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Distortion allocation varying with wavelength in lossy compression of hyperspectral imagery is investigated, with the aim of
minimizing the spectral distortion between original and decompressed data. The absolute angular error, or spectral angle mapper
(SAM), is used to quantify spectral distortion, while radiometric distortions are measured by maximum absolute deviation
(MAD) for near-lossless methods, for example, differential pulse code modulation (DPCM), or mean-squared error (MSE) for
lossy methods, for example, spectral decorrelation followed by JPEG 2000. Two strategies of interband distortion allocation are
compared: given a target average bit rate, distortion may be set to be constant with wavelength. Otherwise, it may be allocated
proportionally to the noise level of each band, according to the virtually lossless protocol. Comparisons with the uncompressed
originals show that the average SAM of radiance spectra is minimized by constant distortion allocation to radiance data. However,
variable distortion allocation according to the virtually lossless protocol yields significantly lower SAM in case of reflectance spectra
obtained from compressed radiance data, if compared with the constant distortion allocation at the same compression ratio.

1. Introduction

Hyperspectral imaging has dramatically changed the ratio-
nale of remote sensing of the Earth relying on spectral diver-
sity. Rather than a sequence of spectral bands, each imaging
the observed scene in a continuous interval of wavelengths
of the electromagnetic radiation, a hyperspectral image is
a collection of spectra, each measuring the electromagnetic
properties of a pixel, that is, of a portion of the imaged scene,
as shown in Figure 1. Under this perspective a hyperspectral
pixel may be regarded as a sampled version of the continuous
electromagnetic spectrum of the material, or mixture of
materials, which is present in the elementary footprint of
the instrument. Alternatively, a pixel spectrum is an element
of a vector space, whose geometrical dimension is equal to
the number of available spectral bands. This new approach
has opened new horizons to remote sensing applications
traditionally performed by photo interpreters.

Since technological advances in imaging spectrometry
have led to acquisition of data that exhibit extremely high
spatial, spectral, and radiometric resolution, the definition
of quality of the data is changed. The quality of a mul-
tispectral image may be related to its perceivable features,

like sharpness, regarded as geometrical, and color contrast.
All instrument impairments, like noise and aliasing, and
structured artifacts, in general, should be kept below the level
of human perception. Conversely, the quality of a hyperspec-
tral image lies in its potentiality of discriminating different
materials having similar spectra. This requirement implies
that pixel spectra should be enough finely sampled and clean
from noise to capture small emission/absorption phenomena
occurring within the scene. Thus, a valuable hyperspectral
image should exhibit a high spectral resolution, at least in
an interval of wavelengths of interest, and especially a high
signal-to-noise ratio (SNR) [1].

When the hyperspectral imaging instrument is placed on
a satellite, data compression is crucial. To meet the quality
issues of hyperspectral imaging, differential pulse code
modulation (DPCM) is usually employed for either lossless
or near-lossless data compression. The latter indicates that
the decompressed data have a user-defined maximum abso-
lute error, being zero in the lossless case. Several variants
exist in prediction schemes, the most performing being
adaptive [2–6]. Lossless compression thoroughly preserves
the information of the data but allows a moderate decrement
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Figure 1: Hyperspectral remote sensing of the earth.

in transmission bit rate to be achieved. Compression ratios
attained even by the most advanced schemes are lower
than three, with respect to PCM coding of raw data [7–9].
Thus, the bottleneck of downlink to ground stations may
severely hamper the coverage capabilities of modern satellite
instruments. If strictly lossless techniques are not employed,
a certain amount of information of the data will be lost.
However, such statistical information may be mostly due to
random fluctuations of the instrumental noise. The rationale
that compression-induced distortion is more tolerable, that
is, less harmful, in those bands, in which the noise is higher,
constitutes the virtually lossless paradigm [10, 11].

