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A B S T R A C T   

Garment quality and preciousness depend on the type of textile fiber used in the manufacturing. The softer and 
rarer the animal fiber, the more expensive the textile garment. The cheapest clothes are made by mixing precious 
fibers such as cashmere with common ones such as sheep wool. To stop clothing counterfeit and quality forgery, 
checking the type of animal fibers used in textile industries is pivotal. More in general, law regulations require 
that the declared composition of a tissue meet some standards of quality that have to be assayed carefully by 
expert operators. Microscopy techniques such as Scanning Electron Microscopy (SEM) and Light Microscopy 
(LM) are commonly used to discriminate between textile animal fibers. However, analysis by SEM and LM de
pends on skilled experts called to judge, one-by-one, each fiber. This process is slow, cumbersome, and may be 
inaccurate, especially if the textile fibers share similar morphologies. Furthermore, the chemical treatments 
required by some textile processes can heavily modify the morphology of the fibers making more difficult to get 
correct results. In this work, the textile animal fibers are characterized by a polarization-sensitive, stain-free, 
Digital Holographic Microscopy (DHM) technique. In particular, we show how cashmere and wool fibers differ 
according to their anisotropy properties, e.g., birefringence. The optical characterization of textile fibers through 
the Jones matrix formalism allowed us extracting polarization-dependent DH features capable of accurately 
classifying three types of animal microfibers using a machine learning approach. Such promising results smooth 
the path towards an automatic, rapid, and objective identification process for textile industry and standardiza
tion purposes.   

1. Introduction 

Animal fibers are commonly used in textile industry for clothing 
production. Usually, most of garments are made of wool yarn or of sheep 
breeds yarn because of some morphological properties, such as the tiny 
scale of the fiber. Wool scales promote heat retention, moisture ab
sorption and feltability [1,2]. The type and the rarity of animal fiber 
indicates the garment preciousness and authenticity. 

For instance, cashmere, mohair, camelid fibers are considered top- 
quality fibers, while wool is less rare and precious [3,4]. Cashmere is 

a luxury animal fiber due to its rarity and softness, whose market is 
considered the top-level in the textile sector [5]. 

In some cases, to lower the production and in turn the selling costs, 
cashmere is mixed with sheep wool or other poorer quality fibers, 
altering the quality and the pureness of the garment and fueling the 
fraudulent market. However, the correct percentage composition of a 
textile product should be determined and declared by the producer and 
sellers. 

Therefore, the discernment between cashmere and other animal fi
bers like fine wool is an important task for the textile production 
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industry with strong influences on the market [6,7]. 
According to a report by the Organization for Economic Co-operation 

and Development (OECD) and the European Union Intellectual Property 
Office (EUIPO), counterfeit and pirated goods, including textiles, 
accounted for up to 3.3 % of global trade in 2016 [8]. This amounted to 
an estimated value of $509 billion USD, with the textile and apparel 
industry being one of the most affected sectors. The report also high
lighted that the value of counterfeit textile and apparel products seized 
by customs authorities increased by 80 % between 2008 and 2016, 
indicating the growing prevalence of counterfeit textiles in the global 
market. Hence, we believe that developing new methods to automati
cally judge cashmere pureness is essential for safeguarding consumer 
interests, protecting economic interests, fostering innovation, ensuring 
legal compliance, and promoting environmental and social re
sponsibility within the cashmere industry and beyond. 

Moreover, from a circular economy perspective and taking into ac
count that another source of fibers waste is represented by unwanted 
clothes and end-of-life textile products in the textile supply chain, it 
would be important to be able to recycle them. In this case, sorting is a 
fundamental step to separate and recycle textile materials correctly, on 
the basis of their fibers composition [9]. 

Based on that, methods to differentiate different type of fibers, in 
particular the animal hair fibers from each other are important to 
guarantee garment quality and adherence to standards. 

Usually, thickness or diameter characterize natural and animal fi
bers. The high ratio between the length and the diameter of a fiber is a 
peculiarity of the final manufacturing product [2]. The smaller the 
diameter of a fiber, the more precious the fiber. Cashmere and Merino 
wool diameters measure about 10–18 µm [10], while coarse wool di
ameters measure more than 20 µm [7]. 

However, cashmere and wool share similarities in their external 
shape, and the characteristic diameters may vary significantly from the 
nominal ones. Thus, relying on the sole morphological characterization 
is not always the most reliable approach. 

As we anticipated previously, fiber scales are pivotal to discriminate 
animal fibers, like cashmere and wool. Wool surface roughness, which 
differs on the basis of the typical cuticle scales of animal fibers, is used to 
differentiate wool fibers from other natural and synthetic ones [1,2]. 
There are different scale patterns, such as mosaic, petal, chevron, which 
can help in discrimination. 

However, the manufacturing process can modify the scale layer of a 
fiber. Therefore, the sole roughness evaluation could be misleading in 
identifying fiber types. Microscopy methodologies are mostly used in 
this field. 

