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Abstract
Aims/hypothesis The euglycaemic–hyperinsulinaemic clamp is the gold-standard method for measuring insulin sensitivity, but is
less suitable for large clinical trials. Thus, several indices have been developed for evaluating insulin sensitivity from the oral
glucose tolerance test (OGTT). However, most of them yield values different from those obtained by the clamp method. The aim
of this study was to develop a new index to predict clamp-derived insulin sensitivity (M value) from the OGTT-derived oral
glucose insulin sensitivity index (OGIS).
Methods We analysed datasets of people that underwent both a clamp and an OGTTor meal test, thereby allowing calculation of
both the M value and OGIS. The population was divided into a training and a validation cohort (n = 359 and n = 154, respec-
tively). After a stepwise selection approach, the best model for M value prediction was applied to the validation cohort. This
cohort was also divided into subgroups according to glucose tolerance, obesity category and age.
Results The new index, called PREDIcted M (PREDIM), was based on OGIS, BMI, 2 h glucose during OGTT and fasting
insulin. Bland–Altman analysis revealed a good relationship between theM value and PREDIM in the validation dataset (only 9
of 154 observations outside limits of agreement). Also, no significant differences were found between theM value and PREDIM
(equivalence test: p < 0.0063). Subgroup stratification showed that measured M value and PREDIM have a similar ability to
detect intergroup differences (p < 0.02, both M value and PREDIM).
Conclusions/interpretation The new index PREDIM provides excellent prediction ofM values fromOGTTormeal data, thereby
allowing comparison of insulin sensitivity between studies using different tests.
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Abbreviations
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GIR Glucose infusion rates
IFG Impaired fasting glucose
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NGT Normal glucose tolerance
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Introduction

Insulin resistance contributes to the deterioration of postpran-
dial glucose homeostasis, thereby playing a fundamental role
in the pathophysiology of type 2 diabetes [1]. Insulin resis-
tance is also a common feature of obesity, non-alcoholic fatty
liver disease and cardiovascular diseases [2, 3].

The reference method to quantify insulin sensitivity is the
euglycaemic–hyperinsulinaemic clamp technique [4]. The
clamp-derived M value, based on steady-state glucose infusion
rates (GIR), yields a measure of insulin sensitivity under condi-
tions of constant glycaemia and hyperinsulinaemia. Despite its
accuracy and precision, the procedure is time-consuming and
costly, and its use for screening or larger clinical studies is there-
fore limited. The (frequently sampled) intravenous glucose tol-
erance test, coupled with modelling analysis, also provides an
insulin sensitivity index, which has been thoroughly validated
against the clamp. However, it shares several limitations with the
clamp, despite recent methodological advances [5].

The OGTT was originally employed to classify glucose tol-
erance and to diagnose diabetes but, more recently, it has also
been used to evaluate beta cell function and insulin secretion, as
well as insulin sensitivity [6]. Several OGTT-based indices typ-
ically show acceptable correlation with the clamp-derived M
value. Nonetheless, these OGTT indices have different measure-
ment units than the M value, thus making direct comparisons
difficult. This prompted the present study, which aimed at devel-
oping and validating a method to predict clamp-derived insulin

sensitivity from anOGTT-derived index.Among several indices,
as the starting point for the prediction of theM value we selected
the oral glucose insulin sensitivity index (OGIS) [7], which has
the advantage of representing glucose clearance. Thus, OGIS has
a specific physiological basis, compared with other totally em-
pirical indices. Also, in a previous study comparing some
OGTT-derived indices, OGIS performed better than the other
indices analysed [8]. In our approach, the clamp index is predict-
ed from OGIS in combination with easily obtained measure-
ments, such as anthropometric or other simply assessed
variables.

Methods

Participants and experimental procedures This study analy-
ses data collected in previous studies, each carried out in
agreement with the Declaration of Helsinki and upon approval
by the respective local ethics committees [9–14]. Participants
were studied at (1) the German Diabetes Center, Düsseldorf,
Germany; (2) the Karl-Landsteiner Institute for Endocrinology
and Metabolism and 1st Medical Department, Hanusch
Hospital, Vienna, Austria, and Department of Internal
Medicine III, Medical University of Vienna, Vienna, Austria;
(3) the Steno Diabetes Center, Gentofte, Denmark; (4) the
Institute of Endocrinology, Prague, Czech Republic; and (5)
the Clinical Research Center of the University of Texas
Health Science Center, San Antonio, TX, USA.

