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Abstract
Groundwater flow modeling is commonly used to calculate groundwater heads, esti-
mate groundwater flowpaths and travel times, and provide insights into solute transport
processes within an aquifer. However, the values of input parameters that drive
groundwater flow models are often highly uncertain due to subsurface heterogene-
ity and geologic complexity in combination with lack of measurements/unreliable
measurements. This uncertainty affects the accuracy and reliability of model outputs.
Therefore, parameters’ uncertainty must be quantified before adopting the model as an
engineering tool. In this study, wemodel the uncertain parameters as random variables
and use a Bayesian inversion approach to obtain a posterior, data-informed, probability
density function (pdf) for them: in particular, the likelihood function we consider takes
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into account both well measurements and our prior knowledge about the extent of the
springs in the domain under study. To keep the modelistic and computational com-
plexities under control, we assume Gaussianity of the posterior pdf of the parameters.
To corroborate this assumption, we run an identifiability analysis of the model: we
apply the inversion procedure to several sets of synthetic data polluted by increasing
levels of noise, and we determine at which levels of noise we can effectively recover
the “true value” of the parameters. We then move to real well data (coming from the
Ticino River basin, in northern Italy, and spanning a month in summer 2014), and
use the posterior pdf of the parameters as a starting point to perform an uncertainty
quantification analysis on groundwater travel-time distributions.

Keywords Bayesian inversion · MODFLOW · MODPATH · Travel time
distribution · Uncertainty quantification · Model validation

MSC Classification 76S05 · 65C05 · 65M32 · 86A05 · 86A22 · 86A32

1 Introduction

Groundwater mathematical models are often used to simulate groundwater heads and
flows, estimate groundwater travel time, and increase understanding of solute transport
processes in an aquifer system (e.g. Ntona et al. 2022; You et al. 2020). Unfortunately,
such models are often associated with large uncertainties in model inputs (such as
hydraulic conductivity, porosity, and recharge rate) and in other parameters used to
configure the boundary conditions (e.g.Bianchi Janetti et al. 2019). These uncertainties
can arise from a combination of factors, including the complex and heterogeneous
nature of the aquifer system, aswell as insufficientmeasurements of aquifer properties,
groundwater heads, and boundary conditions. Such parameter uncertainties can make
it difficult to accurately estimate travel time and solute transport within an aquifer.
To overcome such challenges, a common approach is to model uncertain parameters
as random variables and consider an uncertainty quantification (UQ) approach to
the prediction problem, divided in two steps. In the first one, we employ Bayesian
inversion (Stuart 2010) to reduce the uncertainty on the parameters by incorporating
the data at hand, or more precisely, by computing the posterior probability density
function (pdf) of the uncertain parameters. In the second step, we perform a forward
UQ analysis (Ghanem et al. 2017), using a relatively straight-forward Monte Carlo
method: we generate several random values of the parameters (according to their
posterior pdf), and compute for each set of values first the groundwater flow and then
the corresponding travel times of solute particles released in the domain; finally, we
perform statistical analyses on the sets of travel times thus obtained, to provide robust
estimates of such times.

The Bayesian approach we employ in the first step introduces a non-standard aspect
in that our likelihood function incorporates not only rawdata (specifically, groundwater
well measurements) but also expert knowledge on the amount of land surface that is
predicted to be covered by springs (ideally around 1% but in any case not exceeding
the range 0–2%, based on previous “qualitative” knowledge about the peculiarities of
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the flow in study area). To simplify the subsequent forward UQ analysis, we introduce
the widely adopted assumption that the posterior pdf is approximately Gaussian (Bui-
Thanh et al. 2013; Piazzola et al. 2021). This assumption is well-suited if the posterior
pdf is unimodal, symmetric, and well-peaked, or equivalently if the log-posterior
function has a unique, narrow minimum at the center of ellipsoidal isolines. To assess
the validity of this assumption, we carry out an identifiability analysis (Piazzola et al
2021; Guillaume et al. 2019; Raue et al. 2009), where we repeatedly perform the
Bayesian inversion using different sets of synthetic data, i.e., artificial groundwater
head data that were generated by first running the groundwater flow model using a
known set of input parameter values and then polluting the results by adding Gaussian
noise to mimic measurement errors. The goal of these preliminary tests is to verify
whether the simplifiedBayesian procedure (with theGaussian assumption) reasonably
identifies the true values of the uncertain parameters (i.e., if the peak of the posterior
pdf is close to the true value, and its standard deviation is not too large). The different
sets of data we consider are generated by adding Gaussian noise with increasingly
large standard deviation, to assess up to which level of noise the procedure is reliable,
before running it for the observed data.