The traditional microscopic methods to identify animal fibers, such 
as Scanning Electron Microscopy (SEM) and Light Microscopy (LM), 
involves the evaluation of the scale patterns, the diameters, the profile of 
the fiber, the scale thickness, and the frequency of the scales of the fibers 
[11,12]. 

LM is considered as the primary method due to its accessibility and 
affordability, and allows observing fiber morphology, fiber surface 
roughness, and fiber inner structure (shape, pigmentation and medul
lation) [13,14]. SEM permits the analysis of scale patterns and in 
particular of the cuticle’s cells [12,15-17], especially in discerning wool 
and cashmere fibers [18]. Wortmann et al. identified wool contamina
tion in cashmere with SEM analysis [19,20]. 

Despite the widespread use of LM and SEM methodologies, some 
limitations are evident. For instance, LM and SEM can suffer from 
operator dependence, long times of analysis, and fiber morphology 
impact (e.g. fibers with similar morphology or damaged can influence 
the classification accuracy). 

Moreover, Transmission Electron Microscope (TEM) detected some 
blends of fibers with wool [4], different in scale heights. Atomic force 
microscopy was used to study the morphological roughness variations 
between treated and untreated cashmere fibers [21]. 

Another discriminative characteristic is the presence of calcium 

oxalate crystals on some animal fibers. Indeed, sheep breeds usually get 
in touch with plants present in their natural environment, which may 
release crystals on their coat [22]. Polarized light microscopy (PLM) 
distinguished wool, cotton and silk fibers from textile bast fibers thanks 
to the fibrillary orientation of calcium oxalate crystals [22]. More in 
general, PLM is a powerful instrument in detecting anisotropic fibers. 

However, the discrimination of animal hair fibers by means of un
aided microscopy observation is laborious and time consuming, as fibers 
have to be identified one by one relying on the operator expertise and 
skills. 

To assess the composition of a mixture, the standard requires that at 
least 1000 fibers shall be examined for each sample and 100 measure
ments of fibers diameter made for each fiber type [23,24]. This pro
cedure can take several days of an expert’s work. Visual identification 
suffers from lack of automatization, and sometimes accuracy. When fi
bers share similar characteristic traits, morphology and surface rough
ness or when the fiber morphological characteristics are modified by 
textile processing, the correct identification becomes more difficult. 
Besides, in all the cases of visual analysis, the operator fatigue has to be 
considered, which reduces the identification accuracy after several 
hours of continuous work. For this reason, the procedure of microscopy 
observation for a garment has to be split into various shorter identifi
cation sessions, which further dilates the times for the quality 
assessment. 

Monoclonal techniques, protein and lipids analysis methods, 
methods based on molecular markers [21,25-29] have been used to 
improve the quality of differentiation of textile fibers. For instance, the 
keratin extracted from cashmere, yak and wool, analyzed by liquid 
chromatography coupled with electrospray mass spectrometry (LC/E
SI-MS) after digestion with trypsin, shows peptidic markers specific for 
each fiber [28,30]. This method resulted useful to assess garments 
quality, having high specificity and sensitivity and showing high level of 
reliability and in the quantification of cashmere, yak and wool fibers 
[28-30]. 

The proteomic analyses have a limit of fiber detection around 5 % 
[31], which is a good result. However, it is not reliable in identifying 
fibers in similar hybridized species [11]. 

Moreover, differential scanning calorimetry (DSC) was used to study 
the thermal behavior of animal fibers, in particular to distinguish 
cashmere from cheaper fibers (e.g., yak and wool) [32]. The discrimi
nation among these fibers by DSC is possible only at qualitative level and 
only for pure sample, not for blends. Moreover, the textile industrial 
treatments modify fiber DCS traces, negatively influencing the results of 
the analysis [32]. 

Regarding the chemical characterization of microscopic samples, 
spectroscopy is the most suitable and reliable methodology [33]. Fourier 
Transform Infrared Spectroscopy (FTIR) offers a non-destructive method 
for identifying chemical compositions and structural features of fibers 
based on their vibrational spectra [34]. FTIR identified the different 
composition of amino acids contained in the keratin proteins of animal 
fibers, e.g. cashmere and wool [34]. The intensity of FTIR spectra of 
cashmere fibers differs from wool fibers spectra, and also cashmere of 
different origins has shown non-negligible spectral variations. Further
more, the infrared spectral (IRS) analysis examined the major absorption 
intensity peaks of wool and acrylic fibers [35]. 

Recent advancements in spectroscopic techniques, such as Raman 
spectroscopy and Near-Infrared Spectroscopy (NIRS), offer rapid and 
accurate analysis of fiber properties, including fiber type, moisture 
content, and fiber blend ratios [36,37]. Sun et al. tested NIR on real 
market samples and achieved an accuracy of 93.33 % for cashmere 
textiles and 96.60 % for cashmere–wool blended textiles [37]. 

Using NIRS was used to extract several features, e.g., the mean and 
the standard deviation of fiber diameter and curvature, to assess the 
quality of alpaca fibers [38]. 