Research in context 
What is already known about this subject? 

The gold-standard method for quantifying insulin sensitivity is the euglycaemic–hyperinsulinaemic clamp 

Despite its accuracy and precision, the clamp is time-consuming and costly, and its use for screening or larger clinical 
studies is therefore limited 

Several OGTT-based indices typically show acceptable correlation with the clamp-derived index (M value) 

What is the key question? 

Is it possible to develop a new OGTT-based index that will reliably predict the M value?  

What are the new findings? 

The clamp-derived index is predicted from an OGTT-based index (OGIS) in combination with easily available 
measurements, such as anthropometric or other simply assessed variables 

In the validation dataset, Bland–Altman analysis revealed a good relationship between the M value and its OGTT-based 
predictor (PREDIM) 

No significant differences were found between the M value and PREDIM according to a test of equivalence 

How might this impact on clinical practice in the foreseeable future? 

PREDIM makes it possible to predict M values for large-scale studies where only OGTT (or meal test) data are 
available, and to compare them with clamp-derived M values obtained in small experimental studies with intensive 
phenotyping
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Participants who attended the German Diabetes Center did
not have type 2 diabetes at the time of recruitment, though some
had a positive family history of type 2 diabetes [9]. Participants
recruited in Vienna either had normal glucose tolerance (NGT),
impaired glucose tolerance (IGT) or type 2 diabetes [10].
Participants from the Steno Diabetes Center were recruited from
the Inter99 study and had either NGT, isolated IGT, or isolated
impaired fasting glucose (IFG) [11]. Participants from the Prague
Institute of Endocrinology were part of two datasets: the first one
included bariatric patients with type 2 diabetes [12], the second
included patients with conditions known to affect insulin sensi-
tivity (obesity and/or polycystic ovary syndrome), without
known type 2 diabetes [13]. Participants from the San Antonio
Clinical Research Center were recruited through advertising
within the medical centre and in local newspapers, and had glu-
cose tolerance spanning from normal to type 2 diabetes [14].
Experimental clamp procedures at the five centres have been

reported in detail in the original studies [9–14]. For all partici-
pants, the M value was calculated as the glucose infusion rate
during the last 20–30 min of the test with space correction when
appropriate [4]. Participants from Germany/Austria, Denmark,
Texas, and from the second Czech Republic dataset also
underwent a 2–3 h 75 g OGTT, while those from the first
Czech Republic dataset received a standardised liquid mixed-
meal test (MMT). Values from either test, the OGTT or MMT,
depending onwhichwere available, were used for the calculation
of the OGIS index, as a previous study demonstrated the equiv-
alence of OGIS from OGTT and MMT [15].

Calculation of OGIS The approach for the derivation of OGIS
has previously been provided in full [7]. Here, we briefly
present its formula for the 3 h OGTT or MTT test (with glu-
cose and insulin in SI units):

OGIS ¼ 1=2� Bþ sqrt B2 þ 4� p5� p6� G120–Gclð Þ � ClOGTT
� �� �

B ¼ p5� G120 –Gclð Þ þ 1ð Þ � ClOGTT
ClOGTT ¼ p4� p1� D0 –V� G180–G120ð Þ=Tð Þ=G120þ p3=G0ð Þ= I120– I0þ p2ð Þ

ð1Þ

where G0, G120, G180 is glucose at 0, 120, 180 min, I0 and
I120 is insulin at 0 and 120 min, p1 = 2.89, p2 = 1618, p3 =
779, p4 = 2642, p5 = 11.5 × 10−3, p6 = 117, V = 104 (glucose
distribution volume, ml/m2), T = 60 (time interval between
G180 and G120, min), Gcl = 5 (typical clamp glucose concen-
tration, mmol/l), and D0 is glucose dose of the OGTTor MTT
(in mmol/m2, i.e. normalised for body surface area); sqrt is the
square root operator. In the case of the 2 h test, the OGIS
formula is similar, but G180 is replaced by G120, G120 and
I120 are replaced by G90 and I90, respectively, and T = 30;
p1–p6 parameters become: p1 = 6.50, p2 = 1951, p3 = 4514,
p4 = 792, p5 = 11.8 × 10−3, p6 = 173.

