynamical equations), we are now interested in
determining the spinor 3D wave-function a second observer O′ sitting in the reference frame R′ with 4D
coordinates x ′ that are linked with those of R as in equation (11) will assign to such a state. Since particles are
independent (i.e. no interactions are present in the model), this can be done using the decomposition (52)

forΨ[n]
QM(⃗x1,σ1; . . . ; x⃗n,σn|t and applying the single-particle transformation (51) to each individual term

Ψ
(ℓ)
QM(⃗x,σ|t). Accordingly, we can write

Ψ
[n] ′
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) =

∑
σ1,...,σn

S−1
σ ′
1 ,σ1

(Λ) · · ·S−1
σ ′
n ,σn

(Λ)

×
∑
ℓ⃗

αℓ⃗ Ψ
(ℓ1)
QM (Λ−1x1,σ

′
1)|t1=t · · ·Ψ(ℓn)

QM (Λ−1xn,σ
′
n)|tn=t , (H11)

whose r.h.s. exactly matches with the one of equation (61) of the main text. It is important to stress that while

not immediately evident from the resulting expressionΨ
[n] ′
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) does not depends upon the

specific choice of the local decomposition used in (H4). One easy way to verify this is e.g. to use the fact
that (54) does not depends on such a choice (see previous section) and the fact that thanks to equation (61)
we can write

Ψ
[n] ′
QM(⃗x1,σ1; . . . ; x⃗n,σn|t) = 〈x1,σ1; . . . ;xn,σn|Ψ[n] ′

QM〉
∣∣∣
t1=···=tn=t

= 〈x1,σ1; . . . ;xn,σn|U⊗n
Λ |Ψ[n]

QM〉
∣∣∣
t1=···=tn=t

, (H12)

where we made use of the invertion formula (55) and of equation (60).
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