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Abstract: Dual-frequency precipitation radar (DPR) on the Core GPM satellite provides spaceborne
three-dimensional observations of precipitation fields and surface rainfall rate with quasi-global
coverage. The present study evaluates the behavior of liquid precipitation intensity, radar reflectivity
factor (ZKu and ZKa) and drop size distribution (DSD) parameters (weighted mean diameter Dm

and intercept parameter Nw) of the GPM DPR-derived products, version 07, from 2014 to 2023.
Observations from seven Parsivel disdrometers located in different topographic zones in the Western
Mediterranean are taken as ground references. Four matching techniques between satellite estimates
and ground level observations were tested, and the best results were found for the so-called optimal
comparison approach. Overall, GPM DPR products captured the variability of the observed DSD well
at different rainfall intensities. However, overestimation of the mean Dm and underestimation of the
mean Nw were observed, being much more sensitive to errors in drop diameters larger than 1.5 mm.
Moreover, the lowest errors were found for radar reflectivity factor and Dm, and the highest for Nw

and rainfall rate. In addition, the GPM DPR convective and stratiform classification was tested, and a
substantial overestimation of stratiform cases compared to disdrometer observations were found.

Keywords: dual-frequency precipitation radar (DPR); GPM; disdrometer; ground validation; precipi-
tation estimates; Western Mediterranean

1. Introduction

Satellite precipitation estimates are an essential input to provide a complete perspective
of the hydrological cycle at the global scale, including the monitoring of extreme events
and complementing traditional ground-based observation methods based on rain gauge
and weather radar networks [1]. The Tropical Rainfall Measuring Mission (TRMM) of the
National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration
Agency (JAXA), launched in 1997, was the first satellite equipped with weather radar,
operating at Ku-band (13.6 GHz), dedicated to measuring precipitation at latitudes between
35◦ S and 35◦ N [2]. In 2014, the same agencies launched the Core Observatory satellite
(CO) on the Global Precipitation Measurement (GPM) mission [3] to provide precipitation
estimates between 65◦ S and 65◦ N and become the basis for future long-term analyses [4].
To this end, GPM CO became the first spaceborne dual-frequency precipitation radar
(DPR), operating at Ka- (35.5 GHz) and Ku-band (13.6 GHz) to offer three-dimensional
measurements of the precipitation structure. Compared to TRMM precipitation radar, DPR
is more sensitive to light rainfall rates, and because of simultaneous measurements from
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overlapping Ka/Ku bands, new information on the drop size distribution over moderate
precipitation intensities can be obtained [5].

Because of the valuable information provided by the DPR and their multiple appli-
cations, validation exercises are essential. In fact, GPM precipitation recovery algorithms
have been subject to frequent updates (seven versions in the first 10 years). Therefore,
it is necessary to identify biases and improve future versions, with ground validation
being an important component for evaluating and improving the performance of the DPR
algorithm [6]. Some of the DPR-derived variables are estimated at ground level, so specific
information about precipitation drop size distributions (DSDs) at that level is needed for
their verification. For this reason, ground-based disdrometers, able to measure DSDs from
which integral rainfall parameters, such as reflectivity, intensity and liquid water content
can be computed, are a key instrument for the verification of DPR-derived products. A
number of field campaigns promoted by the NASA Ground Validation program and other
research groups have been carried out in recent years [7] deploying different disdrometer
types (two-dimensional video disdrometer (2DVD) from Joanneum Research, Inc. in Graz,
Austria; OTT Parsivel Model 2; and Joss–Waldvogel) [8]. Table 1 lists different GPM DPR
validation studies using disdrometers and their region of study.

Table 1. Validation studies of GPM DPR products using disdrometers.

DPR
Version

Disdrometer
Type

Variables
Studied * Region of Study Reference

- OTT Parsivel 2 RR, Nw, Dm, Z, k Iowa, USA Liao et al., (2014) [9]

V03 RD-80 RR, Nw, Dm, Z, k Gadanki, India Radhakrishna et al., (2016) [10]

V05 2DVD RR, DSD, Z Italian Peninsula D’Adderio et al., (2019) [11]

V06 OTT Parsivel 2 RR, Nw, Dm, Z, µ Jianghuai, China Wu et al., (2019) [12]

V06 2DVD RR, Dm Several international sites Chase et al., (2020) [13]

V06 OTT Parsivel 2 RR, Nw, Dm, Z, k Central Andes, Peru Del Castillo-Velarde et al., (2021) [14]

V06 Thies, OTT Parsivel 2 RR, Nw, Dm, Z Italian Peninsula Adirosi et al., (2021) [15]

V07 Joss–Waldvogel RR, Nw, Dm, Z North Taiwan Seela et al., (2023) [8]

* Variables considered are rain rate (RR), mass weighted mean drop diameter (Dm), intercept parameter (Nw),
shape parameter (µ), radar reflectivity (Z), specific attenuation (k).

A first study was performed simulating the DPR algorithm before the GPM CO
launch with disdrometer data [9]. In a comparative DPR-disdrometer study over Gadanki,
India [10], it was observed that the Dm values obtained from GPM DPR were severely
underestimated at high rainfall rates (R > 8 mm/h) during the SW monsoon season.
Meanwhile D’Adderio et al. [11] obtained statistical scores that did not differ significantly
between land and sea [13,14] and found that the GPM DPR showed superior performance
in estimating rainfall parameters in stratiform precipitation than in convective precipitation.
Adirosi et al. [15] compared the precipitation and drop size distribution parameters of a
large network of disdrometers in Italy with the DPR GPM. The sensitivity analysis revealed,
regardless of the type of DPR algorithm (dual- or single-frequency algorithm), a superior
agreement for the mass-weighted mean raindrop diameter (Dm) and a lower agreement for
the normalized gamma DSD intercept parameter (Nw), similar to the results of [8,11,16].
Del Castillo-Velarde et al. [14] concluded that differences with respect to convective rainfall
could be associated with the setting of the shape parameter (µ) in the DPR algorithm. They
also suggested that in the central Andes, the estimation of DSD parameters in stratiform
rainfall is strongly affected by the limitation of the dual-frequency (DF) algorithm in
estimating Dm < 1 mm.

The number of verification studies using disdrometer data has been growing over the
years, but it is still much lower than the number of studies with rain gauges, limited to com-
paring precipitation amounts. As disdrometers are not frequently deployed in operational
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networks, their observations are relatively scarce, so the difficulties of sampling satellite
overpasses matching precipitation events is an important limitation of such studies. For
instance, in the Mediterranean basin, an area vulnerable to climate change, hydrometeoro-
logical extremes and uncertainty of projections regarding precipitation [17], studies of this
type have focused only on the area over Italy using DPR products V05 and V06A. Therefore,
the limited number of geographical regions examined and the continuous upgrade of DPR
product versions require more validation studies of this type. To contribute to fill this gap,
the objective of this study is to evaluate the behavior of the precipitation intensity, radar
reflectivity factor (ZKu and ZKa) and DSD parameters (Dm, Nw) of the GPM DPR level 2
version 07B, the latest available. For this purpose, data from seven disdrometers (OTT
Parsivels 1, 2) covering the period 2015 to 2024 located in different topographic areas of
Catalonia, Spain were used as references.