A random forest classification identified different textile fibers 
(wool, polyamide and silk) using the reflectance-FT-IR (r-FT-IR) spectra 
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[39]. 
However, spectroscopy methodologies often entail costly instru

mentation, are time-consuming in calibration steps and can suffer from 
interference by the surrounding environment. 

Besides, these methods require special preparation of the sample and 
are not applicable in case of different animal fibers blends, because they 
have very similar chemical characteristics showing identical spectra. 

Here, an alternative, all-optical, approach is presented to classify 
cashmere and fine wool fibers. We use a custom-built polarization-sen
sitive Digital Holographic (DH) microscope to characterize the animal 
fibers in a stain-free manner, i.e., avoiding dyes and chemical treat
ments. DH [40] is a Quantitative Phase Imaging (QPI) technique that 
provides morphometrical information of the specimen [41]. The 
coherent light used in the DH optical system is modulated by the probed 
sample. After passing through the object, the phase of the complex field 
carries object information, being a function of the thickness and 
refractive index of the object. The DH microscope records a hologram, i. 
e., a pattern of sample-modulated fringes, that undergoes a numerical 
reconstruction process to gather the object complex amplitude [38]. 
This can be refocused in post-processing and provides two information 
channels, i.e., the amplitude and the phase-contrast maps of the object in 
sharp focus [41]. Introducing sensitivity to the polarization of light al
lows adding new information channels in space-multiplexed fashion. 
Especially, polarization-sensitive DH allows quantifying polarization 
changes induced by the object [42,43]. 

In this context, the birefringence-related information can contribute 
to discriminate microfibers [44,45]. In particular, synthetic and natural 
microfibers have been distinguished by using the polarization-sensitive 
DH system [46,47]. 

Behal et al. characterized in depth the polarimetric patterns of nat
ural and synthetic microfibers adopting the Jones matrix formalism and 
used all-optical polarization-based features for classification purposes 
[46]. Specifically, the use of the Jones formalism enabled the full 
analysis of parameters associated to the object-dependent Jones matrix 
eigenmodes. In addition, Valentino et al. adopted a machine learning 
pipeline to identify each synthetic and natural microfiber in a 
polarization-sensitive DH flow-cytometer system [47]. 

In this work, we use the polarization-sensitive DH (PS-DH) micro
scope and measure all-optical features that characterize the animal fi
bers, i.e., morphological, refractive index variations, Jones features and 
other polarization-sensitive DH information channels (e.g. birefrin
gence) to classify cashmere and wool fibers. This additional information 
can aid in more accurate discrimination of fibers compared to both LM 
and SEM. PS-DH does not require staining or labeling of fibers. This 
preserves the natural characteristics of fibers and eliminates the need for 
additional sample preparation steps. PS-DH has the potential to provide 
higher throughput imaging compared to SEM, which often involves 
time-consuming sample preparation and imaging procedures. Further
more, PS-DH can capture large-area images in a single acquisition, 
enabling rapid screening and simultaneous analysis of multiple fibers. 
Our approach is aimed at developing an automatized identification 
process that could be used in textile industry and could facilitate the lab 
analysis during quality assays. The combination of polarization-sensitive 
DH system and machine learning is proved to furnish accurate classifi
cation, which paves the way to the objective and rapid discrimination of 
animal hair fibers disengaged from the skills and the unaided meticulous 
labor of experienced operators. It is worth pointing out that compact 
polarization-resolved holographic microscopes exist [48]. In the next 
future, such intelligent technology could be embedded in production 
lines for in situ quality inspections in textile industry. 

2. Materials and methods 

2.1. Experimental setup 

Recently, we developed a polarization-sensitive DH microscope in 

transmission (Fig. 1) [46,47]. Here, the linearly polarized laser beam 
(Sapphire, SF, wavelength λ=532 nm) is spatially filtered, collimated, 
and divided into the object and reference arms. The object arm contains 
the sample, which is imaged by a microscope objective (MO1; 5×/0.12) 
into a camera plane (CAM, UI 2280SE-M-GL, 2448×2048 square pixels, 
3.45 µm pixel size) with a lateral magnification 8.6×. 

Furthermore, two slightly tilted reference beams carrying the linear 
horizontal and linear vertical polarizations are generated at the output 
of the reference arm. The present microscope objectives MO2 and MO3 
(both 5×/0.10) partially compensate for inherent phase curvature 
induced by the microscope objective MO1. The reference and the object 
arms subsequently rejoin via a beam splitter (BS) placed before the 
camera. The formed hologram contains multiplexed information about 
the horizontal and vertical linear polarization components of the probed 
object. The spacing and orientation of the spatial carriers for the two 
reference beams are set to avoid crosstalk between the horizontally 
polarized component, vertically polarized component, and the zero 
order in the Fourier domain. Thus, demodulation of the multiplexed 
hologram provides each contribution independently. Further descrip
tion of the setup can be found in [46,47]. 

