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Abstract

We study secure message-passing in the presence of multiple adversaries in modular networks. We
assume a dominant fraction of nodes in each module have the same vulnerability, i.e., the same entity
spying on them. We find both analytically and via simulations that the links between the modules
(interlinks) have effects analogous to a magnetic field in a spin-system in that for any amount of
interlinks the system no longer undergoes a phase transition. We then define the exponents 6, which
relates the order parameter (the size of the giant secure component) at the critical point to the field
strength (average number of interlinks per node), and ~, which describes the susceptibility near
criticality. These are found tobe 6 = 2and y = 1 (with the scaling of the order parameter near the
critical point given by 3 = 1). When two or more vulnerabilities are equally present in a module we
find 6 = 1andy = 0 (with 8 > 2). Apart from defining a previously unidentified universality class,
these exponents show that increasing connections between modules is more beneficial for security
than increasing connections within modules. We also measure the correlation critical exponent v,
and the upper critical dimension d,, finding that vd, = 3 as for ordinary percolation, suggesting that
for secure message-passing d. = 6. These results provide an interesting analogy between secure
message-passing in modular networks and the physics of magnetic spin-systems.

As our world becomes more interconnected, the need to pass messages securely has gained increasing
importance [1]. The recently developed applications of statistical physics of networks to anonymous browsing
networks [2] and secure message-passing [3] promises an interesting new direction of security based on network
topology. One application is internet routers, which form a physical communication network with nodes
belonging to specific countries that can eavesdrop on information passing through their routers [4]. If two nodes
wish to communicate securely and are not directly connected, they could split their messages into separate parts
and send each part along a different path such that no single adversary is present on every path. In this way, no
adversary would be able to decode the full message. Most likely, many nodes will not be able to communicate in
such a manner. For example, a node with only one link must inherently have all its information pass through
that link. Whether information can be transferred through such a communication network securely and
effectively is strongly dependent on the frequency and structural network properties of vulnerabilities e.g. nodes
belonging to a malicious country in the aforementioned example. In this paper we define the giant secure
component (GSC) as the fraction of nodes which are capable of communicating securely with one another using
the above described method of multiple paths. We note that any node in the GSC can securely communicate
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Figure 1. [llustration of the model. In order for two nodes to be securely connected, they must have at least one path between them
that avoids each color. In (a) we show the case of two colors, C = 2, with a single dominant color, C; = 1, in each module with

q = 0.8.In (b) we demonstrate the case of C; = 2 (total number of colors, C = 4) again with ¢ = 0.8. For this case each dominant
color occupies only g/C; = 40% of its respective module.

with any other node in the GSC. To find the GSC we generalize the framework of ‘color-avoiding percolation’
(CAP) [3, 5] to study a more realistic case of secure message-passing in a communication network with a given
community structure and different classes of adversaries (vulnerabilities).

In CAP each node in the network is assigned a specific color. A path between two nodes is considered to
avoid a particular color (i.e., is secure from that color) if no nodes of that color exist along the path (not counting
its endpoints). We find the set of nodes that can avoid a particular color by removing all nodes of that color,
determining the largest component of the remaining nodes, and then adding back those nodes of the removed
color that have a direct link to the largest component (see the example in the supplementary material available
online at stacks.iop.org/NJP/20/053001 /mmedia). If between two given nodes there is for each color at least
one path avoiding that color, the two nodes are considered securely connected. Equivalently, only nodes that can
communicate such that no single color exists on every path between them are considered secure.

Here we consider CAP on networks with given community structure, a realistic case for many networks
[6—14]. Continuing the above example of internet routers, in each country most of the routers presumably
belong to that country with a smaller number of routers belonging to other countries [3, 15, 16]. To study the
community structure we use the stochastic block model [17, 18], where each community is recognized as a
‘block’ in an adjacency matrix, and assign a certain color to dominate each module. This imposes correlations on
the distribution of colors in the network, naturally modeled as a modular network.

For simplicity, we demonstrate our model and results on a network with two communities having an internal
average degree k; and an external average degree” k. We begin by assuming (for simplicity but without loss of
generalization) that there are two colors with a single dominant color (C; = 1) occupying a fraction g nodes of each
module and the remaining fraction 1 — g being of the other color (see figure 1(a))'’ . This same framework can be
used to describe networks where the links are correlated by color (see SM). To identify the GSC, we find the
standard giant component under the removal of nodes of a single color, and then add back nodes of the removed
color which have a direct link to the largest component (reflecting the assumption that the endpoints of every path
are secure) [3]. This is done for each color and then the intersection of all these components is the GSC.