The remainder of this paper is organized as follows. Section 2 provides a description
of the study area, datasets used (disdrometers and GPM DPR data), the comparison
methodology adopted in this study and the evaluation metrics employed. Section 3 shows
results using disdrometer data, DPR data and their matches, the latter validated considering
four different approaches. The most significant results are discussed in Section 4, and a
summary and conclusion are provided in Section 5.

2. Materials and Methods
2.1. Datasets
2.1.1. GPM-DPR

The GPM CO operates in low Earth orbit, carrying two instruments to measure the
Earth’s precipitation and serving as a calibration standard for other members of the GPM
satellite constellation [18]. The satellite was developed and tested in-house at NASA’s
Goddard Space Flight Center and launched from the Tanegashima Space Center, Japan, on
27 February 2014 [5]. The orbit height has been 442 km since November 2023, and the orbit
inclination is 65◦.

GPM-DPR Version 07B Level 2 products provide three main classes of precipitation
products: (1) Ku-band frequency, derived over a 245 km-wide swath in so-called full
scan (FS, low sensitivity) mode; (2) Ka-band frequency, which, as of May 2018, occupies
a 125 km-wide swath in FS mode and the rest of the swath in high scan mode (HS, high
sensitivity); and (3) dual-frequency-derived data in FS and HS modes. Finally, the swath
structures can be categorized into single- and double-beam pixels based on the availability
of radar reflectivity within the Ku and Ka bands [19].

The derivation of the DSD using the single-frequency (SF) and dual-frequency (DF)
algorithms in the liquid phase intervals assumes a gamma-shaped droplet size distribution
with three parameters: Nw, Dm and the shape parameter (µ). To reduce the number of
unknown parameters from three to two, GPM DPR algorithms consider a constant value
for µ, set to µ = 3 [6]. To determine Dm and Nw, relationships between Dm and k/Ze or
DFR are used, where k is the specific attenuation in dB/km, Ze is the effective reflectivity
factor, and DFR is the dual-frequency ratio. A brief summary of SF and DF algorithms is
shown in Appendix A and further information is available in [19–21].

An important relationship is assumed between the precipitation rate R and Dm [15].
In the current version, V07B, the R-Dm relationship is given by

R = εταDβ
m (1)

where R is the precipitation rate in mm/h for temperatures between −50 ◦C and 50 ◦C
and α, β and τ are constants of 0.392, 6.131 and 4.815, respectively. To reconcile possible
inconsistencies arising from the use of different attenuation estimation techniques [22], the
equation includes an adjustment factor ε. Different R-Dm relations were tested by varying
ε from 0.2 to 5.0. Assuming a gamma DSD with a fixed shape parameter, it is possible
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to establish a relationship between R and Dm for various effective reflectivity values [20].
Thus, given ε = 1.25, a pair (R, Dm) can be obtained.

In this study, DF (DPR) and SF (Ku-band and Ka-band) products were used in the
FS mode of the GPM DPR version 07B from 2014 to 2023. Note that the FS format is
available in version V07 for observations recorded both before and after the scan pattern
change of the Ka-band in May 2018 [21]. The output variables selected to be evaluated
were the precipitation intensity (precipRateNearSurface, mm/h) estimated in the clutter-
free bin closest to the surface (binClutterFreeBottom, CFB), the reflectivity factor with
attenuation correction at the CFB (zFactorFinalNearSurface, dBZ), the normalized gamma
DSD parameters (paramDSD) and Nw (dB) and Dm (mm) evaluated at the CFB, as well as
the precipitation type (TypePrecip) for the case of the DF product. It is worth mentioning
that HS mode data results were not yet available for processing during this study.

2.1.2. Disdrometer Locations

Data from seven disdrometers deployed at different sites in the region of study were
used. The Department of Applied Physics–Meteorology of the University of Barcelona
manages six disdrometers. Three of them, plus a fourth one from the University of Grenoble–
Alpes, were used during the Land Surface Interactions with the Atmosphere over the
Iberian Semi-Arid Environment (LIAISE) field campaign in the Eastern Ebro subbasin [23].
The rest of the disdrometers were at Das Aerodrome (in the Eastern Pyrenees, during the
Cerdanya-2017 [24] and the ARTEMIS field campaigns), the roof of the Faculty of Physics
of the University of Barcelona and the Fabra Observatory of Royal Academy of Sciences
and Arts of Barcelona also supporting the ARTEMIS campaign. Table 2 provides detailed
information about each site, including temporal period covered and valid rainfall data for
each site after quality control (for details, see next section).

Table 2. Information about the Parsivel disdrometers (model 1 and 2 as indicated by the superindex)
used in the present study.

Disdrometer
Type

Disdrometer
Site

Label
(Subregions)

Lon
(◦E)

Lat
(◦N)

Height
(m)

Start
Date

End
Date

Valid Data
(min)

Parsivel 1 Barcelona University C01 (Coast) 2.11 41.38 98 1 January 2015 1 February 2024 51,679
Parsivel 2 Fabra Observatory C02 (Coast) 2.12 41.42 411 26 July 2022 13 February 2024 12,537

Parsivel 1,2 Das M01 (Mountain) 1.87 42.39 1097 9 December 2016 8 February 2024 59,388
Parsivel 2 Tarrega P01 (Plain) 1.16 41.67 427 4 May 2021 14 June 2022 10,218
Parsivel 2 Mollerussa P02 (Plain) 0.87 41.62 247 27 April 2021 5 December 2022 12,855
Parsivel 2 Tordera P03 (Plain) 1.22 41.68 388 30 April 2021 14 June 2022 12,035
Parsivel 2 Cendrosa P04 (Plain) 0.93 41.69 239 9 April 2021 12 October 2021 3616

The locations of the disdrometers are representative of three key areas with different
climatic and orographic characteristics typical of Catalonia: mountain (in the Pyrenees
mountains), plain (inland plain of the Segre River Valley) and coast. The disdrometers of
Tordera, Mollerussa, Tarrega and Cendrosa are in the plain subregion, characterized by flat
terrain with few orographic contrasts and an arid Köppen climate (Figure 1), conditioned by
precipitation deficit. Disdrometers located at the Faculty of Physics and Fabra Observatory
represent the coast subregion with a hot-summer Mediterranean Köppen climate, more
exposed to Mediterranean heavy precipitation. The disdrometer at Das was in a valley at
1094 m a.s.l. in the mountain subregion and had a temperate Köppen climate.
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intensity, resulting in the measurement of their size. The signal duration and particle size 
allow the estimation of particle velocity [27]. The size and fall speed of each particle is 
classified into 32 classes ranging from 0.05 to 20 m/s and 32 particle diameter classes rang-
ing from 0.062 mm to 24.5 mm. Based on the recorded size and fall speed spectra, different 
variables are computed, including the present weather type (synop code 4677 [25]). Tem-
poral resolution was set to 1 min aggregation periods for all disdrometers.  