The groundwater flowmodel towhich this procedure is applied in this study is in the
Ticino groundwater basin as shown in Fig. 1, which underlies an important agricultural
region in Northern Italy (Baker et al. 2022). Like many groundwater models, there is
uncertainty surrounding the hydraulic conductivity of the aquifer and uncertainty due
to the model boundary conditions (e.g., how the rivers, springs, and model edges are
constructed). In addition, there is also uncertainty associatedwith the amount of aquifer
recharge that occurs due to the extensive irrigation activities in the region. While the
flood irrigation techniques that are applied to the rice fields are known to contribute
recharge to the superficial aquifer system, the magnitude of this contribution is highly
uncertain. Lastly, there is additional uncertainty introduced due to the limitations of
the observed groundwater head data. While there are twenty-two groundwater wells
located in the study area, their heads were not sampled at the same time. Rather,
the heads were sampled over the span of approximately 1 month during August and
September of 2014. Furthermore, some levelsmaynot have completely recovered post-
pumping prior to measurement, adding additional uncertainty. Therefore, by applying
the above method, this study aims to overcome this combination of uncertainties and
estimate the accuracy to which the groundwater model can predict travel times.

We close this introduction by mentioning that analyses of travel times of passive
solute transport have been proposed in several works in the UQ literature. The main
difficulty of these analyses arises from the fact that passive transport is typically
described by hyperbolic PDEs (e.g., linear conservation laws or more complicated
versions), which are known to be hard to solve efficiently in a UQ context (resorting,
e.g., to surrogate modeling techniques) due to the fact that the solution of the PDE
(in this case, the concentration of the solute at each point in space and time) does
not depend smoothly on its uncertain parameters (typically, the transport field). As a
consequence, Monte Carlo methods such as the one briefly sketched above, which are
insensitive to this problem, are often employed (Salandin and Fiorotto 1998; Riva et al.
2006; Charrier 2015). To reduce the cost of Monte Carlo methods, several strategies
can be conceived. Müller et al. (2011) propose approximating the Darcy velocity
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field by surrogate modeling and then applying MC only to the transport part of the
problem. Other works (Müller et al. 2014; Tesei 2016; Crevillén-García and Power
2017) consider variance reduction by Multi-Level Monte Carlo. A different approach,
based on Markovian Velocity Processes is proposed in Meyer et al. (2013). Liao
and Zhang (2016) propose to rewrite the problem in a more convenient form and then
apply suitable surrogate modeling techniques. In our work, the cost of theMonte Carlo
method is mitigated by the fact that the uncertainty on the parameters left to explore
after the Bayesian inversion process is reduced by a factor of at least 10 with respect to
the prior information around 90% of the time. The novelty of this work thus does not
reside in the Monte Carlo method per se, but in the “non-standard” formulation of the
Bayesian inversion to incorporate expert knowledge, combined with the application
to a real test case.