In the literature, there exist several distortion measure-
ments, some of which are suitable for quality assessment of
decompressed hyperspectral data: mean square error (MSE),
maximum absolute deviation (MAD), a.k.a. peak error, and
SNR. The problem is that they measure the distortion
introduced in the data, but cannot measure the consequences
of such a distortion, that is, how the information loss
would affect the outcome of an analysis performed on
the data [12]. In applications of hyperspectral remote
sensing, average and maximum angles between original and
decompressed pixel vectors are usually adopted to measure
the dissimilarity of spectra belonging to different materials.
Under this perspective, spectral angle might be useful to
measure the distortion of lossy compressed hyperspectral
data. The main advantage of distortion metrics like spectral

angle and spectral information divergence [13] is their
insensitiveness to spatial variability of spectral signatures,
and hence, their suitability for identification/classification of
materials from their reflectance spectra. As a matter of fact,
discrimination of materials is one of the most challenging
task, in which hyperspectral data reveal their full potentiality.
In fact, if remote sensing imagery is analyzed with the goal
of recognizing broad classes of land cover, like vegetation,
bare soil, urban, ice, and so forth, also data acquired by
multispectral instruments are effective. Instead, if more
specific tasks are concerned, such as minerals identification
or geological inspections, especially on coastal waters, in
order to identify the presence of chlorophyll, phytoplankton,
or dissolved organic materials, the high spectral resolution
captured by hyperspectral instruments is beneficial.

2. Satellite Hyperspectral Processing Chain

Since the pioneering mission Hyperion launched in 2001
[14] has opened new possibilities of global Earth coverage,
hyperspectral imaging from a satellite platform has pro-
gressively grown in interest up to motivate the upcoming
missions PRISMA [15] and EnMAP [16, 17].

The hyperspectral processing chain consists of three
segments: satellite segment, ground segment, and user seg-
ment. Figure 2 highlights the main tasks performed by each
segment. The on-board instruments produce data in raw
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Figure 2: Flowchart of satellite hyperspectral processing chain. Compressed data are decoded before successive processing.

format. Raw data are expressed by means of digital counts
from the analog-to-digital converter (ADC), and their value
is diminished by the dark signal averaged in time before the
acquisition. Raw data are compressed, with or without loss,
and downloaded to the ground station(s), where the data
are decompressed, converted to radiance values, and cor-
rected for instrumental effects (e.g., striping of push-broom
sensors). The calibrated data are geometrically corrected for
orbital effects, georeferenced, and possibly orthorectified. All
geometric operations subsequent to calibration have little
impact on the quality of data products. Eventually, data
products are stored in archives, generally with highly redun-
dant formats, for example, double precision floating point
per pixel radiance value, with spectral radiance measured in
W · sr−1 ·m−2 · nm−1.

When the data are distributed to users, they are usually
converted to fixed-point formats (e.g., 16 bits per compo-
nent, including a sign bit). This conversion may lead to
a loss of information, especially because the radiance unit
in the fixed-point format is μW · sr−1 · m−2 · nm−1. A
finer radiance step would be 10 times smaller and would
require 20 bits instead of 16. Fixed-point radiance data
are compressed, possibly with loss, and delivered to users.
After decompression of radiance data, solar irradiance and
atmospheric transmittance are usually corrected by users to
produce reflectance spectra that may be matched to library
spectra in order to recognize and classify materials. At this
step, it is important to investigate the effects of a lossy
compression of radiance data in terms of changes in spectral
angle with respect to reflectance spectra obtained from
uncompressed radiance data. At least for spectral analysis
relying on measurements of spectral angle, the impact of a
lossy compression of radiance data will be more predictable
if angular errors of decompressed spectra will be minimized,
for a given compression ratio.

3. Distortion Measurements

Before discussing the virtually lossless protocol, let us review
some of the most widely used distortion measurements for
single-band data, that is, one band of a hyperspectral image.

3.1. Radiometric Distortion. Let 0 ≤ g(x, y) ≤ g f s denote an
N-pixel digital image, and let g̃(x, y) be its possibly distorted
version achieved by compressing g(x, y) and decoding the
outcome bit stream. Widely used distortion measurements
are reported in the following.