Quality control was applied, consisting of the following conditions: (1) to exclude 
non-liquid particles and errors associated with boundary effects [28], particle fall speeds 
did not differ more than ±50% from the empirical terminal fall speed V(D) [29]; (2) to 
further ensure liquid precipitation, the reported present weather (code 4677) was checked 
discarding all types containing solid particles [30]; (3) to compute DSD parameters con-
sistently a minimum of 11 drops had to be present in each 1 min sample [15]. The DSD 
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Figure 1. Digital elevation model of the region of study and the three subregions considered (moun-
tain, plain and coast) and disdrometer sites (black dots), showing range circles of 5 km (thin red line)
and 10 km (black dotted line) around each site where GPM-DPR data were collected for the present
study. The lower right corner shows a map with the Köppen climate classification of the region and
the disdrometer locations.

2.1.3. Disdrometer Data

The OTT Parsiveloptical disdrometer uses a 650 nm laser device with a power of
3 mW [25,26]. The laser emits a horizontal sheet of light 30 mm wide and 180 mm long.
With a horizontal sampling area of 54 cm2, particles passing through it cause a reduction in
light intensity, resulting in the measurement of their size. The signal duration and particle
size allow the estimation of particle velocity [27]. The size and fall speed of each particle
is classified into 32 classes ranging from 0.05 to 20 m/s and 32 particle diameter classes
ranging from 0.062 mm to 24.5 mm. Based on the recorded size and fall speed spectra,
different variables are computed, including the present weather type (synop code 4677 [25]).
Temporal resolution was set to 1 min aggregation periods for all disdrometers.

Quality control was applied, consisting of the following conditions: (1) to exclude non-
liquid particles and errors associated with boundary effects [28], particle fall speeds did not
differ more than ±50% from the empirical terminal fall speed V(D) [29]; (2) to further ensure
liquid precipitation, the reported present weather (code 4677) was checked discarding
all types containing solid particles [30]; (3) to compute DSD parameters consistently a
minimum of 11 drops had to be present in each 1 min sample [15]. The DSD was computed
according to the following expression:

N(Di) =
1

Aeff(Di)× t × ∆Di

32

∑
j=1

nij

VDi

(2)
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where Aeff is the effective sampling area (m2), t is the sampling time (60 s), ∆Di is the bin
width (mm), nij is the number of drops measured in the ith diameter class and jth drop
velocity class, and VDi is the drop velocity according to the theoretical diameter–drop
velocity relationship [29]. In this case, as in [27,28], the edge effects mentioned above are
considered: Aeff(Di) = L(W − 0.5Di) where L = 180 mm and W = 30 mm (laser beam
length and width, respectively). Finally, for each DSD, ZKa,Ku, R, Dm, Nw and µ were
calculated based on the nth-order moment (Mn) of the drop size distribution [8,31–33]
using the following:

R(mm/h) = 3.6
Π
6

10−3
32

∑
i=1

N(Di)V(Di)D3∆Di (3)

ZKa,Ku

(
mm6m−3

)
=

λ4
Ku,Ka

Π5|Kw|2
32

∑
i=1

σKu,Ka(Di)N(Di)∆Di (4)

Mn

(
mmnm−3mm−1

)
=

32

∑
i=1

Dn
i N(Di)∆Di (5)

Dm(mm) =
M4

M3
(6)

LWC
(

gm−3
)
=

Π10−3ρw
6

32

∑
i=1

(D)D3∆Di (7)

Nw

(
m−3mm−1

)
=

44

Π
LWC
D4

m
(8)

µ =
(7 − 11A)−

√
(7 − 11A)′2 − 4(A − 1)(30A − 12)

2(A − 1)
(9)

A =
M2

4
M2M6

(10)

where LWC is the liquid water content (gm−3), λ is the wavelength (mm), Kw is the complex
dielectric constant of water, ρw is the density of water (1 g/cm3), and σKu,Ka

(
mm2) is the

backscatter radar cross-section for the Ku and Ka bands of a droplet of equivalent diameter
D. For the calculation of the cross-sections, the T-matrix [34,35] estimation method was
applied assuming (1) an ambient temperature of 20 ◦C; (2) the shape of hydrometeors ac-
cording to the model proposed by Thurai et al. [36]; and (3) the distribution of hydrometeor
canting angles modeled with a Gaussian distribution with mean 0◦ and standard deviation
10◦ [15]. These calculations were performed using the Python package pyTMatrix 0.3.3 [37].

Additionally, considering that the GPM assumes a normalized gamma-type DSD
to estimate the DSD parameters (Equations (A1) and (A2), Appendix A) and based on
Equations (A3)–(A8), the DSD measurements recorded by the disdrometers were used
to compute k (specific attenuation), as well as the k/Ze and DFR (dB) ratios, by setting
µ = 3 [10,14].

2.2. Methodology

As indicated above, the number of satellite overpasses coincident with rainfall events
may be an important limiting factor when comparing satellite and disdrometer observations.
To overcome or partly mitigate this problem, some previous studies considered not only
satellite matches but also datasets of the area of study of both the disdrometers and
the satellite without necessarily including satellite overpass matches [8,10]. Then these
two relatively independent datasets (as opposed to the datasets with matches) can be
compared, for example, by checking if biases are present, to better interpret the comparison
of satellite matches with ground observations. According to this idea, below are described
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the comparison of the so-called independent (non-matching) DPR and disdrometer datasets
and the matching approaches considered.

2.2.1. Comparison of Independent Datasets

To select DPR data comparable to the reference disdrometer data, precipitation DPR
observations within a 10 km radius around the location of the disdrometer sites were
considered. Duplicate information due to overlapping of the selected areas was eliminated
to avoid redundant data that could affect the characterization statistics (Figure 1). The
results of this analysis were stratified according to each disdrometer separately, into three
geographic areas with different climatic and orographic characteristics and considering all
the data together. For each subregion, it was ensured that only one data record existed at
any given time (in cases where more than one existed, only one was selected randomly).
The characterization of the entire domain was considered based on the union of all valid
data from the three subregions.

According to GPM documentation, the minimum detectable radar reflectivity and
rainfall rate for the Ku- and Ka-bands are 13 dBZ, 17 dBZ and 0.5 and 0.2 mm/h, respectively.
However, previous studies have observed improved detection of light precipitation using
GPM DPR [38]. In addition, GPM DPR estimates over the study region showed minimum
precipitation rates of 0.1 mm/h, therefore, in this work this threshold [8,15] was selected to
fix precipitation events for both GPM DPR and disdrometer data.

2.2.2. Matching Approaches

Four different matching approaches were considered, based on similar previous stud-
ies [8,15]. An attempt was made to determine the most appropriate strategy considering
the performance of each GPM DPR scanning mode (Ka-FS, Ku-FS and DPR-FS). The four
methods are as follows:

a. Point: The disdrometer location was found within the footprint of the DPR (within
the 5 km2 pixel area) and so could be compared directly.

b. Mean 5 km: Disdrometer data were compared with the average of all DPR pixels
within a 5 km radius of the disdrometer.

c. Mean 10 km: Disdrometer data were compared with the average of all DPR pixels
within a radius of 10 km of the disdrometer.

d. Optimal: Disdrometer data were compared with the DPR pixel closest to the dis-
drometer within a 5 km radius and the nine DPR pixels containing the disdrometer.
Finally, among these nine pixels, the pixel with closest radar reflectivity factor to that
of the disdrometer was selected for comparison.