Prediction model of clamp-derived insulin sensitivity The pre-
diction of the M value from OGIS was based on the develop-
ment of a multivariable model. We hypothesised that when
some individuals are studied with an oral glucose challenge,
data on some basic variables are always available: sex, age,
BMI, fasting glucose and insulin concentrations and 2 h glu-
cose concentration. These variables were considered as possi-
ble predictors of theM value along with OGIS. From the above
variables, we also derived some categorical variables: glucose
tolerance status (according to ADA 2010 criteria, i.e. NGT,
IFG and/or IGT, and type 2 diabetes [16]), the obesity category
(BMI < 25 kg/m2, lean; BMI ≥ 30 kg/m2, obese; overweight
otherwise) and age category (elderly if ≥ 50 years). The total
dataset (513 individuals) was randomly split into training and
validation datasets (70% and 30%, respectively, according to
common practice [17]). In the training dataset, all potential

predictors were included in a linear regression model providing
R2 statistics. We then applied the stepwise model selection
approach, based on Akaike’s information criterion (AIC), to
determine the optimal prediction model (the lower the AIC
value, the better the model) [18], including both backward
and forward search strategies. The optimal prediction model
thus identified was then applied to the validation dataset.

Insulin sensitivity in subgroups In the validation dataset, par-
ticipants were divided into subgroups according to the follow-
ing categories: glucose tolerance, obesity and age. We then
analysed possible differences in insulin sensitivity among
the subgroups, according to both the real (clamp–derived)
and the model-predicted M value.

Statistics All analyses indicated in the Methods were per-
formed in R (The R Foundation for Statistical Computing
Platform, Vienna, Austria). Data are presented as mean ± stan-
dard error (SEM), unless otherwise specified. In both the train-
ing and validation datasets, comparison between observed and
predictedM value was performed by linear regression and test
of equivalence [19] (the two one-sided paired t test) on loga-
rithmically transformed values, in order to achieve homosce-
dastic prediction models. Bland–Altman plots including limits
of agreement were also reported. Further validation ofM value
prediction was performed by leave-one-out cross-validation
(LOOCV) on the training dataset, and related cross-validated
R2 statistics [20]. In the validation dataset, tests on subgroups
were performed using ANOVA (on logarithmically
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transformed data). A two-sided p value < 0.05 was considered
statistically significant.

Results

Model development Table 1 presents the variables tested forM
value prediction in both the training and the validation datasets.
All the variables selected forM value prediction (i.e. OGIS, sex,
age, BMI, fasting glucose and insulin and 2 h glucose) were
included in the initial multivariable regressionmodel. However,
the majority of them were not significant in the overall model,
which is likely to be due to the excessive number of variables.
Using the stepwise approach, we then searched for the optimal
model, which identified OGIS, BMI, 2 h glucose (2hGLU) and
fasting insulin (INSf) as the variables to be included (AIC =
−712.73 vs AIC = −591.28 for the model including OGIS
alone). The new index for M value prediction, called
PREDIcted M (PREDIM), was calculated as follows:

loge PREDIMð Þ ¼ Aþ B� loge OGISð Þ þ
C� loge BMIð Þ þ D� loge 2hGLUð Þ
þ E� loge INSfð Þ

ð2Þ

where A = 2.8846219, B = 0.5208520, C = −0.8223363, D =
−0.4191242, E = −0.2427896.

Comparison withM values Based on eq. (2) we calculated the
PREDIM values in the training dataset, and compared them
with the corresponding real M values. Linear regression
analysis yielded an adjusted R2 of 0.733, p < 0.0001
(Fig. 1a). Of note, when predicting the M value with OGIS
alone, the R2 value was lower (adjusted R2 = 0.619,
p < 0.0001). The estimated variance of the error in eq. (2)
was 0.135. The Bland–Altman plot showed that only 18 out
of 359 observations were outside the limits of agreement (Fig.
2a), though it should be acknowledged that the plot suggests a
small downward trend, this meaning somehow lower agree-
ment for the extreme values (very low or very high values).
According to the equivalence test, the M value and PREDIM
value were virtually identical (mean of the difference between
loge-transformed M value and PREDIM value was −5.95 ×
10−16, with p < 0.0001 when the equivalence bound was set to
0.1). This means having tested that the PREDIM values in the