9 . . L.
In the supplementary material we consider the case of more than two communities.

In the supplementary material we discuss the more general case of different values of q in each module, which shows similar qualitative
results.
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Figure 2. Normalized size of the GSC, S, as a function of dominance, g, for a network with 2 modules having Erdds—Rényi structure, a single
dominant color in each module, fixed k; = 4, and increasing levels of k. The lines, representing theory according to equations (1) and (2),
show excellent agreement with simulations (symbols) on systems of size N = 10° nodes. For the case k; = 0, we observe a phase transition as
the level of dominance reaches the critical point . = 0.75, while for non-vanishing kz no phase transition occurs. Due to the model symmetry
for 2 modules, we also observe a transitionat 1 — g, = 0.25.

To solve our model analytically, we adopt the generating function framework defining g,(z) = > p,z* as
the generating function of the variable k with p, being the probability of a node having k links [19, 20]. For our
model we have generating functions for the internal and external connections defined by 8, @) and 80, @)
respectively. For the case of 2 colors, we must find: u; o, the likelihood that a link fails to avoid the color
dominant in its module; u ;, the likelihood that the link fails to avoid the color dominant in the other module;
and u 1, the likelihood that the link does not avoid either of the two colors. We then assume that the sender and
receiver nodes are secure, by taking 8o, (i) 8o, (1), which adds back nodes with a direct link to the giant
component in both the internal and external modules. Naively one might think that to find the size of the GSC,
S one could merely take 1 — 8o, (1 0) 8o, (up1) — %, (10,1) %o, (u10) i.e., take the conjugate of the probability
that a randomly chosen node fails to avoid both colors. However, this neglects the fact that some nodes fail to
avoid either color. To deal with this overcounting we must add back 8ouris (u1,1) in accordance with the
inclusion—exclusion principle [21]. The k; + kg subscript in this case means that we are now counting over the
total number of links of the given node, such that 80y, (D) = Xgmp 1, i uf}, where p is now the likelihood
of the node havingatotal of k = k; + kglinks, independent of whether they are external or internal. For an
Erd6s—Rényi degree distribution this would be 80y, (M1,1) = e (krtke)(1 -0 Using this, we obtain

Se =1 =&, (08, (o) — &, (4o,1)8y, (110) + & ., (1) 1)

To solve equation (1) we need to calculate the probabilities u; ;which, for Erd6s—Rényi topologies of internal and
external connections, are obtained by solving self-consistently the system

mo=q+ (1A - q)e—kl(l—Ml,o)—kE(l—uo,l)
Ug, = (1 — q) + qe_kl(l_uu,l)_kE(l_ul,O)
U= qe*kf(l*uo,1)*k5(1*u1,n) + (1 - q)e*kl(l*ul,())*kE(I*“(),l). )

For more details on the derivation and solving of equations (1) and (2) see supplementary material. Results
comparing the above theory to simulations are shown in figure 2.

We find from figure 2 that only in the case where kg = 0 does the system undergo a phase transition at the
critical point g, = 1 — 1/k; [5], while for any kg > 0 there is always some fraction of nodes in the secure
component. This is because even if one of the two modules disintegrates when the dominant color is removed
from it, there always exists a finite fraction of its nodes which can communicate securely through external links
to the other module. Thus k. > 0 removes the transition by making the disconnected phase unreachable [22],
just as an external magnetic field of magnitude H does with respect to the disordered phase in the Ising model
[23]. In what follows we further support, both analytically and by extensive simulations, this intriguing analogy
between spin models and secure message-passing on modular networks.

To this aim, we investigate the scaling relations of our model with S, ¢, and kg as the CAP analogues of total
magnetization, temperature, and the external field respectively. Let us first stress that for the case C; = 1, thatis
asingle dominant color in each module, the scaling exponent 3 defined by S.(q,) ~ (g — q,)” was found to be

3
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Figure 3. Critical scaling and higher-order transitions. (a) Scaling of S, as a function of kx at the critical level of dominance g, = 0.75
with k; = C;/(Cy — 0.75). For C; = 1weobtain § = 2, whereas for C; > 1 we find 6 = 1. (b) Shown is the CAP-analogue of the
magnetic susceptibility near criticality as kg — 0. We take the difference between the curves for S, with ky = 0 and ky = 10~°. For
C; = 1wefindy = 1, whereasy = 0for C; > 1. Thelatter result suggests that the system undergoes higher-order phase transitions
[26] for more than two dominant colors.