The methods proposed aim to reduce the spatiotemporal uncertainties that arise when
comparing instantaneous measurements from space with ground-based measurements
from disdrometers. Additionally, considering various methodologies allows us to under-
stand the impact on the results and compare them with previous studies. As proposed by
Adirosi et al. [15], due to advection processes, the significant DPR estimates determined
in the CFB may not correspond to the corresponding pixel on the surface. To address
this limitation, averaging methods are employed. The choice of a 5 km radius is based
on the results of a sensitivity study and the physical considerations described by Adirosi
et al. [15]. Similarly, in this work, a 10 km radius was used, which, while not considerably
increasing the number of cases, yielded better results for some variables. A larger radius
was not considered because, particularly in coastal areas, it would include parts of the sea,
affecting the homogeneity of the selected terrain and potentially altering the microphysical
characteristics of precipitation. Finally, the so-called optimal method, based on the work of
Silvestro et al. [39], comparing ground-based weather radar observations with rain gauge
data, primarily seeks to determine if the DPR can detect the characteristics of rain measured
by the disdrometer, at least in its vicinity.

After selecting the GPM overpasses in rainy conditions, the 1-min DSD samples from
the disdrometers were averaged over a 10-min window to reduce the time and space
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sampling problems between the GPM-DPR and the disdrometers. The results for the
total number of precipitation exceedances and matches following these methodologies are
shown in the results section. The comparison was made in terms of Dm (mm), R (mm/h),
ZKu,Ka (mm6m−3) and Nw (dB).

2.2.3. Verification Metrics

The comparison between the GPM DPR and disdrometer data was performed consid-
ering verification scores for both continuous variables and categorical events (Table 3).

Table 3. List of verification metrics used to evaluate DPR products.

Name Formula Perfect Score

Correlation Coefficient (CC) CC =
∑(Oi−Oi)(Si−Si)√

∑(Oi−Oi)
2

∑(Si−Si)
2

1

Normalized Mean Bias (NBias) NBIAS =
1
n ∑n

i=1(Si−Oi)

Oi
× 100 0

Normalized Mean Absolute
Error (MAE) NMAE =

∑n
i=1|Si−Oi|

n
Oi

0

Normalized Root Mean Square
Error (RMSE) NRMSE =

√
1
n ∑n

i=1(Si−Oi)
2

Oi

0

Accuracy TP
All classifications 1

Precision TP
TP+FP 1

Recall TP
TP+FN 1

Si is the value of satellite precipitation estimates for the ith event, Oi is the value of disdrometer observation for
the ith event, and n is the number of observed records. Si and Oi are the mean of satellite and observations,
respectively. The values of TP and FP are based on the confusion matrix (Table 4).

Table 4. Confusion Matrix for multi-class classification (3 × 3).

Observed Class

A B C Total

Predicted
Class

A TPA FBA FCA TPA + FBA + FCA
B FAB TPB FCB FAB + TPB + FCB
C FAC FBC TPC FAC + FBC + TPC

Total TPA + FAB + FAC FBA + TPB + FBC FCA + FCB + TPC All classifications

Note that the scores considered for verification of categorical forecasts are based on
the so-called confusion matrix, also called the contingency table [40]. These scores are
typically used in machine learning applications [41] but in this case are applied to multi-
category events [42] considering a 3 × 3 confusion matrix (Table 4). As shown, TPA, TPB
and TPC are the number of true positive samples in classes A, B and C, respectively. False
negatives (FN) of any class, which are in a column, can be calculated by adding the errors
in that class/column, whereas the false positives for any predicted class, which are in a
row, represent the sum of all errors in that row. For example, the false positive rate in
class A (FPA) is calculated as FPA = FBA + FCA and the false negative rate in the A class is
FNA = FAB + FAC [43].

3. Results
3.1. GPM CO vs. Disdrometer-Derived Independent Estimates

Figure 2 shows the histograms of the probability of occurrence with respect to the
following variables: reflectivity factor (ZKa,Ku), precipitation intensity (R) and DSD param-
eters (Dm, Nw, µ) obtained for both GPM DPR and disdrometer independent datasets. The
dashed lines represent the median of the distribution of each dataset, and the solid curve
represents the kernel density estimation (KDE) curve associated with each distribution.
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(µ) derived from all disdrometer and GPM DPR (DF) datasets.

Despite the differences in the number of samples and period of record in the two
independent datasets, important similarities can be observed in the distributions. However,
the DPR distributions are slightly shifted to higher values compared to the disdrometer
distributions in reflectivity (ZKa and ZKu), precipitation intensity and Dm, which might
indicate little skill in detecting the lower thresholds in these variables with respect to the
data taken as reference. Specifically, in the case of Dm, while in the disdrometers, the highest
probability of occurrence occurs for values less than 1 mm, in the DPR, this occurs between
1.0 and 1.5 mm. In contrast, the Nw values obtained from the DSD of the disdrometers had
a wider range, especially with a tendency to detect higher thresholds and a higher mean
than that of the DPR. Figure 2f shows the discrepancies between the mean µ close to 10 in
the case of the reference data, which is different from that set by the DPR algorithm (µ = 3).
Several authors [8,9,28] discussed the limitations of setting this parameter.

Tables 5 and 6 show the number and median and maximum values of each variable
analyzed for each dataset. In addition, to evaluate how the location of the disdrometers
might affect the precipitation and DSD parameters, three zones with different orographic
and climatic characteristics were analyzed. The plain, coastal and mountain regions were
constructed by combining the data from the disdrometers that compose these homogeneous
regions (Figure 1).

In general, there is little variability among the disdrometer statistics according to geo-
graphic location. The median reflectivity values range between 20 and 24 dBZ, precipitation
intensities between 0.48 and 0.89 mm/h, Dm close to 1 mm and the intercept parameter
(Nw) around 35 dB. Similarly, in the analysis of the observations in regions with different
climatologies, the behavior of the variables was similar. The coastal area shows slightly
higher median values, and the maximum intensity is reported at the Fabra Observatory,
which is consistent with previous rain gauge-based climatologies in this region reporting
higher rainfall rates near or at the coast compared to inland areas [44]. This behavior of the
variables can be compared with the results obtained by Adirosi et al. [15] in Italy, where
median values of 23.4, 21.9, 0.73, 35.72 and 1.05 (see Table 5 last row) were obtained for the
variables ZKa, ZKu, R, Nw and Dm, respectively.
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Table 5. Statistics of the different rainfall and DSD parameters for each single dataset, three similar
orographic and climatic regions and all datasets together from the disdrometers.

Dataset ZKa (dBZ) ZKu (dBZ) R (mm/h) Nw (dB) Dm (mm)

N Median Max Median Max Median Max Median Max Median Max

C01 51,679 24.77 47.27 24.92 51.86 0.89 60.83 33.75 51.61 1.19 6.28
C02 12,537 22.79 52.40 22.68 55.83 0.77 183.27 35.23 53.06 1.04 4.40
M01 59,388 21.13 49.74 20.92 54.88 0.60 107.70 36.16 52.04 0.96 7.86
P01 10,218 20.30 47.83 20.04 52.47 0.48 74.61 34.77 50.17 0.98 3.85
P02 12,855 21.49 50.26 21.38 53.97 0.54 115.74 34.09 49.98 1.06 4.91
P03 12,035 21.04 50.16 20.79 53.76 0.56 114.86 35.27 50.00 1.00 7.59
P04 3616 21.56 50.71 21.44 55.20 0.54 132.65 34.75 50.88 1.04 4.75

Coast 60,570 24.26 52.40 24.34 55.83 0.85 183.27 34.04 53.06 1.16 6.28
Mountain 59,388 21.13 49.74 20.92 54.88 0.60 107.70 36.16 52.04 0.96 7.86

Plain 24,254 20.44 50.71 20.21 55.20 0.48 132.65 34.43 50.88 1.01 7.59

All 144,212 22.28 52.40 22.16 55.83 0.66 183.27 34.97 53.06 1.04 7.86

Table 6. Same as Table 4, but with dual-frequency DPR data. Note that the number of Ka-band
reflectivity data is different from other variables because only the Ka inner swath was available.