The rest of this paper is organized as follows: Sect. 2.1 describes the geography of
the study area; Sect. 2.2 describes the numerical methods used to compute the fluid
flow and the trajectories of the solute particles (using MODFLOW and MODPATH,
respectively); Sect. 2.3 provides details on the model used (boundary conditions, ini-
tial conditions, geometry, computational grid, etc.). The Uncertainty Quantification
method is described in Sect. 3: more specifically, Sects. 3.1 through 3.3 deal with
the Bayesian inversion approach (computation of the nominal value of the parame-
ters and of their covariance matrix); Sect. 3.4 presents the identifiability analysis to
assess the validity of theBayesian inversion procedure; Sect. 3.5 describes the Forward
UQ analysis for the travel times computed by MODPATH. Computational results are
then reported in Sect. 4: Sect. 4.1 discusses the results of the identifiability analysis;
Sect. 4.2 applies the Bayesian inversion to the real data; the forward UQ analysis
for travel times is performed on synthetic datasets in Sect. 4.3, while real data are
considered in Sect. 4.4. Finally, conclusions are drawn in Sect. 5.

2 Groundwater and particle flowmodel description

2.1 Study area

The study area is in the Po Plain of Northern Italy and encompasses the southern half
of the Ticino basin as shown in Fig. 1a, b. The study area is approximately 501.5 km2

and consists of the portion of the Ticino basin between the town ofAbbiategrasso in the
north to the city of Pavia in the south. The Ticino River flows south through the basin
and joins the westward flowing Po River at the southern end of the study area. The
length of the Ticino River within the model domain is 55.7 km, while the length of the
PoRiver along the southernmodel edge is 9.1 km.Natural and human enhanced springs
commonly occur in the basin (Regione Lombardia 2007, 2013b; De Luca et al. 2014;
Balestrini et al. 2021), especially where an abrupt change in land surface elevation
(20–30 m) occurs between the higher elevation plains along the edges of the basin to
the lower elevation river valley in the basin center. The basin also contains a network
of typically unlined canals and irrigation ditches that provide water sourced from the
upstream part of the river and springs for agricultural purposes, dominantly for rice
field irrigation, which constitutes 29% of land use in the area (Regione Lombardia
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Fig. 1 a Location of the model domain in Northern Italy. bMap of main hydrologic features (rivers, springs,
canals), observation wells, monitoring stations, and rice fields within the model domain. c Model grid
depicting the boundary conditions applied to the grid cells to represent the hydrologic features. Drain
cells representing springs/fontanili are red, constant head cells representing the rivers are blue, general
head boundary cells at the edges of the active model domain are black, and cells receiving recharge (from
precipitation, irrigation and/or canal leakage) are teal. Rice field locations (additional drain boundaries) are
not shown but can be seen in (b). dMap depicting the extent of the three hydraulic conductivity zones used
in the model (color figure online)

2019). These irrigation activities contribute to the aquifer recharge in the region, with
40–50% or more of the irrigation water recharging the underlying superficial aquifer
(Regione Lombardia 2008; Lasagna et al. 2020). In addition to recharge from canal
leakage and flood irrigation in rice fields, the superficial aquifer is also recharged
by precipitation. Within the study area, the superficial unconfined aquifer ranges in
thickness from about 35–109 m and consists of proximal braid plain deposits. These
deposits are from the middle-late Pleistocene and consist of gravel within a sandy
matrix (De Caro et al. 2020). Previous studies in the region indicate the hydraulic
conductivity of the superficial aquifer ranges from about 2 × 10–4–1 × 10–3 m/s, but
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can vary spatially, with values as low as 1 × 10–5–1 × 10–4 m/s and as high as 2 ×
10–3–5 × 10–3 m/s (De Caro et al. 2020; Lasagna et al. 2020). Underlying aquifer
units in the study area are separated from the superficial aquifer by confining layers,
but these units are not considered in the present study.