08 = 1[3]. To extract information about the universality class of the model, we will now measure the scaling
exponents ¢ and -y which relate to the properties of the field. We choose these exponents since they are directly
related to the field and are easiest to measure. Note that for CAP, exponents relating the distribution of
component sizes are computationally challenging to calculate since we must calculate the overlaps of many small
components of the various colors. In addition, once any two of the exponents are known, the rest are fixed due to
known scaling relations between the various critical exponents [24]. We thus begin with 6, which defines the
variation of the order parameter with the external field at criticality. According to our analogy, this is given by

Se ~ ki/®. 3

For C; = 1, we find from simulations that 6 = 2 (figure 3(a)), setting the critical properties of this model within
the mean-field percolation universality class. On a practical side, these exponents suggest that, in the case of one
dominant color, increasing external connectivity between the modules is more beneficial near the critical point
sincel = 3> 1/6 = %
Based on the above results, we introduce hereafter the CAP-analogue of the magnetic susceptibility, which
we define by means of the scaling relation
(85‘) ~lq— gl *
kg—0

Okg

Using equations (1) and (2), we find (figure 3(b)) v = 1 for C; = 1 which, together with the other exponents
obtained (6 = 2and 3 = 1), isindeed consistent with Widom’s identity 6 — 1 = ~/3[24, 25].

The numerical results above can also be found analytically by expanding for k; near its critical value, k; = —

.By
1—-gq,
definingx; 0 = 1 — uygand xo; = 1 — ug, and expanding equation (2) to leading orders in x; o and kg, we obtain

2kgxo,1

5
E )

X0=4q, —q9+ \/(qc —9* +
It follows that 6 = 2, as x; g scales with the square root of kg, and v = 1 as can be found by taking the derivative
of equation (5) with respect to k.
Having discussed the case of a single dominant color, we now study the case of multiple colors (C; > 1)
sharing dominance in a single community as depicted in figure 1(b). Each of these dominant colors will occupy a
fraction q/C, of the module. Following logic similar to that used for C; = 1, the GSC in this case can be found by

C; Gy o
S, = ZZ(—I)oH)(Cid)(C;d]ekIHumkEauj,a (6)
i=0j=0

where the probabilities u; ;satisfy the system of self-consistent equations

u;; = iie—h(l—ui—l,j)—ks(l—Mj,x'—l) + ]‘1 — 4 e~ kil —uij ) —kp(1—uj1,7) +11 - ii _ ]l;q e ki(l—uij)—ke(1—uj;)
TG Ca Ca Ca

7
withi < Cypj < Cpand ugg = up,—1 = u_19 = 1. For kp = 0 werecover the equations obtained by Krause
etalin[3,5].

In contrast with the results for C; = 1, we find that for every C; > 2 the critical scaling exponents are given
byy = 0and § = 1 (figure 3) which, to the best of our knowledge, define a novel universality class. These results,

4
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Figure 4. Size of the secure component at criticality. The points represent averages over at least 400 simulations, while the dashed lines
represent slopes of 1 — C,/3 as predicted in equation (9). For all C; we observe excellent agreement between these predictions and the
simulations. We note that the figure is obtained only from taking the overlap of the largest component avoiding each color, which for
C,; > 3 may not give the actual largest color-avoiding component (see main text).

together with the exponent 5 = C; obtained in [5], suggest that for more than one dominant color the system
undergoes higher-order phase transitions. In general, for C; = iwe will have an (i + 1)-order transition, i.e. for
C; = 2wehave a third order transition, for C; = 3 we have a fourth order transition, etc. To verify this claim,
we evaluate the higher-order derivatives of S, with respect to kg, the first of which is given by

88, o
~ g —q. |6, 8
( 2 ]kE 0 la — q. (®)

where G satisfies the generalized scaling relation G = 3(C;6 — 1) [26]. In particular, for C; = 2 we expectan
exponent G = 2, which we confirm with numerical results (see SM). For C; > 3, equation (8) breaks down and
we obtain G = 1. As far as we know, the present study represents the first time that this novel universality class
with higher-order transitions is observed in percolation type systems with the higher-order scaling exponents
defined and measured.

Finally, though our model does not have any spatial embedding, we can gain insights into the upper critical
dimension of the CAP process, by invoking the scaling relations and the results above. In fact, we can indirectly
evaluate the product vd,, where v is the scaling exponent related to the singular part of the correlation length at
criticality and d, is the upper critical dimension [27] of the process. We do this by analyzing how the size of the
GSC, NS.(q,), scales at criticality with the number of nodes N'in the absence of external connections (i.e.,
kg = 0). Specifically, we know that the correlation length, &, has power-law scaling £ ~ |qg — q.|™" near
criticality, and that in particular it scales with the size of the system, i.e. { ~ N 1/d; at the critical threshold
[24, 25]. Combining these properties with the critical scaling of the GSC, yields NS, (q,) ~ N'~#/% for the
GSC’s size. Recalling that § = C,, by measuring NS, (q,) for varying N, we can find vecd, from simulations. In
figure 4 we carry out this simulation for different C;and obtain in every case that vd, = 3, most likely with
v= % and d, = 6 as for classical percolation on Erd§s—Rényi networks.