Dataset ZKa (dBZ) ZKu (dBZ) R (mm/h) Nw (dB) Dm (mm)

N Median Max N Median Max Median Max Median Max Median Max

C01 291 25.10 45.70 351 24.46 51.13 0.96 57.07 33.19 51.29 1.19 3.00
C02 312 25.00 42.34 376 24.24 51.13 0.90 36.33 33.24 51.29 1.18 4.45
M01 360 23.47 37.54 423 23.25 46.34 0.78 18.49 33.04 50.65 1.16 3.00
P01 262 23.16 41.37 304 22.38 51.05 0.68 27.75 33.11 43.93 1.12 5.00
P02 203 24.23 38.67 232 23.18 44.61 0.75 11.71 33.34 41.34 1.12 3.00
P03 269 23.63 41.37 304 22.20 51.05 0.67 27.75 33.13 43.93 1.11 4.99
P04 234 23.42 37.44 273 22.38 47.42 0.68 13.18 33.34 41.51 1.11 3.56

Coast 603 25.05 45.70 727 24.40 51.13 0.92 57.07 33.21 51.29 1.18 4.45
Mountain 360 23.47 37.54 423 23.25 46.34 0.78 18.49 33.04 50.65 1.16 3.00

Plain 968 23.55 41.37 1113 22.59 51.05 0.69 27.75 33.21 43.93 1.11 5.00

All 1931 23.89 45.70 2263 23.19 51.12 0.77 57.07 33.17 51.29 1.14 5.00

The statistics obtained from DPR data showed higher median values for all variables,
except Nw. However, DPR data can capture the variability between different zones, ex-
hibiting the highest median values in the coastal zones. Similarly, the maximum values
observed by disdrometers were much higher in all datasets than those recorded by the DPR
DF. Although other studies have commented on the limitations in the detection of extreme
values by remote sensing products [45], in this case, we cannot draw any conclusions
because such values are subject to the availability of DPR data at the time of the occurrence
of this type of extreme event.

3.1.1. Rain Rate Effects

The DSD-derived precipitation characteristics were stratified into six rain rate intensity
classes. For this purpose, the disdrometer and DPR DF records were considered together
and grouped according to the three subregions (plain, mountain and coast) mentioned
above. Figure 3 (top panel) shows the normalized density distributions for the datasets. A
necessary condition to obtain the mean of these variables in each precipitation intensity
interval was that they had at least 10 records. It is evident that all datasets behave similarly,
with a high representation of data -as expected-, at lower precipitation intensities and much
lower for moderate and high intensities. Despite the lack of temporal concurrence between
the disdrometers and the DPR, both sources provide relatively similar results with similar
qualitative behavior.
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interval for disdrometer (in blue) and DPR (in red) data (top panel) and, similarly, comparison of DSD
parameters Dm (middle panel) and Nw (bottom panel). All panels show values for the subregions
plain (dashed line), coast (dotted line), mountain (semi-dashed line) and the whole region (all, thick
line), for both disdrometer (DIS_) and DPR (DPR_) data.

Figure 3 (middle and bottom panels) illustrates the variation in the mean Dm and
Nw observed and estimated using the DF DPR algorithm as a function of precipitation
intensity. The DSD parameters were similar in all regions for intensities below 4 mm/h. At
thresholds higher than 16 mm/h, the Dm for example differs by more than 0.5 mm between
coastal and mountain areas according to the disdrometer data. The intercept parameter
begins to differentiate in the regions from intensities between 8–16 mm/h with a difference
of more than 5 dB between coastal and inland areas according to the DPR and close to 6 dB
between coastal and mountain areas according to disdrometer data.

From these figures, the DSD parameters obtained by the DF algorithms capture the
variability observed at different intensities, although with overestimates of the mean Dm
and underestimates of the mean Nw, showing the greatest differences at moderate and
high intensities and being much more sensitive to errors in drops greater than 1.5 mm.
These results are similar to those found by Del Castillo-Velarde [14], in which it is stated
that the DF algorithm is susceptible to the uncertainty of µ fixation, which causes an
underestimation of Nw.

Comparisons of the DSD parameters show an overestimation of Dm of about 0.1 mm at
low and moderate precipitation rates (0.1–1, 1–2, 2–4 mm/h) and of 0.4 mm at precipitation
rates higher than 4 mm/h by the DF algorithm with respect to the disdrometer. In contrast,
the behavior of Nw was underestimated by the DPR, with a maximum value close to 6 dB at
moderate precipitation rates (4–8 mm/h). Compared to the studies of [10], the magnitudes
of underestimation and overestimation of Dm and Nw are very similar. However, here
the behavior of the DSD parameters occurs in reverse; that is, the mean value of Dm is
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overestimated and Nw is underestimated. This sensitivity analysis shows that the results
presented here are consistent and that differences with other studies may be due to spatial
and temporal sampling factors and differences arising from the use of other types of
disdrometers [46,47].

3.1.2. Stratiform vs. Convective Regimes

In this section, we analyze the stratiform and convective regimes associated with the
DPR and disdrometer data, as well as different related microphysical processes. For this
purpose, we consider the classification for a given rainfall DSD proposed by Dolan et al. [48]
based on the clustering of Do and Nw values obtained from global disdrometric records.
From this perspective, six groups with independent characteristics were defined: Group 1,
Group 3, Group 5 and Group 6 (Figure 4b) are characterized by convective precipitation
processes, while the Group 2 and Group 4 are stratiform precipitation processes, with
increasing D0 and decreasing Nw. Complementarily, we also considered the DPR algorithm
classification, in which each pixel is assigned a so-called precipitation type label: stratiform,
convective or other. Figure 4 plots all disdrometer records in the Do-log (Nw) space overlaid
with the diagram proposed by Dolan et al. [48].
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Figure 4. (a) Scatter density plot of raindrop size distribution measurements from all disdrometers in
the D0-log(Nw) space overlapped by the stratiform region (limited by turquoise dashed line) and
convective region (limited by red dashed line) defined by Dolan et al. [48]. Disdrometer data density
increase from dark to white dots, and DPR DF convective and stratiform types are indicated by red
and turquoise dots, respectively. (b) Convective, stratiform and microphysical dominant process
regions in the D0-log(Nw) space according to Dolan et al. [48] overlapped by disdrometer (grey dots)
and DF DPR (cyan dots) data.