2.2 Numerical model

The groundwater model used in this study is MODFLOW 6 (Langevin et al. 2017,
2021), an open-source code developed by the United States Geological Survey
(USGS). MODFLOW simulates groundwater heads and fluxes through space and/or
time by solving the governing differential equation in every model grid cell using the
finite difference method (Harbaugh 2005; Langevin et al. 2017, 2021). We consider
the steady-state version of the model, whose governing equation is:

∂

∂x

(
Kxx

∂h

∂x

)
+ ∂

∂ y

(
Kyy

∂h

∂ y

)
+ ∂

∂z

(
Kzz

∂h

∂z

)
+ W = 0 (1)

where:

Kxx, Kyy, and Kzz are the principal components of the hydraulic conductivity tensor
(L/T) along the coordinate directions x, y, and z (vertical direction);
h is the piezometric head (L);
W is a volumetric flux per unit volume representing sources (W > 0) and/or sinks (W
< 0) of water in the groundwater system (T−1);

The governing equation (Eq. 1) is derived from the continuity equation for the
conservation of mass and Darcy’s law for saturated porous media. When the aquifer
is unconfined, the position of the phreatic surface (i.e., the interface between the
saturated and unsaturated zones) is not known a-priori and the problem becomes non-
linear (Mehl 2006; Painter et al. 2008). In this study, the Newton–Raphson method
is used to solve the system of groundwater flow equations rather than the standard
MODFLOWmethod (Picard iterations) because it is more stable and converges more
reliably for problems where the water table traverses multiple cell layers due to factors
such as complex geology and steep terrain (as in our case) (Niswonger et al. 2011;
Langevin et al. 2017).

After MODFLOW is used to compute the groundwater flow field, MODPATH ver-
sion 7 is then used to perform particle tracking (Pollock 1988, 2016). This operation
is done by releasing particles at the land surface in cells specified by the user, com-
puting the trajectories of such particles by integrating with a semi-analytic method the
kinematic equation of their motions (pure advection transport) and from this deriving
the amount of time required for them to exit the computational domain. This allows
us to obtain the cumulative frequency distribution of the travel times of groundwater
discharging from the model (Pollock 1994, 1988, 2016; Visser et al. 2009). Typically,
this discharging groundwater exits the model through rivers, springs, wells, or other
discharge boundaries within the model domain. The effects of diffusion and disper-
sion are ignored since they would require field data, hardly achievable on such a large
domain, to calibrate the model coefficients of related terms in the transport equation
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(Pollock 1994; Visser et al. 2009). We use the FloPy package (Bakker et al. 2016) in
Python to write both the MODFLOW and MODPATH input files and implement the
appropriate boundary conditions.

2.3 Model setup

The groundwater flow model used in this study encompasses the southern half of
the Ticino basin. As already mentioned, it is run as a steady-state model, focused
on August/September 2014 conditions due to the data available: a single value of
observed groundwater head data at 22 well locations, whose measurement times are
not identical (but all included in the 2 months mentioned). The model domain consists
of 50× 50 m grid cells in the horizontal plane, resulting in 686 rows and 727 columns,
and 3 horizontal layers of grid cells, for a total of about 6.01× 105 active grid cells. To
better capture the water table position while minimizing the computational expense,
the top two layers of grid cells are each a quarter of the model thickness, while
the bottom layer of grid cells is half of the model thickness. A 5 m digital terrain
model (Regione Lombardia 2015) was resampled to a 50 m resolution which was
then used to set the surface elevations of the grid cells. The base of the superficial
aquifer was created by interpolating data of the unconfined aquifer basal elevations
(Regione Lombardia 2022). According to a hydrogeological conceptual model that
was proposed in a previous work (Baker et al. 2022), the superficial aquifer consists of
three zones with differing hydraulic conductivities as depicted in Fig. 1d: (1) a lower
hydraulic conductivity zone (Kzone1) along the model edges in the higher elevation
plains, (2) a zone with intermediate hydraulic conductivity (Kzone2) in the northeastern
portion of the model domain, and (3) a higher hydraulic conductivity zone (Kzone3)
in the central river valley (see Table 1 top row for the corresponding ranges). The
uncertain ranges for Kzone1 and Kzone2 are the same, though it is suspected that Kzone2

is likely slightly larger than Kzone1. Kzone2 and Kzone3 only occur in the top two cell
layers, whileKzone1 occurs in the lowermost cell layer across the wholemodel domain.
These three conductivities are therefore considered uncertain, and the subject of our
Bayesian inversion technique detailed in the following. Note that throughout the work
we will always enforce a physically based condition that the values of conductivity
that we consider when running the model are always sorted, ie., Kzone1 ≤ Kzone2 ≤
Kzone3.

