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Introduction
A new paradigm called Neurodegenerative Elderly 
Syndrome (NES) conceives Parkinson’s disease (PD) 
and Alzheimer’s disease (AD) as different manifestations 
of a single disease at very early stages [1]. No one has
yet obtained a predictive model for both pathologies [2].

Panel 1. (A) Population was analyzed from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Parkinson’s 
Progression Markers Initiative (PPMI) online databases. Patients and Healthy Controls were aged from 19 to 89, according to 
female/male differentiation. (B) A combination of six groups of features was selected only if possible to match them for both 
AD and PD: demographic, cognitive/neuropsychological, clinical, genetic, neuroimaging and neuropathological. Machine 
Learning (ML) approaches like Random-Forest Classifier, Features Importance Analysis and K-means Clustering 
Analysis were applied. Principal Component Analysis (PCA) and PCA-MAP were used for data visualization. 

Conclusions

We obtained a new predictive model able to compare and classify common features in ADs and PDs at baseline and during 
disease progression. Further studies are needed to validate our findings by testing and refining our predictive models on 

different multi and monocentric cohorts of patients in a real-life clinical setting. 

Panel 3. Cluster analysis results: (A) Baseline, m-12 and m-24 for PD; (B) Baseline, m-12 and m-24 for
AD. Y-axis: Inertia or Sum of squared error; X-axis: Numbers of different clusters that could be obtained
from the dataset. A total of 5 clusters (Cluster0/Cluster1/Cluster2/Cluster3/Cluster4) were selected.
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Aims

Ø To observe and compare PDs and ADs common and 
not features importance at baseline, 12-months and 24-
months of follow-up.

Ø To predict disease conversion and differentiate or 
classify both pathologies at different time steps.

Materials and Methods

Results (II) 
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Results (I)

Panel 5. PCA and PCA-MAP results: The two axes (x, y) of the graphs represent the two main components (PC1
and PC2) obtained from dimensionality reduction, for both PDs at baseline, m-12 and m-24, from top to bottom (A)
and ADs at baseline, m-12 and m-24, from top to bottom (B). PCAMAP on the other hand uses PCA to reduce the
size of the data and then maps them into one two-dimensional (or three-dimensional) space, the two axes of the
graph represent the new dimensions obtained from PCA.
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Panel 2. Random-Forest Classifier: Classification accuracy of 96%/86% and Precision of 92%/87% 
were obtained for PDs/ADs respectively; Features importance analysis results at (A) Baseline, (B) m-12
of FU; (C) m-24 of FU considering both PD and AD; (D) Significant differences between PDs and ADs,
after features importance analysis, at baseline, m-12 and m-24 of FU respectively (from top to bottom); p-
value<0.05.

Panel 4. Cluster feature importance analysis results at baseline, m-12 and m-24 for PD (top row of graphs) and 
for AD (bottom row of graphs), respectively. Generally, Total gray matter volume is the best variable for
predicting patient classification (PD or AD conversion), followed by Age and MSEADLG (PD);
TRAA(B)SCORE (AD).
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