Note that in Figure 4a, most of the measurements were in the stratiform part of the
plot, which is consistent with the values of the disdrometer parameters discussed above
(low liquid water content and small mean droplet diameters). In the same figure, the values
classified as stratiform (turquoise dots) and convective (red dots) by the DPR DF algorithm
are plotted. Although the highest percentage of data are in the stratiform domain, there is a
large scatter of data that does not fit this classification, especially for events classified as
convective rain (Table 7).
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Table 7. Percentage (%) of data according to the rainfall regime considering stratiform, convective,
ambiguous (between stratiform and convective) and outlier (out of the stratiform and convective
classification domain) according to Dolan et al. [48].

Stratiform Convective Ambiguous Outlier

Disdrometer 53 31 13 2
GPM DPR (DF) 73 18 8 1

Figure 4b provides information on the dominant precipitation mechanisms in the
disdrometer and DPR DF records following Dolan et al. [48]. According to this classification,
the disdrometer stratiform rainfall was dominant (Table 7) and strongly influenced by vapor
deposition followed by riming processes (Table 8). Convective events, on the other hand,
are not associated with a single well-defined microphysical mechanism. Moreover, an
important part of the events (13%) are classified as ambiguous (neither convective nor
stratiform) and are associated with different microphysical mechanisms. DPR records have
a large percentage of data (46%) in areas that fall outside the classification range, although
the influence of stratiform precipitation processes by riming can be appreciated (Table 8).

Table 8. Percentage (%) of data associated with microphysical precipitation mechanism groups
proposed by Doan et al. [48] (see Figure 4b).

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Vapor
Deposition

Weak
Convection

Aggregation/
Riming

Collision–
Coalescence Ice-Based Ambiguous Outlier

Disdrometer 4 29 4 14 0 1 12 32
GPM DPR (DF) 4 15 0 22 0 2 11 46

3.2. Analysis of Satellite Overpass Events Coincident with Disdrometer Data

This section evaluates the performance of the GPM-DPR estimates for the different
matching methods with disdrometer data described in Section 2.2. Table 9 shows the
number of overpasses of the GPM-DPR (2014–2023) with precipitation, and the number of
matches from the different proposed methods. A comparison was carried out for the two
algorithms: DPR DF and SF in the FS mode. Analyses of the variables Z, R, Dm and Nw
were considered.

Table 9. Summary of overpasses over disdrometer sites without (Group A) and with (Group B)
concurrent disdrometer rainfall data for DPR, Ka and Ku FS modes. Matching methods between
GPM observations and disdrometer sites are point, 5 km, 10 km, 9 pixels (Group A) and optimal
(Group B).

GPM
Product

Group A: GPM CO Overpasses with
Rain without Necessarily Matching Disdrometer Data

Group B: GPM CO Overpasses with Rain
Matching Disdrometer Data

Matching
Method Point 5 km 10 km 9 pixels Point Mean 5 km Mean 10 km Optimal

DPR-FS 142 272 460 567 19 33 39 40
Ka-FS 69 157 289 328 12 27 33 34
Ku-FS 142 270 463 569 20 34 41 41

Between March 2014 and November 2023, the GPM CO passed (at least one footprint)
over the region of Catalonia 2089 times and, of them, 1126 had at least one footprint with
rainfall (hereafter rain overpasses). It is important to mention that the Ka-band presents a
lower number of cases compared to the others (Table 9) because only inner swath data are
available due to the DPR scan pattern change in May 2018. After that change, the data were
reprocessed, leaving the payoffs in HS scan mode in the outer swath, for which no data are
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available as of the date of this study. The differences in the number of overpasses between
the DPR and Ku-band products in both Group A and Group B, although insignificant
in this case, are due to differences in the precipitation estimation algorithms around the
0.1 mm/h threshold.

The main statistics for quantifying the error between the DPR estimates at the CFB and
disdrometer ground-based values are shown in Table 10. Values marked in red represent
the worst scores and those in green the best scores for each group of variables and error
statistics analyzed.

Table 10. Statistics of the comparison between the GPM DF and SF products and disdrometer data
for different variables and matching methods. Statistical significance of CC is indicated with an
asterisk(*) and was tested with the t-test using a significance level of 0.05. The best and worst statistics
obtained for each product, method and variable are marked in green and red, respectively. Note that
all variables listed in the table are dimensionless.

Point Mean 5 km Mean 10 km Optimal
NBIAS NMAE NRMSE CC NBIAS NMAE NRMSE CC NBIAS NMAE NRMSE CC NBIAS NMAE NRMSE CC

R DF −46.12 0.70 1.20 0.48 * −39.21 0.66 1.02 0.31 −16.88 0.59 0.90 0.70 * 0.26 0.61 1.60 0.77 *
SF −49.84 0.69 1.18 0.37 * −46.93 0.64 1.01 0.30 * −31.63 0.66 0.99 0.44 * −35.35 0.43 0.78 0.78 *

ZKa DF −6.07 0.19 0.27 0.61 −7.55 0.17 0.22 0.61 * −4.68 0.18 0.23 0.66 * −2.58 0.09 0.14 0.88 *
SF −13.55 0.16 0.20 0.27 −11.58 0.16 0.19 0.42 * −7.37 0.17 0.21 0.48 * −2.81 0.10 0.16 0.77 *

ZKu DF −10.23 0.20 0.29 0.63 * −10.75 0.18 0.25 0.63 * −8.27 0.20 0.26 0.66 * −6.04 0.12 0.16 0.88 *
SF −9.23 0.20 0.29 0.63 * −11.53 0.18 0.27 0.64 * −8.12 0.20 0.25 0.65 * −5.37 0.10 0.16 0.88 *

Dm DF −1.08 0.24 0.28 0.65 * 2.05 0.21 0.27 0.56 * 1.82 0.22 0.28 0.51 * 0.96 0.14 0.18 0.83 *
SF −1.68 0.23 0.27 0.67 * 2.82 0.23 0.32 0.38 * 5.30 0.23 0.34 0.33 * 2.99 0.14 0.19 0.83 *

Nw DF −7.01 0.12 0.16 0.34 −7.59 0.11 0.14 0.32 −5.83 0.09 0.12 0.35 * −5.12 0.11 0.13 0.39 *
SF −6.77 0.12 0.15 0.34 −8.61 0.12 0.15 0.16 −8.36 0.12 0.15 −0.01 0.29 0.12 0.14 0.19

Figure 5 shows the scatterplots of rainfall rate R (mm/h), ZKa (dBZ), ZKu (dBZ), mass-
weighted mean drop diameter (Dm, mm) and Nw (dB) of the GPM DPR and disdrometers.
Regarding rainfall intensity, the point and mean methods show a certain dispersion of the
data in general around the 1:1 line (dashed line). Although it is less evident in the optimal
methods, for intensity values higher than 4 mm/h, it is again marked in all methodologies.
In fact, the correlation values are generally higher than 0.7 in the optimal method, and in
the point and mean methods most cases are lower than 0.5, showing a worse performance
in the SF algorithm.

In the analysis of the intensity of precipitation, the optimal and mean 10 km methods,
generally, show the lowest values of NBIAS, NMAE and NRMSE, as well as higher values
of correlation, displaying also a substantial improvement of the DF algorithm over the
SF over a mean of 10 km. For the rest of the methods, the behavior of the SF and DF is
similar. The NBIAS shows a marked difference in the DF algorithm between the point
method (−46%) and optimal (0.26%); however, this could be due to error compensation, a
disadvantage associated with this statistic.