Multiple types of boundary conditions are implemented in the groundwatermodel to
represent the various hydrologic features present in the study area, shown in Fig. 1c.
A no-flow boundary is implemented at the bottom surface of the model domain to
mimic the base of the superficial aquifer where it encounters an underlying confining
layer. A general head boundary is implemented along the edge of the model domain
where the edge does not align with a river. Along the northern boundary of the model
domain, the edge was delineated such that it is perpendicular to the groundwater head
contours such that groundwater flow is parallel to the northern model edge. A contour
map of groundwater heads from August/September 2014 groundwater well data was
used to assign the head values of the general head boundary along the edge of the
model domain (Regione Lombardia 2014).
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Table 1 Uncertain ranges of each input parameter value based on a-priori information about the groundwater
basin, the parameter values used to create the base case simulation to which Gaussian noise was added
to generate synthetic datasets, and the estimated parameter values determined through the optimization
procedure using the observed well data

Kzone1 (m/s) Kzone2 (m/s) Kzone3 (m/s) Rirrig (m/s)

Parameter uncertain
ranges

5.0e−5 to
1.0e−3

5.0e−5 to
1.00e−3

1.0e−4 to
1.0e−2

1.0e−10 to
1.0e−6

Base case (true)
parameter values for
synthetic data

6.5e−5 4.5e−4 5.0e−3 2.5e−8

Estimated parameter
values for observed
data

8.13e−5 8.13e−5 6.62e−3 5.69e−8

Estimated standard
deviation of the
parameter values for
observed data

3.72e−6 1.92e−5 1.60e−3 2.14e−8

Coefficients of variation 0.0458 0.2362 0.2417 0.3761

A specified head boundary, imposed by the MODFLOW Constant Head Designa-
tion (CHD) package, is used to represent the Ticino and Po rivers. Water levels at 35
locations (computational sections) along the length of the Ticino River were simulated
during the same period using a 1D unsteady hydraulic model of the river developed
with the open-source software HEC-RAS 5.0.7 (HEC-RAS 2019). River stage data
were measured at two gauging stations (near Vigevano and Pavia) along the Ticino
River and at the confluence of the Ticino and Po rivers (AIPo 2004, 2005, 2020). The
measured stage data from the two gauging stations along the Ticino River were used
to calibrate the HEC-RASmodel and assess the accuracy of the simulated stage levels.
The simulated water levels were then linearly interpolated between the 35 HEC-RAS
model sections to estimate a stage value for every CHD grid cell of the groundwater
flow model through which the Ticino River passes. The interpolated head values were
then directly applied to these grid cells using the CHD package to represent the river.
Additional information on the setup and calibration of the HEC-RAS hydraulic model
used to calculate the river levels can be found in Baker et al. (2022) and Cappato et al.
(2022). Meanwhile, the stage along the short stretch of the Po River included in the
model was assumed constant, with a value equal to that measured at the confluence.
These estimated stage values are the head values assigned to the river cells using the
specified head boundary condition.