The measurements were realized with the sample pipetted in a Petri 
dish. Then, two holographic snapshots of the same sample were taken. In 
one hologram, the object illumination was polarized diagonally, while 
anti-diagonally polarized illumination was set for the second snapshot 
hologram. Especially, three animal fibers were studied separately by this 
approach. As a result, several hundreds of hologram pairs for each fiber 
class were stored. Considering one fiber as one observation, we collected 
n1=442 observations for class 1, n2=221 for class 2, and n3=396 for 
class 3. In the following paragraph, we detail the sample preparation and 
the DH reconstruction process. 

2.2. Sample preparation 

One sample of pure Cashmere (mean diameter = 15.56 µm, herein 
referred to as class 1) and two samples of Wool (mean diameter = 24.29, 
herein referred to as class 2 and 15.53 µm, herein referred to as class 3) 
are used. The purity of samples and fibers mean diameter are checked by 
SEM. Animal hair fibers samples are cut into snippets of 0.4 mm length 
by the microtome device, according to the IWTO 58–00 standard, before 
analysis. 

Distilled water and absolute anhydrous ethanol were used for sus
pending the fibers (Carlo Erba, Italy). Firstly, the glassware adopted for 
making the suspensions was accurately washed with distilled water/ 
ethanol 1:1 (v/v) solution and sonicated for 5 min in an ultrasonic bath 

Fig. 1. Sketched polarization-sensitive DH setup. Half-wave plate (HWP), mi
croscope objective (MO), mirror (M), beam splitter (BS), camera (CAM), 
polarizing beam splitter (PBS). 
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(Elma Transsonic T310). Secondly, the cleaned glassware was covered 
using aluminium foil. So, as suggested by Mossotti et al. [49], these two 
preliminary steps with minor modifications were done to avoid 
contamination of fibers present in the air. Glass containers were used for 
the sample suspensions. The cut fibers were suspended in 10 ml of 
distilled water. Then 5 ml of a 1:1 (v/v) distilled water/ethanol solution 
was added and the suspensions of the three different animal fibers were 
obtained. Specifically, two wool suspensions at a concentration of 0.15 
% (w/w) and 0.19 % (w/w), as well as a cashmere suspension at a 
concentration of 0.07% (w/w) were prepared. The ethanol used in the 
preparation of suspensions allowed us to remove fibers that remained on 
the glass wall of the sample containers. Finally, the suspensions were 
strongly mixed for 5 min on a small shaker (IKA MS 3 basic) at 3000 rpm. 

2.3. Polarization-sensitive DH principle 

The polarization-resolved optical system allows observing the po
larization state changes induced by the object. The hologram, H, pro
duced by the interference between the arbitrarily polarized object beam, 
BO, and two orthogonally polarized reference beams BR1 and BR2 can be 
expressed as: 

H = |BO + BR1 + BR2|
2 =

(
|BO|

2
+ |BR1|

2
+ |BR2|

2
)
+ BO(BR1

∗ + BR2
∗)+

+ BO
∗(BR1 + BR2)

(1)  

where the assumption of orthogonality BR1BR2
∗ = BR1

∗BR2 = 0 was 
used. The term |BO|

2
+ |BR1|

2
+ |BR2|

2 represents the zeroth order of 
diffraction. When the reference beams BR1 and BR2 are polarized linearly 
horizontally and linearly vertically, the +1 diffraction orders BOBR1

∗ and 
BOBR2

∗ carry information of horizontal and vertical polarization com
ponents of BO, respectively. Meanwhile, BO

∗BR1 and BO
∗BR2 are complex 

conjugated replicas. Hence, both valuable diffraction orders are sepa
rately filtered out and demodulated. The corresponding complex am
plitudes are back-propagated to the object best-focus plane at distance 
dF by applying the angular spectrum propagation method [50,51]. Thus, 
the horizontal (CW1) and the vertical (CW2) complex amplitudes of the 
object are recovered. Especially, the difference between the horizontal 
and vertical phase allows quantifying the birefringence-related features 
induced by the object [43]. 

In a more general approach, the polarization transformation induced 
by the probed object can be described by its Jones matrix, M [47,50-52]. 
The output Jones vector Joutput after passing the sample can be expressed 
by the following formula: 

Joutput = MJinput (2)  

where Jinput represents polarization of the beam illuminating the object. 
Thus, when Jinput is set and the Joutput is measured, the Jones matrix M 
may be retrieved. Let D and A subscripts indicate diagonal and anti- 
diagonal linearly polarized beams. Hence, the assumed Jones vectors 
can be written in the form: 

JD,input =
1̅
̅̅
2

√

[
1
1

]

, JA,input =
1̅
̅̅
2

√

[
1
− 1

]

(3)  

JD,output =

[
CWD1
CWD2

]

, JA,output =

[
CWA1
CWA2

]

(4) 

After some calculations, considering Eq.2, the Jones matrix M is 
obtained as: 

M =

[
M11

M12

M21

M22

]

=
1̅
̅̅
2

√

[
CWD1 + CWA1

CWD2 + CWA2

CWD1 − CWA1

CWD2 − CWA2

]

(5) 