The errors associated with the reflectivity in both Ka and Ku-bands are generally
below 10%. Again, the worst results are observed with the point method and are better
in the optimal method, with errors not exceeding 6%. It should be noted that the optimal
method precisely optimizes the comparison with respect to reflectivity. The improvements
in SF and DF behave similarly, although a slight improvement is observed in the SF returns
associated with the Ka-band, which may be associated with a smaller number of records in
the selected sample. A higher dispersion of the Ka-band reflectivity can also be observed,
which can be verified with slightly lower correlation values and errors in the Ku-band. In
terms of the MAE and RMSE, there were hardly any differences between the point and
mean methods. However, these values were almost halved, with values barely exceeding
0.15 in the optimal method.
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Agreement with respect to the Dm values depends on the method applied to the
selection of cases. In the point method, unlike the others, the Dm values tended to be
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underestimated by approximately 1 mm and 1.7 mm under the SF and DF algorithms,
respectively. However, the mean methods show an overestimation that reaches a maximum
value of 5.3 mm in the SF (mean 10 km). In these methods, the lowest correlation values
were also obtained, whereas the best values were recorded in the optimal method with
0.83, and the highest point was 0.65. There is a clear improvement in the DF algorithms
with respect to SF, especially in the mean methods, where values of 1 and 2 mm are
overestimated, and values higher than 2 mm are underestimated.

As in the results of Adirosi et al. [15], the concordance in terms of Nw was not satis-
factory. Although the correlations this time turned out to be better, they lack statistical
significance: the NMAE values were very similar, close to 12% in all cases, while the NBIAS
was higher, similar to the work of Seela et al. [8], increasing the underestimation in our
cases. Although earlier versions of the DPR were used in those works, it is shown that
the deficiencies in Nw estimates remain. This may support the idea that the discrepancies
between satellite- and disdrometer-based Nw may be due to the parameterization used by
the GPM to model DSD.

3.2.1. Single- vs. Dual-Frequency-derived Estimates

Figure 6 shows the behavior of Nw versus Dm comparing all disdrometer data and
two overpass matching methods (9-pixels and optimal) with GPM CO single- and dual-
frequency estimates. The GPM data follow the typical Dm-10log10 Nw behavior reported by
Adirosi et al. [15], although they are concentrated, mainly SF, at approximately 30–35 dBNw.
As illustrated in Figure 6, comparing single- vs. dual-frequency estimates, it is apparent
that the dual-frequency pattern in the Dm-10log10 Nw space is closer to disdrometer data
than the single-frequency pattern, which is consistent with the improved scores obtained
by DF-derived estimates seen in Table 10.
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Figure 6. Dm vs. Nw for all available disdrometer data (grey dots), GPM data of nine pixels around
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method showing GPM single-frequency (a)- and dual-frequency (b)-derived estimates. The black
and red dots with the error bars represent the averages and standard deviations of the disdrometer
dataset and GPM 9 pixels method.

Further insight about differences between single- and dual-frequency-derived esti-
mates can be seen in Figure 7, which shows a Taylor Diagram that displays the STD-
normalized CC and RMSE with the data obtained by the point method and the optimal
method for the five variables of analysis. The benchmark represents the standard deviation
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and the correlation coefficient equal to unity. We observe an improvement using the optimal
method, especially in the estimates of ZKa,Ku and Dm. However, considering the analysis
of precipitation intensity using the DF algorithm, the optimal yielded worse results. The
differences between the methods may be related to the variability in precipitation in the
pixels around the disdrometer.
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3.2.2. Stratiform vs. Convective Regimes

The precipitation type classification (including stratiform, convective and other regimes)
provided by the DPR (variable named TypePrecip) was compared with the classification
proposed by Dolan et al. [48] applied to disdrometer data. Table 11 shows the confusion
matrix obtained by comparing the two datasets and considering the matches with the optimal
method. Note that an “ambiguous” class appears to classify records that do not belong to
stratiform or convective regimes using either method.

Table 11. Confusion matrix between ambiguous, stratiform and convective regimes classified by DPR
DF and disdrometer data matched with the optimal approach, listing totals for each regime.

Disdrometer

Ambiguous Convective Stratiform Total

DPR DF
Ambiguous 1 0 1 2
Convective 2 0 0 2
Stratiform 5 15 17 37

Total 8 15 18 41

According to Table 11, disdrometer data presents a similar proportion of convective
(37%) and stratiform cases (44%) and a smaller ratio of ambiguous cases. However, this is
not the case for the DPR data where stratiform cases are clearly predominant (90%) and
convective and ambiguous cases are marginal (5% each). The overall DPR classification is
rather limited according to the value of the accuracy (below 0.50), as only 46% (precision of
0.46) of the predominant predicted regime (stratiform) is correctly done, despite 94% of
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cases identified as stratiform by the disdrometers where correctly predicted. Worse scores
are obtained for convective cases.

4. Discussion

As discussed in previous research, discrepancies observed in DSD parameter values
between disdrometer data and GPM-DPR estimates may be associated with spatial and/or
temporal sampling problems [49,50]. The spatial sampling uncertainties are due to the
difference in the observation area of the two instruments, as the disdrometer has a sampling
area of about 50 cm2 and the GPM-DPR footprint circular radius is 5 km at nadir [10].
Another aspect to consider is the effect of updrafts and downdrafts present from the lowest
GPM-DPR measurement to the ground, which can actually modify the estimated DSD at
ground level [51]. As mentioned above there is also a problem associated with the limited
GPM-DPR overpasses over a given region which implies a low probability of coincidence
with observing precipitation over the disdrometer sites.

Similarly to other investigations [14], results found here indicate the DF algorithm
overestimated the mean Dm values and underestimated the intercept parameter Nw. Such
a problem has been primarily associated with the DPR assumption of a constant shape
parameter. In Section 3.1, Figure 2f, we compared the µ distribution observed by disdrom-
eters with the fixed value set by DPR (µ = 3) finding that it corresponded to the mode
value but differed from the median (µ = 7). To better understand the limitation of fixing
the shape parameter µ in the calculation of DSD-derived variables, we examine the k/Ze
ratio vs. the Dm, and the DFR vs. Dm with the disdrometer DSD (Figure 8). The k/Ze
ratio was calculated assuming the SF algorithm applied to ZKu and the DFR was calculated
considering the DF algorithm.
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Figure 8. (a) Attenuation (k) to reflectivity (Zh) ratio as a function of Dm at Ku-band frequency
obtained from disdrometer measurements without and with fixed shape parameter (µ = 3). (b) As
panel (a) but for DFR estimated with the dual-frequency algorithm.