Mean absolute error (MAE), or L1 norm of pixel error,

MAE = 1
N

∑

x

∑

y

∣

∣g
(

x, y
)− g̃

(

x, y
)∣

∣; (1)

mean squared error (MSE), or L2
2,

MSE = 1
N

∑

x

∑

y

[

g
(

x, y
)− g̃

(

x, y
)]2; (2)

root MSE (RMSE), or L2,

RMSE =
√

MSE; (3)

signal-to-noise ratio (SNR)

SNR(dB) = 10 · log10

g2

MSE + 1/12
; (4)

maximum absolute deviation (MAD), or peak error, or L∞,

MAD = max
x,y

{∣

∣g
(

x, y
)− g̃

(

x, y
)∣

∣

}

. (5)

In (4), MSE is incremented by the variance of the integer
round-off error starting from floating values, to handle the
limit case, when MSE = 0. Thus, SNR (4) will be upper
bounded by 10 · log10(12 · g2).

3.2. Spectral Distortion. Given two spectral vectors v and
ṽ both having L components, let v = {v1, v2, . . . , vL} be
the original spectral pixel vector vz = gz(x, y) and ṽ =
{ṽ1, ṽ2, . . . , ṽL} its distorted version obtained after lossy
compression and decompression, that is, ṽz = g̃z(x, y). Anal-
ogously to the radiometric distortion measurements, spectral
distortion measurement may be defined.
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The spectral angle mapper (SAM) denotes the absolute
value of the spectral angle between the couple of vectors:

SAM(v, ṽ) � arccos
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v, ṽ
〉

‖v‖2 ·
∥

∥ṽ
∥

∥

2

)

, (6)

in which 〈·, ·〉 stands for scalar product. SAM can be
measured in either degrees or radians.

Alternatively, SAM (6) may be either averaged on pixel
vectors, or the maximum may be taken instead, as more
representative of spectral quality. Note that radiometric
distortion does not necessarily imply spectral distortion.
Conversely, spectral distortion is always accompanied by a
radiometric distortion, which is minimal for SAM when the
couple of vectors has the same Euclidean length (L2).

4. The Virtually Lossless Compression Protocol

The term virtually lossless, introduced by three of the authors
in 2000 [10], indicates that the distortion originated by
compression does not affect the results of analysis, either
manual or automated, performed on data that have been
compressed. Besides the trivial case of strictly lossless com-
pression, which is a particular case of the virtually lossless one,
the rationale is that since all data are more or less affected
by noise, any compression-induced distortion should appear
as a negligible additional amount of noise that is statistically
independent of the intrinsic noise of the data. Furthermore,
the first order distributions of compression errors should be
such that the overall probability density function (PDF) of
the noise corrupting the decompressed data, that is, intrinsic
noise plus compression-induced noise, closely matches the
noise PDF of the original data. This requirement may hold
if the difference between uncompressed and decompressed
data exhibits a peaked and narrow PDF without tails,
as it happens for near-lossless techniques, whenever the
user-defined MAD is sufficiently smaller than the standard
deviation σn of the background noise. Both MAD and σn
are intended to be expressed in either physical units, for
calibrated data, or as digital counts otherwise. Therefore,
noise modeling and estimation from the uncompressed data
becomes a major task to accomplish a virtually lossless
compression [3]. The instrumental noise may also be
signal dependent, as it happens with hyperspectral images,
especially for new-generation instruments [18].

The key to achieve a compression preserving the scientific
quality of the data for remote sensing is represented by the
following twofold recommendation.

(1) Absence of tails in the PDF of the error between
uncompressed and decompressed image, in order to
minimize the ratio MAD/RMSE, which is equivalent
to minimizing MAD for a given RMSE.

(2) MSE has to be lower by one order of magnitude (i.e.,
it has to be less than 0.1 times, or more than 10 dB
lower) with respect to the variance of background
noise σ2

n . By considering the image SNR, a distortion
increase of 0.1 times implies a SNR decrement of
about 0.4 dB.