Consequently, the Jones matrix M, allows to analyze the eigenvectors 
(EVs) and eigenvalues (EDs) of the object. Because the EVs represent 
polarization ellipses they can be characterized by the major axis 

orientation angle τ and the ellipticity angle ε [46]. 
The used linearly polarized laser has a long coherence length (in 

order of tens of meters). The polarization state in the independent 
reference arms and the signal arm is finely set by polarizing beam 
splitters (extinct ratio 1:1000 according to the manufacturer). Indeed, 
calibration measurements presented in the recent article [53] demon
strated the correct Jones-matrix reconstruction over the whole consid
ered field of view. Moreover, the presence of fully polarized light in the 
optical setup was proved in initial calibrations in the reference [46], 
where parameters of the output polarization ellipse were measured by a 
compensator-based technique. Such technique is based on detection of 
the sharp intensity extinction (‘null-intensity’), which can be achieved 
only for fully polarized light. If the light was only partially polarized 
there would remain transmitted light reducing the visibility of the in
tensity extinctions, which was not observed during calibrations. In 
summary, the sharp null intensity detection and accurate Jones matrix 
reconstruction demonstrate that the light in the setup is fully polarized, 
with no significant depolarization. 

2.4. Features analysis 

To discriminate the three types of animal fibers, we considered the 
calculated amplitudes and phases of CWD1 and CWD2. Then, five con
ventional morphological features have been directly extracted from the 
estimated object binary support, i.e., the diameter, the area, the major 
axis of the fiber shape, the eccentricity, and the orientation of the 
sample. Moreover, we extracted polarization parameters of EV1 and EV2, 
including the ellipticity angles ε1, ε2 and orientation angle τ1 minus the 
local shape, and the orientation angle τ2 minus the orthogonal local 
shape [46]. 

2.4.1. Jones features 
For each textile fiber, the Jones matrix characteristics were used. 

From these parameters, 80 ‘Jones features’ have been extracted. In 
particular, we calculated the mean value, the standard deviation, the 
median, the mode, the kurtosis, the skewness, the mean absolute devi
ation and the median absolute deviation of the inner product between 
eigenvectors (|EV1⋅ EV2|), i.e., the degree of polarization homogeneity, 
the absolute value of the ratio between eigenvalues (| ED1

ED2
|), i.e., the 

anisotropic absorption, the phase delay between eigenvalues (∠ ED1
ED2

), the 
ellipticity angles (ε1, ε2) and the major axis orientation of the first 
eigenvector τ1 minus the local shape, and the second eigenvector τ2 
minus the orthogonal local, real and imaginary parts of the ratio be
tween eigenvalues (real(ED1

ED2
), imag(ED1

ED2
)), and the rescaled phase dif

ference between eigenvalues (∠ ED1
ED2

⋅ λ
2πm), where λ is the wavelength of 

the light source and m the minor-axis length of the fiber shape, i.e., the 
birefringence. An in-depth description of the physical meaning for these 
parameters is provided in [46]. 

2.4.2. Other polarization-based DH features 
Considering the amplitude map |CWD1|, phase ∠CWD1 map, and 

mutual phase-difference map ∠ CWD1
CWD2 

of the textile fibers, the first order 
and the textural features have been extracted to study the image histo
gram properties and the gray-tone spatial dependencies [54-56]. 

Specifically, among the first order features: the mean value, the 
standard deviation, the interquartile range, the root mean square, the 
entropy, the skewness and the kurtosis have been evaluated for |CWD1|, 
∠CWD1 and ∠ CWD1

CWD2 
maps of each sample involved in the measurements, 

reaching 21 features. The textural features used in this analysis are 
calculated from the gray level co-occurrence matrix (GLCM) [55] and 
the Gray Level Run Length Matrix (GLRLM) [56], totalizing 69 GLCM 
and 132 GLRLM. GLCM and GLRLM reveal how the pixel gray levels 
distribute in the neighborhood for a fixed image direction and the run of 
the pixel gray levels in different directions, respectively. The GLRLM is 
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analyzed changing the direction in 4 angles (0◦, 45◦, 90◦ and 135◦). 
A complete description of these features is reported in ref. [47]. 

2.4.3. Features balancing 
The total number of features used in the classification process is the 

sum of the previously mentioned features, i.e., 307, schematized in 
Table1. 

However, the dataset obtained from the measurements is not 
balanced due to a different number of samples of the three classes found 
during the experimental campaign. Class 1, class 2 and class 3 respec
tively have n1=442, n2=221 and n3=396 samples. Of course, a proper 
machine learning analysis should be ideally performed on a balanced 
dataset. To fix the balancing issue, we applied the Synthetic Minority 
Oversampling Technique (SMOTE algorithm) [57] to synthetize the 
features of the minority classes until obtaining the same numerosity of 
samples of the majority class, i.e., 442. This technique selects a type of 
feature and randomly draws new class samples considering feature 
classes examples in the neighborhood. Each class has 442 samples, 
collecting 1326 samples for 307 different features. 