Each panel of Figure 8 shows the variable considered in two ways: fixing the shape
parameter (grey dots) and not fixing it (blue dots). When µ is set to 3 in both single- and
dual-frequency algorithms (Figure 8a,b), a much higher variability of the data is observed.
Radhakrishna et al. [10] posited that the high scatter in the values of (k/Zh) and DFR is
caused by the high variability in the DSD of convective rainfall. When µ is fixed, part of this
variability is lost, increasing the uncertainty in the estimates. These results and the strong
correlation between µ and Nw [33,52] are among the factors that generate the differences
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in the DSD parameter values between the disdrometers and the DPR DF. In addition,
Del Castillo-Velarde [14] and Radhakrishna et al. [10] showed that the DF algorithm has
limitations when attempting to estimate Dm for DFR values less than 0 dB, where there are
two possible Dm values for a DFR measurement as the DF algorithm selects the drop with
the highest Dm if two solutions exist [19]. Here we also observe that, for DFR values below
0 dB, Dm grows when DFR decreases for Dm below 0.5 mm as reported [10,14].

As seen in Equation (1), the GPM DPR rainfall rate computation is based on an
adjustable R-Dm relationship linked to ε. In version 6 of the DPR algorithm, ε was assumed
to be invariant, which imposed constraints on rainfall retrieval and caused the natural DSD
variations along the rainfall column to be missed. In version 7, a two-scale model of ε was
introduced, allowing it to vary with range [6]. To assess the consistency of this approach
with our disdrometer observations, the Dm vs R observations were plotted overlaid with
the corresponding GPM DPR curves computed for values of ε equal to 1.25 and 0.2 and 5.0
thus covering the possible range of values (Figure 9).
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5.0 (lower dashed line).

The disdrometer data are clearly contained in the region limited by the GPM DPR
lines and higher observation densities correspond well to the ε = 1.25 for Dm < 1.5 mm,
but for larger diameters, the GPM DPR relationships tend to underestimate R. As posited
by [8,15], this may be due to the use of predefined constants (α, β and τ) in the relationships
between the precipitation rate and mass-weighted mean diameter (Equation (1)) that may
not be adequate for the rainfall characteristics of the region of study. In addition, factors
such as the attenuation effect, multiple scattering, non-uniform beam filling, and terrain
interference directly affect the accuracy of the GPM DPR parameter estimation [6,53].

The results of the analysis of the matches between GPM DPR overpasses with disdrom-
eters were consistent with those of similar studies [8,15]. The superiority of the optimal
matching approach and the lower errors associated with the radar reflectivity factor and
the mass-weighted mean diameter, as well as the poorer agreement between the intercept
parameter and the rainfall rate, are indications of limitations in the DPR algorithm. In
addition, it is worth mentioning that there is no clear trend of improvement of the DF
algorithms over SF in version 07, which agrees with what was observed with version 6 by
Adirosi et al. [15]. Finally, the limited ability to detect the convective precipitation type,
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documented in studies analyzing previous GPM DPR previous versions [11,13,14], is also
found here for version 07 as reported by Seela et al. [8].

5. Conclusions

In this study, more than nine years of data ranging from March 2014 to November
2023 recorded by the GPM DPR over different geographical areas of the northeastern
Iberian Peninsula were analyzed. Based on information from seven disdrometers, the
first part of the study focuses on the characterization and comparison of DSD-derived
parameters obtained from both datasets independently considering 162,328 and 2263 min
of precipitation records observed by disdrometers and the GPM DPR, respectively. Results
were stratified by orographic and climatic characteristics and several rainfall rate intensity
thresholds. The second part of the study focused on validating four spatial matching
methods between DPR overpasses and disdrometers. The main results are as follows:

1. The behavior of DSD-derived variables among the plain, mountain and coastal sub-
regions showed some differences according to the disdrometer data, which were
captured by the DPR DF algorithm. However, the GPM DSD parameters show an
overestimation of Dm by about 0.1 mm at low and moderate precipitation rates (0.1–1,
1–2, 2–4 mm/h) and by 0.4 mm at precipitation rates greater than 4 mm/h by the
DF algorithm with respect to the disdrometer. In contrast, the behavior of Nw was
underestimated by the DPR, with a maximum value close to 6 dBNw at moderate
precipitation rates (4–8 mm/h).

2. Disdrometer data indicated that the shape parameter mode over the area of study
corresponds to the DPR fixed value (µ = 3), but the median was higher (µ = 7). More-
over, µ presents a distribution with a substantial natural variability which implies an
increase in the uncertainty of DSD estimates based on the constant value assumption.

3. The superiority of the optimal matching approach was observed when validating the
GPM DPR rainfall parameters with disdrometers. The GPM DPR estimates showed
better verification statistics for the radar reflectivity factor in both Ku and Ka bands
and the mass-weighted mean diameter, while worse results were found for the rainfall
rate and the shape parameter Nw.

4. According to the available sample of overpass matches (41 cases) the DPR DF rainfall
classification algorithm showed little ability to detect events identified as convective
by the disdrometers.

To the authors’ knowledge, this validation study is the first of its kind covering the
Iberian Peninsula and one of the few carried out in areas with a Mediterranean climate.
Moreover, this is one of the first analyses in which recent updates incorporated in version
7 are validated. Results reported here may contribute to enhance our understanding of
potential applications and limitations of satellite precipitation observations and can be
considered in the development of future satellite precipitation retrievals.
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Appendix A

The GPM algorithm assumes a gamma-type DSD (normalized version) to estimate the
DSD parameters of the form:

N(D) = Nwf(D; µ; Dm) (A1)

f(D; µ; Dm) =
6(µ + 4)(µ+4)

44Γ(µ + 4)

(
D

Dm

)µ

exp
[
−(µ + 4)D

Dm

]
(A2)

where N(D) is the drop size distribution (in mm−1m−3), D is the diameter of the raindrop
(mm), Dm (mm) is the mass-weighted mean diameter which represents a mean particle size
of the distribution. Nw is the normalized scaling parameter for concentration (mm−1m−3),
µ the shape parameter for gamma distribution and Γ denotes the gamma function. Letting
σb (in mm2) and σe (in mm2) be the backscattering cross section and the extinction cross
section of raindrops at a given temperature, respectively, K as a constant defined as a
function of complex refractive index and λ the radar wavelength (in mm), the equivalent
reflectivity Z (in mm6/m3) and specific attenuation k (in dB/km) are expressed as follows:

Ze = NwF(λ; µ; Dm) (A3)

F(λ; µ; Dm) =
λ4

Π5|K|2
∫

f(D; µ; Dm)σb∆D (A4)

k = NwG(D; µ; Dm) (A5)

G(D; µ; Dm) = 4.343 × 10−3
∫

f(D; µ; Dm)σe∆D (A6)

Equations (A3) and (A5) are used by the SF and DF algorithms to determine the DSD
parameters. The terms F(λ; µ; Dm) and G(D; µ; Dm) refer to normalized radar reflectivity
and specific attenuation (in dB/km) and are the same as F(Dm) and G(Dm) in [19] and Ib
(Dm, µ, λ) and Ie (Dm, µ, λ) in [9]. To determine parameters Dm and Nw, the GPM-DPR
uses the SF and DF algorithms defined by Equations (A7) and (A8), respectively.

k
Ze

=
G(D; µ; Dm)

F(λ; µ; Dm)
(A7)

DFR = 10 log10

(
F(λ1;µ; Dm)

F(λ2;µ; Dm)

)
(A8)

The aim of these algorithms is to define a monotonic function that only depends on
Dm [10,14,19]. It means that from measurements of k/Ze or DFR we will obtain a value of
Dm and then, Nw can be calculated by replacing Dm in (A3) or (A5).
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