Table 1 Variables tested in multivariable prediction modelling for the
prediction of theM value, and categorical variables used in the validation
phase

Variable Training
dataset

Validation
dataset

n 359 154

M value (mg kg−1 min−1) 4.06 ± 0.14 4.17 ± 0.24

Variable tested in prediction model

OGIS (ml min−1 m−2) 345.8 ± 5.3 345.3 ± 8.0

Sex (male/female) 158/201 72/82

Age (years) 45.5 ± 0.7 46.3 ± 1.0

BMI (kg/m2) 30.2 ± 0.4 30.5 ± 0.6

Fasting glucose (mmol/l) 7.21 ± 0.16 7.08 ± 0.23

Fasting insulin (pmol/l) 88.7 ± 3.9 82.7 ± 4.3

2 h glucose (mmol/l) 10.62 ± 0.32 10.36 ± 0.46

Categorical variable

Glucose tolerance (NGT/IGR/T2DM) 133/89/137 56/36/62

Obesity category
(lean/overweight/obese)

72/139/148 34/53/67

Age category (young/elderly) 203/156 84/70

Data are mean ± SEM

IGR, impaired glucose regulation (IFG or IGT or both); T2DM, type 2
diabetes
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Fig. 1 Linear regression plot in the training dataset (a) and in the valida-
tion dataset (b). Regression equations (solid lines) are y = 1.00x – 0.01,
R2 = 0.733, p < 0.0001 (a), and y = 1.02x + 0.01, R2 = 0. 692, p < 0.0001
(b). 95% CIs and prediction intervals are also reported (dashed lines and
solid thick lines, respectively)

ð2Þ

1138 Diabetologia (2018) 61:1135–1141



original, not loge-transformed units, are within 10.5% of theM
values (e0.1 is in fact equal to 1.105). Notably, the test
remained significant with the equivalence bound lowered to
0.032, i.e. equivalence in the original units within 3.2%.

Model validation When applying eq. (2) to the validation
dataset, we found a tight relationship between PREDIM values
and realM values, i.e. adjusted R2 = 0.692, p < 0.0001 by linear
regression (Fig. 1b), which was still superior to the variance
explained by OGIS alone (adjusted R2 = 0.587). The estimated
variance of the error in eq. (2) was 0.151. Again, according to
the equivalence test, theM value and PREDIM value were very
similar, showing a mean of the difference equal to 0.021,
p < 0.0063 with an equivalence bound of 0.1 (the test remained
significant when the equivalence bound was lowered, to
0.073). The corresponding Bland–Altman plot detected only
nine of 154 observations outside the limits of agreement (Fig.
2b), though again suggesting a small downward trend. For
further validation, we used the LOOCVmethod, which yielded
a cross-validated R2 of 0.728, in agreement with the linear
regression results reported above.

Subgroup discrimination In the validation dataset, when par-
ticipants were divided into subgroups, we found complete
agreement between the M value and PREDIM value, which

were both significantly decreased from NGT to type 2 di-
abetes, as expected (p < 0.0001 for both the real M value
and PREDIM value; Fig. 3a,b). Similarly, both the M and
PREDIM values showed significantly decreased levels
across obesity (p < 0.0001 for both; Fig. 3c,d), and from
young to elderly (p < 0.02 for the M value, p < 0.001 for
the PREDIM value; Fig. 3e,f). In addition, we have per-
formed the equivalence test in the single subgroups. For
subgroups based on glucose tolerance, the M value and
PREDIM value were found to be similar, down to an
equivalence bound of 0.13 for NGT and 0.11 for both
impaired glucose regulation (IFG and/or IGT) and type 2
diabetes participants. For subgroups based on BMI, the
lowest equivalence bounds were 0.18 for lean, 0.16 for
overweight and 0.10 for obese participants, whereas for
subgroups based on age, the lowest equivalence bounds
were 0.08 for young and 0.12 for elderly participants.