2.4.4. Features importance 
First, the whole dataset of features has been used for the classifica

tion task. However, a certain degree of redundancy is expected consid
ering the correlation between e.g., the features extracted directly from 
the polarization channels readout and the Jones matrix features. Hence, 
two strategies of feature selection have been tested independently, 
which are expected to improve the classification performance [58]. 
Firstly, a channel-based selection is applied. The Minimum Redundancy 
and Maximum Relevance algorithm (MRMR) [59] is used for each 
channel. The MRMR selection orders the sets of features starting from 
the less redundant features that have the maximum power of prediction 
with respect to the labels. Thus, the MRMR algorithm assigns an 
‘importance weight’ to each feature. The distribution plot of the 
‘importance weights’ will decrease from left to right and will have a 
drop-in score that determines the features to select. Secondly, a PCA 
selection [60] is applied to the whole dataset. 

2.5. Classification pipeline 

The 3-class classification has been performed by means of the Mat
lab® Classification Learner tool that allowed us comparing the perfor
mance of different classifiers. We split the dataset into training and 
testing subsets with a partition of 70 % and 30 % respectively. A 10-fold 
cross-validation has been carried out [61]. We trained several families of 
classifiers and tested them three times, independently: using the whole 
set of features, using the channel-based MRMR selected subset of fea
tures, and using the feature subset selected by PCA. 

The classifiers families are the Linear, the Discriminant, the Trees, 
the Naïve Bayes, the SVMs (Support Vector Machines) and the KNNs (k- 
Nearest Neighbors) [61,62]. Classification performance have been 
evaluated considering the validation accuracy of the training dataset 
through the k-folding test, the test accuracy, and the confusion matrices 
[62] calculated after classifying the testing dataset. 

In addition, the performance of binary classification tasks has been 

evaluated. In other words, we considered the case in which one needs to 
discriminate only class 1 vs. class2, class 1 vs. class 3 or class 2 vs. class 
3. These cases can be relevant in industry practice when there is a hy
pothesis for a certain textile composition that needs to be confirmed or 
denied by quality assessments. We carried out the features selection and 
performance evaluation similarly to the 3-class discrimination task. 

3. Results and discussions 

As previously discussed, quality assessments require a visual mi
croscopy approach to distinguish different types of animal hair fibers 
and quantify their amount by naked-eye counting, which is a cumber
some and time-consuming process. The features to which experienced 
operators pay attention are usually the morphological ones, such as the 
diameter; besides, the surface roughness may characterize them when 
observed under light microscopes [13-22]. However, some animal fibers 
have similar distributions of shape or roughness parameters, and their 
identification becomes prone to errors. To overcome limitations and 
automatize the discrimination process, thus fastening the analysis, here 
we prove that the use of a polarization-sensitive DH system adds enough 
information channels to help discriminating animal fibers. 

We acquired and reconstructed several polarization-multiplexed 
holograms of the three classes in a Petri dish, as was described previ
ously. In particular, we measured each class alone in order to obtain a 
labelled dataset for training purposes. In principle, a first trivial clus
tering of the three types could be performed relying on the mere 
diameter of the microfiber. A bar-plot of the diameter for the three 
classes is shown in Fig. 2. Class 2 has a larger median value than the 
medians of the other two classes. However, the large standard deviation 
implies a non-negligible overlap with the other classes, i.e., numerous 
fibers belonging to class 2 have diameters comparable to the typical 
diameters of the other two classes. Besides, class 1 and class 3 mostly 
overlap and cannot be trivially clustered. This means that a robust 
analysis based on the sole diameter is unfeasible. Similar considerations 
could be made analyzing the other morphological features. 

This morphological interclass homogeneity is the main responsible 
factor for misclassifications occurring when mere morphological in
spections are carried out under the optical microscope. 

To enforce the classification analysis, we added the polarization- 
based features to the morphological descriptors. In particular, for each 
class the 2D maps of the major axis orientation angles τ1,τ2 and the 
ellipticity angles ε1,ε2were calculated for both eigen-polarizations EV1 
and EV2 (Fig. 3), respectively. 

Table 1 
Polarization-based DH features scheme.  

Channels First order GLCM features GLRLM features 

|CWD1| amplitude map 7 23 44 
∠CWD1 phase map 7 23 44 

∠
CWD1

CWD2 
phase map 7 23 44 

Morphological 
features 

5 

Jones features 80 
Total features 307  

Fig. 2. Diameters boxplot. The 3 classes of animal fibers have been plotted with 
respect to their diameter. The line of the boxplot stands for the median of the 
diameters, and the bars indicate the standard deviation. The blue circles are the 
outliers. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Moreover, inspection of the |CWD1|, ∠CWD1 and ∠ CWD1
CWD2 

maps for each 
class suggests these information channels could gather additional 
interclass diversity, which is in principle useful for classification scopes. 
Jones matrix features and the other polarization-based holographic 

features are extracted according to a previous text. 
The PCA was performed on the 307 features dataset. The first three 

principal components are scattered in the plot in Fig. 4 to confirm the 
features tendence to cluster with respect to the class labels. The 3 PCA 
components in the 3D scatter plot do not cluster well the 3 classes, 

Fig. 3. Polarization-sensitive DH channels for the three types of wool microfibers. The Jones formalism allowed to evaluate the major axis orientation angles (τ1, and 
τ2) and the ellipticity angles (ε1 and ε2) of both eigenvectors. The amplitude and phase-difference maps are the images with the |CWD1|, ∠CWD1, and ∠ CWD1

CWD2 
notations. 
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meaning that this preliminary approach is not the most appropriate or a 
robust classification. 