In certain cases, however, it may become mandatory to
increase compression ratios above the values typical of the
strictly virtually lossless protocol. To adjust the compression
ratio, a real-valued positive scale factor q is introduced, such
that the quantization step size of the nth band is given by

Δn = q · σn. (7)

If q ≤ 1, a strictly virtually lossless compression is achieved,
since the compression-induced quadratic distortion is less
than one tenth of the intrinsic noisiness of the data.
Otherwise, if q > 1, compression is wide-sense virtually
lossless, because distortion is larger, but properly allocated
among the spectral bands.

5. Experimental Results

5.1. Virtually Lossless Compression of Radiance Data. The set
of calibrated data is a sequence collected by AVIRIS in 1997
on the Cuprite Mine, NV, test site. Both spectral radiance data
and reflectance data were available in uncompressed 16-bit
format. The noise standard deviation σn of the test sequence
Cuprite has been measured by means of the scatterplot
method [19] and is shown in Figure 3. What immediately
stands out is that the noise standard deviation distribution
with the wavelength roughly follows the trend of a typical
spectral irradiance of the sun, unlike the raw data where
this effect does not occur. The explanation is that spectral
dampers aimed at flattening the spectral response of the
sun are built up within the instrument in order to avoid
saturation of the 14-bit ADC [9]. Hence, not only the
noise, but also the signal is spectrally constant in raw data.
When raw data are calibrated, they are multiplied by band-
scaling gains, roughly following the shape of solar irradiance,
in order to restore the physical correspondence between
pixel values and spectral radiance. Thus, the noise standard
deviations are multiplied by the same weights to yield the
trend in Figure 3.

Figure 4 shows quantization step sizes for three different
values of q. To compare virtually lossless compression with a
unique quantizer for the whole data cube, the step size of the
latter, yielding the same compression ratio as the former, is
the odd integer round-off of the geometric mean of the step
sizes in (7) [20].

An experiment has been performed using JPEG2000,
which is an MSE-bounded encoder. To achieve a 3D decorre-
lation also for JPEG2000, a spectral decorrelation (a single
spectral predictor with 3 coefficients, adaptively calculated
for each band) has been adopted prior to JPEG2000. This
decorrelator is a simplified version of the algorithm proposed
in [7]. Figure 5(a) highlights that JPEG2000 coding of
spectrally decorrelated data (SD + J2K) is far preferable
to plain JPEG2000, which is unable to remove spectral
redundancy. JPEG2000 has been run by setting the rate
parameter for each band equal to the desired rate. That
is equivalent to obtaining a (roughly) constant MSE on
every band and an MSE variable from band to band. The
simple scheme adopted for lossy compression is slightly
less performing than the best transform-based techniques
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Figure 3: Measured noise standard deviation of AVIRIS 1997 radi-
ance data.
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Figure 4: Quantization step sizes of radiance data.

recently proposed for lossy compression of hyperspectral
data [21, 22]. This fact can be inferred by considering Figure
5(a) of [7] and Figures 8 and 1 of [21, 22], respectively,
which report PSNR and SNR of AVIRIS’97 Cuprite sequence.
The difference in dB between PSNR and SNR for this data
set is about 20 dB, as can be deduced by extrapolating the
representative straight line for high bit rates at the y-axis (0
bpp). The consequence is that at 1 bpp the performances
of [7] and [21, 22] are comparable. However, the goal is
not to attain the ultimate compression, but to evidence
what happens to spectral distortions when an MSE-bounded
scheme is used in conjunction with a spectrally variable
distortion allocation.

Figure 5(b) reports SAM versus bit rate for the MSE-
bounded encoder (SD + J2K). SAM is higher if distortion is
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Figure 5: (a) Lossless compression of hyperspectral radiance data
(AVIRIS’97) based on JPEG 2000, with and without spectral
decorrelation; (b) SAM between original and compressed spectra
varying with bit rate: MSE constant with wavelength versus MSE
varying with wavelength.

allocated band by band following the noise variance. Thus, if
one aims at minimizing the SAM between original and lossy
compressed radiance data, the virtually lossless strategy is not
recommended.