Discussion

This report presents a new method to predict clamp-derived
whole body insulin sensitivity (M value) from an OGTT or
MMT performed in a large cohort of individuals with varying
degrees of glucose tolerance. We developed an index, called
PREDIM, calculated from OGIS [7] and other simply
assessed variables. The reliability of the proposed method
was demonstrated in an independent sub-sample of partici-
pants. This method yielded excellent agreement between the
real (clamp-derived) and the predicted M value, both in terms
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Fig. 3 Bar chart (mean ± SEM) for observed M (left) and predicted M
(right) in the validation dataset for participants stratified by glucose tol-
erance (a, b), degree of obesity (c, d) and age (e, f). IGR, impaired
glucose regulation (IFG and/or IGT); T2DM, type 2 diabetes. The num-
ber of individuals in each subgroup is reported in Table 1
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of mutual relationships and in terms of the ability to detect
differences among subgroups of participants.

The relevance of this study lies in the ability to directly
compare OGTT-based and clamp-based insulin sensitivity
values obtained in the same individual within a short period
of time. This will be of special interest for the comparison of
data from different studies, where participants have been ex-
amined by one test or the other. Specifically, the new formula
makes it possible to calculate theM value for large-scale stud-
ies where only OGTT or MMT data are available, and to
compare them with clamp-derivedM values obtained in small
experimental studies with intensive phenotyping.

Among all the available methods for the estimation of in-
sulin sensitivity from an OGTT or MMT, we opted for OGIS
because previous studies have proven its superior perfor-
mance compared with other indices [8]. Moreover, OGIS is
based on a more solid physiological basis, since it describes
the glucose clearance, while most other indices are purely
empirical. Another advantage of OGIS resides in its applica-
bility to both OGTT and any kind of meal test, only requiring
the input of the appropriate amount of administered glucose
into the calculation [15].

The new formula for M value prediction features OGIS
plus other predictors. The selected additional predictors are
simple and always available when performing an OGTT. In
particular, BMI, 2 h glucose and fasting insulin together im-
proved M value prediction. For the development of the pre-
diction model, it was first necessary to select two datasets: the
development (training) dataset and the validation dataset.
Here, we randomly split the total dataset into the training
and validation sets, in percentages of 70% and 30%, respec-
tively. To our knowledge, there are no precise recommenda-
tions about percentages for training and validation, thus we
chose the commonly used split of 70% and 30% [17]. This
choice yielded a heterogeneous training dataset that included
male and female individuals covering a wide range of ages,
BMIs and glucose tolerance (which ranged from NGT to se-
vere type 2 diabetes, and, as expected, insulin sensitivity var-
ied manifold between subgroups). In the validation dataset,
the relationship between predicted and observed M values
was remarkably good, as assed by linear regression analysis,
equivalence statistics, and Bland−Altman plot.

As prediction models may also include non-linear terms,
we carried out several supplementary analyses. However, we
did not find any substantial improvement (not shown); there-
fore, we concluded that the proposed linear multivariable
model, i.e. equation (2), represents the easiest and, at the same
time, the most appropriate solution.

In this study, the number of participants with a long dura-
tion of type 2 diabetes was relatively small. This may mean
that severe insulin resistance is under-represented in the data-
base. However, there was a wide range of M values in the
training dataset (ranging from 0.5 to 15.2 mg kg−1 min−1).

One previous study suggested an M value of 4.9 mg
kg−1 min−1 as a cut-off level for insulin resistance [21].
Since in our training dataset 67% ofM values were lower than
this cut-off level (with the lowest values being about 10% of
the cut-off), we claim that our formula will perform satisfac-
torily in individuals with severe insulin resistance.

In conclusion, we have exploited rigorous statistical tech-
niques to develop an index (PREDIM) that predicts clamp
insulin sensitivity (M value) from an OGIS value in combina-
tion with some basic variables easily available. The steps that
need to be performed forM value prediction are: (1) use of eq.
(2) to get PREDIM in log units, and (2) reverse log transfor-
mation [PREDIM = e log(PREDIM)] to obtain PREDIM in the
traditional M units (mg kg−1 min−1). We have found that the
method provides excellent prediction of the real M value and
allows the comparison of insulin sensitivity from different
investigations and different groups of participants, who may
have been studied with different tests.
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