Moreover, the PCA in Fig. 4 describes the complexity of the classi
fication problem, which cannot be trivially handled by multi-parameter 
clustering. For this reason, we adopted a machine learning approach. 

To empower the training step, the whole features dataset was 
balanced as described in Section 2.4.3. After partitioning the training and 
test subsets (70% vs 30 %), the training set was uploaded in the Clas
sification Learner tool [61] to train all the classifiers. We used a 10-fold 
cross-validation to assess and compare the performance of the classifier 
models. The highest validation accuracy determined the classifier to test 
for the 3-class classification task, which was the 89.3 % of the quadratic 
SVM [61]. The test accuracy was 85.9 % and the confusion matrix of the 
test is reported in Fig. 5. 

Of course, redundancy is expected considering the large number of 
features involved and the correlation between them according to the 
formulation in Section 2. 

The features selection adopted in this work is the MRMR algorithm 
that eliminates the redundancy and enhances the most important fea
tures. We applied the MRMR algorithm to the different feature subsets, i. 
e., morphological, Jones features, |CWD1| features, ∠CWD1 features and 
∠ CWD1

CWD2 
features, resulting in a supervised cluster selection. In Table S1 of 

the Supplementary Information, the 22 selected descriptors are 
summarized. 

The MRMR selected dataset underwent the machine learning pipe
line applied for the whole dataset. The Cubic SVM has shown the highest 
validation accuracy, i.e., 82.5 %, reaching a test accuracy of 82.6 %. The 
new accuracies are lower than the accuracies obtained with the entire 
features dataset. Thus, the MRMR selection did not improve the classi
fication performance, meaning that the used selection approach is not 
suitable for the dataset under analysis. Therefore, a PCA selection with 
an explained variance of 95 % [61] has been enabled on the Classifi
cation Learner tool before starting the training. The tool considered the 
first 33 principal components as selected features. 

The best classifier in this case was the Fine Gaussian SVM that 
reached a validation accuracy of 89.1 % and a test accuracy of 89.4 %. 
The PCA selection achieved better results in terms of accuracy. In Fig. 5, 
the confusion matrices show other performance metrics for all classes, 
such as the Predictive Positive Values (PPV), the False Discovery Rate 
(FDR), the true positive rate (TPR) and the false negative rate (FNR) 
[61]. 

Comparing the PPV percentages of the MRMR selected dataset with 

the whole dataset of features, the PPV of class 2 is higher in the MRMR 
classification than in the whole features classification, i.e., 92% vs 89.8 
%, meaning that the MRMR selection is more precise for class 2 
discrimination. However, the MRMR selected dataset furnishes the 
lowest PPV percentages for class 1 and class 3. The highest PPV and TPR 
percentages result from the PCA selected dataset, around the 90 %. 

Noteworthy, to train a classifier, we first imaged the single fibers 
belonging to the three classes alone. In this way the classifier learns the 
regions of decision and the values of the features to be associated with 
each single class. Then, as in typical machine learning problems, the 

Fig. 4. PCA plot on all extracted features. The PCA algorithm is applied on the 
whole dataset acquired. The first 3 principal components in the 3D scatter plot 
show the features weak capability of clustering the animal fibers. 

Fig. 5. Confusion matrices for the three-class discrimination task. The central 
matrix is the number of the occurrences of the true classes with respect to the 
predicted classes. The row summary reports the TPR and the opposite FNR. The 
column summary reports the PPV and the FDR [54]. 
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validation experiment is carried out to assess the classification perfor
mance. After this step, a testing experiment was blindly executed on the 
random single fiber (unknown by the classifier). Since the system images 
and judges each single microfiber alone, from the classifier standpoint 
there is no difference in having the sample physically mixed in the Petri 
dish (e.g. standard wool in cashmere yarn) or not (i.e. each population 
separately acquired). In our case, all the elements fall under the mi
croscope eye and are classified, thus the two cases coincide. 

In summary, reported results are very promising for automatic and 
accurate discrimination of animal hair fibers. In particular, the PCA- 
selected features set (33 principal components) outperformed the 
others using a fine gaussian SVM classifier. We adopted the machine 
learning pipeline applied in the 3-class classification case. Hence, for all 
classes combinations, the results of the binary classification with all 307 
DH features, the binary classification with the 22 MRMR-selected fea
tures and the binary classification with the PCA-selected features are 
reported in Table 2. In particular, the binary classifications in Table 2 
show high accuracies especially in discerning between class 1 and class 
3, reaching a 96 % validation accuracy with a quadratic SVM trained on 
all 307 extracted features. The best classifier for the binary classification 
of class 1 vs. class 2 is the cubic SVM with a 94.8 % validation accuracy 
using the PCA selected dataset (31 features), while class 2 is better 
classified against class 3 using all features in a cubic SVM, reaching a 
92.9 % validation accuracy. 