The recharge boundary condition, imposed by the MODFLOW Recharge (RCH)
Package, is used to apply recharge to the aquifer in the groundwater flowmodel.Within
the model domain, recharge comes from precipitation, irrigation, and leakage from
irrigation canals. The recharge rate due to precipitation was estimated by subtracting
the potential evapotranspiration (PET) rate and runoff from the precipitation rate, with
no recharge occurring if the PET and runoff exceeded the precipitation rate. The PET
rate was calculated using the FAO-56 Penman–Monteith method (Allen et al. 1998)
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using meteorological data collected at three stations in the study area (ARPA, 2020)
using the PyETo package in Python (Richards 2015). The runoff rate was estimated
using the Soil Conservation Service (SCS) Curve Number (CN) method (Mishra and
Singh 2003) and maps of the hydrological soil class (Regione Lombardia 2013a) and
land cover type (Regione Lombardia 2019). Weekly recharge rates were calculated
for August and September of 2014 and then averaged to obtain a recharge rate for the
study period. Additional recharge was then added to the model to account for recharge
due to flood irrigation within rice fields and leakage from the irrigation canal network.
The amount of recharge due to irrigation activities was also subject to calibration by
Bayesian inversion, due to the limited availability of data on such recharge rates. As
an initial rough estimate, we assume that the recharge rate can range in the interval
reported in Table 1.

Thedrain boundary condition is used to represent the numerous springs and fontanili
(human enhanced springs) in the study area and imposed by the MODFLOW Drain
(DRN) Package, an approach similar to other studies (Bianchi Janetti et al. 2019).
Approximately 140 springs and fontanili have been mapped in the model domain
(Regione Lombardia 2007, 2013b; Magri 2020; Gardini 2021), corresponding to 132
model grid cells. The grid cells containing mapped springs and fontanili are assigned
the drain boundary condition, such that groundwater in these cells is removed from
the model when the water head exceeds the elevation of the land surface. The rate
of discharge from the drain cells out of the model domain is equal to the height of
the water above the land surface multiplied by the drain conductance, which was set
to 100 m2/s. Additional drain boundaries were also placed in grid cells that contain
rice fields to allow for the slight ponding of irrigation waters that can occur due to
the implemented flood irrigation techniques in the region and to remove any excess
irrigation recharge that results in the exceedance of these irrigation depths, which
would typically be removed as runoff into the irrigation canals.

A more complete description of the model structure and the data and methods used
to construct the boundary conditions can be found in Baker et al. (2022), while a
more complete description of MODFLOW and the numerical implementation of its
boundary conditions can be found in the program documentation (Harbaugh 2005;
Hunt and Feinstein 2012; Langevin et al. 2017, 2021).

3 Uncertainty quantification (UQ) analysis

In this section we describe the work plan for UQ: first the Bayesian inversion approach
to “calibrate” the parameters (technically, by computing their posterior pdf), and then
the forward UQ analysis to propagate the uncertainty encoded by the pdf from the
parameters to the quantities of interest of the problem, namely the particle travel
times.
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3.1 Step 1: Bayesian inversion for the uncertain inputs

Summarizing the discussion in the previous sections on the groundwater model in the
current study, the uncertain input parameters include the aquifer recharge rate due to
irrigation (Rirrig) and the hydraulic conductivity values in three different zones within
the study area (Kzone1, Kzone2, Kzone3), that can take values in the ranges reported in
Table 1. There was also some uncertainty in the stage values of the rivers (SRIV ), the
conductance of the drain cells (CD), and the head value of the general head boundary at
the model edges (HGHB), but prior sensitivity analysis revealed that these uncertainties
were not influential on the model results (Baker et al. 2022), and so SRIV and HGHB

were set to measured/interpolated values, while CD was set to 100 m2/s (Musacchio
et al. 2021; Baker et al. 2022). For notational convenience, we collect the uncertain
parameters in a vector p = [p1, p2, p3, p4] = [Kzone1, Kzone2, Kzone3,Rirrig]. A-priori
(i.e., without any data available), we can assume that these parameters are mutually
independent and can take any value in their ranges with “equal probability”, i.e.,
their prior distribution ρprior can be considered as uniform over their ranges (another
sensible assumption would be to model Kzone1, Kzone2, Kzone3, as log-uniform random
variables given that their ranges span multiple orders of magnitude, as well as the
classic lognormal assumption, see e.g. Ricciardi et al. (2005); a thorough comparison
between the possible models would have however exceeded the scope of the current
work). We then employ a Bayesian inversion approach to reduce their uncertainty,
i.e., to obtain a posterior, data-informed, probability density function (pdf) ρpost for
them. This approach relies on the Bayes formula for conditional probabilities, which
dictates that:

ρpost (p) = L(p,h)ρprior (p)
1

C
(2)

where
h*= [h*1,h*2, …, h*nb wells] are the data available; in our problem, they are the well
head measurements at nbwells = 22 locations x1,x2,…,xnb wells,
L(p,h∗) is the likelihood function,
C is a normalization constant that guarantees that ρpost integrates to 1.

Informally, the likelihood function L(p,h∗) is a function that quantifies the “prob-
ability” of observing the data that we measured if the uncertain parameters had value
p, and thus encodes our information on the model and on the data. In particular, under
the assumption that the measured well data h*i are equal to the heads predicted by our
MODFLOW model at location xi for some unknown values of the parameters ptrue,
h(xi,ptrue), plus a Gaussian random variable with zero mean and variance σh

2 (which
plays the role of measurement error), i.e.,

h∗
i = h(xi ,ptrue) + εi , εi ∼ N

(
0, σ 2

h

)
, i = 1, . . . nbwells, (3)

the likelihood function can be written as
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L(
p,h∗) =

∏ nbwells

i = 1
1

σh
√
2π

e
− (h∗

i −h(xi ,p))
2

2σ2h . (4)

Note that evaluation of the likelihood function is expensive since it entails solving
the flow model for the specified values of the parameters.

At this point, we follow a common approach and further introduce the approxi-
mation that ρpost is a Gaussian distribution (Bui-Thanh et al. 2013; Piazzola et al.
2021). This considerably simplifies the subsequent forward UQ step (see Sect. 3.5)
and is a reasonable approximation when the posterior pdf is symmetric, unimodal,
and well-peaked. To make this approximation practical, we must only do two things,
i.e., compute the mean and the covariance matrix of such a Gaussian distribution,
that we call μpost and �post , respectively. We devote the next two subsections to the
computation of these two objects.

3.2 Estimating themean of the Gaussian approximation of the posterior pdf

Themeanμpost can be thought as the “nominal”, “most-likely” value of the parameters
after the inversion procedure, and it’s therefore easy to see that it should be located
where the posterior pdf has its maximum (i.e. at the mode of the posterior); therefore,
we should compute

μpost = argmaxpρpost (p) = argmaxp

[
L(

p,h∗)ρprior (p)
1

C

]
= argmaxpL

(
p,h∗)

(5)

where the last equality is true sinceC and ρprior are constants (the former by definition,
the latter by our assumption that the prior is uniform) and therefore do not impact
the optimization procedure. Numerically, it is more convenient to further manipulate
Eq. 5 by taking the negative logarithm of the likelihood and computing the mean of
the Gaussian posterior as:

μpost = argminp
[−log

(L(
p,h∗))] (6)

where the quantity between square brackets is usually called Negative Log-Likelihood
(NLL). Given the expression above for L(p,h), this would in practice amount to
computing the set of parameters minimizing the sum of squared errors:

μpost = argminp
1

2σ 2
h

∑ nbwells

i = 1
(h∗

i − h(xi ,p))2 (7)

However, during the early development of this work, we noted that pursuing this
approach would produce unrealistic results when applied to the head data available
(these preliminary results are not shown in detail in this manuscript): indeed, running
MODFLOW for the computed μpost (which we recall is intended as the most likely
value of the parameters) would predict that approximately 8–9% of grid cells would
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have calculated heads above the land surface, which is inconsistent with respect to
field observations in the study area. To correct this problem, we modify our likelihood
function in such a way that the drainage area anticipated by experts’ opinion (based on
previous “qualitative” knowledge about the peculiarities of the flow in study area) is
also considered.More specifically, we add a factor to the likelihood function that mod-
els the fact that we expect that the most likely parameters should produce a drainage
area HPAS of about HPAS