This result can be equivalently understood as follows. The scaling of NS.(g.) ~ NSi(q,)S2(q,) ... Sc,(q,) =

%N&(qc) X NS»(q,) ... XNSc,(q.),where S,(q,), ..., Sc,(q.) represent the scaling of the size of the
component avoiding color 1, ..., Cyrespectively. Each NS,(q,), ..., NSc,(q,) scales like an Erd6s—Rényi network
[3]with NSi(q,), ..., NS¢,(q.) ~ N 2/3,If we rearrange and substitute this into our expression above we obtain

NS:(q,) ~ —=N?/3 5 N> . x N*/and finally
Nsc(qc) ~ NI*C"N@ = N1-Gi/3, )

This can then be set equal to N'~#/# justifying this way the numerical result vd, = 3.

This constant value of vd, combined with the increasing value of 3 as the number of colors increases, leads to
the apparently surprising behavior of figure 4 where the size of the largest cluster, NS.(q,), decreases with the
system size N, when C; > 3. We explain this scaling by noting that we assume that nodes in the intersection of
the largest component avoiding each color respectively are in the GSC (in the next paragraph we will analyze this
assumption). The likelihood of being in the largest component avoiding any single color scales with N~ /%, such
that when two colors must be avoided the scaling is N~ 3 « NV 3 and so on for additional colors. Once more
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than three colors must be avoided, the decreasing likelihood of being in all of the colors overpowers the linear
growth of the system size leading to the observed decrease in the overlap of the largest components for each
color. Further, this suggest that at criticality the overlap of the largest components for each color has vanishing or
negative fractal dimension for C; > 3 [28]. These values of the fractal dimension are indeed surprising in the
context of percolation on networks. For instance, in classical percolation on scale-free networks, Jincreases as
the degree distribution becomes broader [29, 30], but this increase is counteracted by the simultaneous increase
of the upper critical dimension, thus the fractal dimension remains positive.

However, we must note that there is some subtlety in this calculation, especially for C; > 3. Specifically, we return
to the above assumption that the overlap of the largest component avoiding each color gives the GSC. In most cases this
will indeed be true, however when this overlap is very small, then overlap between smaller components must be
considered in both the simulations and the derivation of equation (9). Specifically in the case where the expected
overlap of the largest component for each color is less than a single node, we know that the actual GSC must be at least
asingle node and thus the assumption does not hold. In any case, we can say that for all C; > 3 the actual size of the
GSC scales as O(1), as opposed to the negative exponent suggested by equation (9). This also implies that the GSC has
avanishing but non-negative fractal dimension since it always includes at least one node.

Finally, our results suggest the breakdown of the scaling relation vd, = 23 + v [24, 25]for C; > 1since
vd. = 3forallC; > 1but 23 + v = 2C; (for C; > 1) which increases with C,. This scaling relation originated
from the distribution of small clusters at criticality, n(s), having finite-size scaling n(s) ~ N~ "aslongas7 < 3
[24,25]. Its failure here implies that for CAP with C; > 1, the critical exponent 7 > 3. This can be understood
based on previous results on bicomponent-percolation [31], which is less restrictive than CAP [3], where it was
shown that there are in general (almost) no small bicomponents in the network, rather only a giant bicomponent
can exist. A circumstance is then paved concerning the possibility that also for CAP there are in general almost
no small secure components in modular structures.

In summary, our results map the study of secure message-passing between nodes in modular networks to the
statistical physics of Ising models with a magnetic field. Previous attempts to introduce the idea of a field into
percolation relied on a ghost site [32—34], to which every node connects with some probability H and thus
allowing it to remain functional even if it is separated from the ‘rest’ of the largest cluster. Here we obtain the
field-exponents, § and v, naturally as a result of the realistic effects of modules rather than from the artificial
introduction of a ghost site. Further, we find novel universality classes, the breakdown of a known scaling
relation and higher-order phase transitions. This work highlights the potential for incorporating the idea of an
external field into complex systems and shows how this idea can be used to shed light on the fundamental
physics underlying its collective behaviours.
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