Here, it’s pertinent to discuss potential drawbacks of our method. 
Enhancing the robustness of our analyses would necessitate a larger pool 
of wool and cashmere samples, eliminating the need for dataset 
balancing algorithms like the SMOTE algorithm. This will be an essential 
step to validate the results across different datasets and conditions in 
order to ensure its generalizability and robustness in industrial appli
cations. Factors such as variations in sample surface roughness and fi
bers stress/bending could affect the polarization state of light passing 
through the sample, leading to potential inaccuracies in measurements. 
Another drawback is the system throughput. We performed in Petri 
measurements and for each sample the Jones formalism needs two ac
quisitions, i.e. diagonal and anti-diagonal, to extract the Jones param
eters. In future work, we aim to adopt polarization-sensitive DH in 
continuous flow to significantly increase throughput. Achieving single- 
shot polarization-sensitive DH acquisition is desirable for this purpose. 
One approach is to add an additional object arm to the interferometer to 
probe the sample simultaneously with diagonal and anti-diagonal linear 
polarizations, as demonstrated in ref. [63]. Another possibility is to use a 
polarization CMOS camera, as described in ref. [64]. Within 
manufacturing contexts, the integration of PS-DH microscopy into 
quality control procedures can be useful to uphold the authenticity and 
purity of cashmere products. This technology can provide precise dif
ferentiation between cashmere and wool fibers, thereby ensuring 
compliance with desired quality standards and deterring fraudulent 
activities associated with fiber blending. So far, these controls are out
sourced to research labs where experts analyze each single fiber using 
microscopic techniques (light optical microscopy and scanning electron 
microscopy). This procedure is very slow, cumbersome, and subject to 
human errors. Above all, it depends on the experience and skills of the 
person called to analyze and distinguish the fibers. To assess the quality 
of a garment, at least 600 fibers should be analyzed from almost three 
samples taken from the textile materials. This procedure requires long 
time of analysis with high costs and few samples (not more than 2) can 
be processed in a day of work. To implement our new approach in in
dustrial environment, an effort in system miniaturization and/or 
simplification should be done. The use of the recently introduced 
polarimetric CMOS camera will be an important step in this direction 
[64]. Also, the throughput should be increased to significantly improve 
the number of elements that can be judged in an industrial environment 
where timing is an essential requisite. 
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4. Conclusions 

The need of textile industries of verifying the quality of garments, 
especially of cashmere products, has led the scientific community of 
textile sector not only to find objective, accurate and reliable methods of 
animal fibers discrimination, but also to try to automatize and fasten the 
identification process. Here, we applied a polarization-sensitive DH 
microscope in multiplexed configuration to optically characterize the 
animal hair fibers and the way they change the polarization states of the 
light probe. We analyzed the complete dataset of polarization-based DH 
features, originating from the birefringence of animal fibers and the 
eigen decomposition of their Jones matrix, which represented an addi
tional value to the classical morphological features. The developed 
machine learning pipeline helped in classifying the 3 classes of fibers 
with high accuracy. In particular, the 33 PCA-selected features set 
reached a validation accuracy of 89.1 % training a Fine Gaussian SVM 
classifier, with PPV percentages of 87.2 %, 92 % and 88.9 % of class 1, 
class 2, and class 3, respectively. 

For the binary classification task, validation accuracy higher than 93 
% is reached using all 307 polarization-sensitive DH features to train 
quadratic and cubic SVM classifiers. 

It’s worth noting that the present study tackled a more complex and 
challenging problem compared to the work reported in ref. [39] where 
the Jones matrix formalism was sufficient to identify four different 
microplastic fibers and two natural ones in static recording mode, 
without the need of a machine learning implementation. Indeed, wool 
and cashmere fibers are much more similar each-others and the analysis 
of the feature’s space is not enough to distinguish the three classes 
analyzed by simple clustering operations. This aspect is apparent from 
the PCA analysis in Fig. 4. In order to achieve all-optical identification 
between cashmere and wool we needed to add complexity in respect to 
the previous study. The results obtained in the present work are prom
ising in terms of accuracy and reliability. Moreover, the use of 
pre-trained classifiers fastens the identification process, automatically 
contributing to the animal hair fibers quality check. A further future 
implementation would be the use of a more-complex imaging apparatus 
where the simultaneous recording of diagonal and antidiagonal illumi
nations will be possible, thus implementing the analysis on flowing 
samples at the aim to improve the throughput of the technology. Such 
improvement would realistically open to the industrial use of polariza
tion sensitive DH for garment quality test, applicable also in the 
end-of-life textile materials recycling process. 
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[46] Běhal J, Valentino M, Miccio L, et al. Toward an all-optical fingerprint of synthetic 
and natural microplastic fibers by polarization-sensitive holographic microscopy. 
ACS Photonics 2022;9(2):694–705. 
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