5.2. Impact of Radiance Data Compression on Reflectance
Spectra. Analysis procedures of hyperspectral vectors are
usually performed on reflectance data, especially when
the goal is identification of materials by comparing their
remotely sensed spectra with sample spectra extracted from



6 Journal of Electrical and Computer Engineering

reference spectral libraries. Whenever measured spectra are
to be compared to laboratory spectra, the radiance data are
converted into reflectance, for example, by means of the
following simplified formula:

ρ(λ) = R(λ) · π
I(λ) · T(λ)

, (8)

in which ρ(λ) is the reflectance, I(λ) is the solar irradiance
on ground, T(λ) is the atmospheric transmittance, and R(λ)
is the at-sensor radiance, all functions of wavelength λ.
Distortions introduced by compression on radiance data
will be amplified or attenuated depending on the values
of the product I(λ) · T(λ)/π. The impact of atmospheric
corrections on the distortion of lossy compressed radiance
data has been recently investigated [23]. The main result
is that compression should better be applied to reflectance
data, rather than to radiance data, according to both
SNR and SAM comparisons. Unfortunately, compression
of reflectance data for distribution to users is unfeasible,
because inversion of the atmospheric model is a part of the
application performed by users.

In the case of the AVIRIS Cuprite’97 scene, data sets for
both radiance and reflectance are available. So, it is possible
to recover the pointwise transfer function for conversion from
radiance units to reflectance values. In this way, it is easy
to evaluate how distortions introduced by compression into
radiance data would affect reflectance spectra. Figure 6 shows
quantization step sizes of radiance and their extrapolation
to reflectance, both varying with wavelength. Compression
is virtually lossless with q = 1. Apart from absorption
regions and boundary regions of the instrument, in which
the equivalent step size is set to zero because it is undeter-
mined, the trend with wavelength of reflectance step sizes is
somewhat flat and quite different from the trend of radiance
steps, because of (8). Analogously to Figure 4, equivalent
quantization step sizes of reflectance values (rescaled to the
same range as radiance values) are shown in Figure 7.

Figure 8 highlights the impact of lossy compression of
radiance data on reflectance spectra, reporting SAM between
spectra obtained from lossless and lossy compressed radiance
data. The trends of Figure 5 are swapped, and wavelength-
variable distortion allocation provides lower SAM.

A typical application of hyperspectral remote sensing is
identification of materials from measured reflectance spectra
using reference spectral libraries, where reflectance spectra
of hundreds of materials have been classified for reference
use. SAM is usually employed to measure distances between
measured and reference spectra. For each material, or class
of materials, for example, clays, two thresholds may be
experimentally obtained, An example is reported in Table 1.
The column below the symbol “=” presents the values of
angle between two spectra, such as the spectra which are
actually belonging to the same material. Analogously, the
symbol “ /= ” identifies the values of angle corresponding to
definitely different materials. The column labeled with “?”
reports the uncertainty interval. The thresholds in Table 1
are typical values relative to AVIRIS reflectance spectra and
noise-free laboratory spectra of specimens [24]. Thus, it
is expected that the average SAM error of the virtually
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lossless case (0.2 degrees at 2.12 bit per pixel per band, or
equivalently a 7.5 compression ratio, as shown in Figure 8)
has practically no influence on the decision, because the
uncertainty interval, 4◦ − 6◦ in the case of uncompressed
spectra, would be enlarged by 0.2◦ in average (10%) and by
0.4◦ (20%) in the worst case, corresponding to the maximum
angular error.
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Table 1: SAM threshold values for library spectra of clays.

= ? /=
SAM ≤ 4◦ 4◦ < SAM ≤ 6◦ 6◦ < SAM

6. Conclusions

This work has highlighted that it is possible to achieve a
significant reduction in the spectral angle between original
and lossy compressed reflectance pixel spectra by allocating
more distortion to those bands that are intrinsically noisier,
when the calibrated radiance data are lossy compressed
for archival and/or distribution to users. That is implicitly
achieved by adopting the virtually lossless compression
protocol, without affecting the average target bit rate or
compression ratio. The rationale is that the SAM originated
from compression should be negligible, compared to the
SAM deriving from spectral differences of materials, when
the decompressed radiance data are converted to reflectance
spectra.
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