pH-dependent catalytic activity of Au and Pd-based hybrid cryogels by investigating the acid/base nature of the polymeric phase

Stefano Scurti¹, Giuseppe Proietto Salanitri^{1,3}, Tommaso Mecca⁴, Elena Rodríguez-Aguado⁵, Juan Antonio Cecilia⁵, Giusy Curcuruto³, Sabrina Carola Carroccio³, Daniele Caretti¹, Nikolaos Dimitratos^{1,2*}

¹ Industrial Chemistry "Toso Montanari" Department, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

² Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

³ Institute for Polymers, Composites and Biomaterials (IPCB) – CNR, Via Paolo Gaifami 18, 95126 Catania, Italy

⁴ Institute for Biomolecular Chemistry (ICB) - CNR, Via Paolo Gaifami 18, 95126 Catania, Italy

⁵ Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain

<u>*nikolaos.dimitratos@unibo.it;</u> Industrial Chemistry "Toso Montanari" Department, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

Cryogels characterization

Fig. S1. ATR-IR spectra of synthesized polymeric cryogels.

Fig. S2. Circular equivalent diameter distribution for the bare cryogels: p-HEMA (A), p-MAA (B) and p-AEMA (C).

Fig. S3. Swelling degree % for the bare cryogels.

Sample	m _w (g)	m _d (g)	SD%
p-HEMA	1.36	0.18	660
p-MAA	0.61	0.07	770
p-AEMA	1.52	0.12	1170

Characterization of hybrid metal-polymer nanocatalysts

Fig. S4. Comparison between ATR-IR spectra of bare and functionalized cryogels with Au e Pd nanoparticles for each sample prepared.

Fig. S5. SEM images before and after the impregnation phase (the images reported are related to the Au-based catalysts: (A-A') p-HEMA, (B-B') p-MAA, (C-C') p-AEMA.

Catalytic tests

Fig. S6. Adsorption test for the bare cryogels: 25 mL of 4–NP ($2 \cdot 10^{-4}$ M), 25 mL of NaBH₄ ($9.0 \cdot 10^{-3}$ M) at 25 °C and 500 rpm.

Fig. S7. Pseudo–first–order kinetic plot (A) and (B) conversion plot for Au-based hybrid catalysts. The reduction of 4–NP was carried out using 25 mL of 4–NP ($2 \cdot 10^{-4}$ M), 25 mL of NaBH₄ ($9.0 \cdot 10^{-3}$ M), 4 mg of catalyst at 25 °C and 500 rpm.

Fig. S8. Pseudo–first–order kinetic plot (A) and (B) conversion plot for Pd-based hybrid catalysts. The reduction of 4–NP was carried out using 25 mL of 4–NP (2·10⁻⁴ M), 25 mL of NaBH₄ (9.0·10⁻³ M), 4 mg of catalyst at 25 °C and 500 rpm.

Fig. S9. pH measures as a function of time starting from values in the range of the reaction pH for bare cryogels: p-MAA (A), p-HEMA (B) and p-AEMA (C).

Fig. S10. Evaluation of NaBH₄ decomposition time as a function of pH.

Fig. S11. Conversion plot related to p-MAA_Pd for the 4–NP reduction carried out using 25 mL of 4–NP (2·10⁻⁴ M), 25 mL of NaBH₄ (9.0·10⁻³ M), 4 mg of catalyst at different pH.