* = 1% and that in any case drainage areas outside the inter-
val [0%, 2%] are unacceptable (which is reasonable given the observed occurrence of
groundwater springs, fontanili, and inundated areas adjacent to the Ticino River). In
other words, we treat the nominal drainage area HPAS

* (derived from experts’ knowl-
edge) as one additional experimental datum, that we model analogously to the well
data: we assume it to be equal to the drainage area predicted by MODFLOW for the
same unknown values of the parameters ptrue plus a Gaussian random variable with
zero mean and variance σ 2

HPAS
. In formulas:

H∗
PAS = HPAS(ptrue) + δ, δ ∼ N

(
0, σ 2

HPAS

)
(8)

where σ 2
HPAS

is chosen as σ 2
HPAS

= 0.33%, such that HPAS(ptrue) = H∗
PAS−δ exceeds

[0%, 2%] with numerically zero probability. The resulting likelihood function is then

L(
p,h∗, H∗

PAS

) =
⎛
⎝nbwells∏

i=1

1

σh
√
2π

e
− (h(xi ,p)−h∗

i )2

2σ2h

⎞
⎠ 1√

2πσHPAS

e
− (HPAS (p)−H∗

PAS )2

2σ2HPAS

(9)

and repeating the same procedure described above for computing μpost boils down to
computing

μpost = argminp[−log
(L(

p,h∗, H∗
PAS

)] = argminpNLL joint
(
p,h∗, H∗

PAS

)
(10)

where the new NLL function is defined as:

NLL joint
(
p,h∗, H∗

PAS

) = 1

2σ 2
h

nbwells∑
i=1

(
h(xi ,p) − h∗

i

)2 + 1

2σ 2
HPAS

(
HPAS(p) − H∗

PAS

)2

+ nbwells log(σh) + log
(
σHPAS

) + nbwells + 1

2
log2π (11)

Note that σ h is also unknown and needs to be determined. While one way would
be to simultaneously minimize NLLjoint for the parameters p and σ h, this method is
not very robust numerically; therefore, we consider a two-step procedure in which we
minimize NLLjoint over a range of σ h values and finally select the combination of p
and σ h which delivers the overall smallest NLLjoint . In doing so, for each fixed value
of σ h, the minimization with respect to the parameters is performed with a “composite
method”: firstwe evaluateNLLjoint over a predefined cartesian grid of parameter values
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encompassing the uncertain ranges of the parameter values fromTable 1; subsequently,
the three parameter sets from the parameter grid with the lowest NLLjoint values are
used as starting points for a derivative-free optimization algorithm (simplex method,
also called Nelder-Mead) to determine a refined optimal set of input parameters, and
finally the overall best result out of the three is selected. More in detail, the Cartesian
grid is obtained by taking combinations of 20 values of Rirrig, 15 values of Kzone1 and
Kzone3, and 4 values of Kzone2 sampled logarithmically across the parameter range for
a total of 6300 input parameter combinations across the multidimensional parameter
grid (note that the logarithmic sampling is only used to consider values towards the
extrema of the intervals ofKzone1,Kzone2,Kzone3 as starting points of the optimization;
this apparentmismatchwith the pdf of the parameters does not impact theUQ analysis,
since we do not compute statistical quantities out of the results of the optimization per
se). The different number of sampled values for each parameter reflects their impact
on the outputs of the model, as assessed in Baker et al. (2022). Moreover, as already
mentioned, values of the Cartesian grid that do not respect the physical orderingKzone3

≥ Kzone2 ≥ Kzone1 were discarded.

3.3 Estimating the covariancematrix of the Gaussian approximation
of the posterior pdf

After having computed the center of the approximate posterior pdf, i.e., the nominal
value of the parameters, we now determine the covariance matrix of the posterior
pdf, �post , which quantifies the remaining uncertainty in the parameter values. More
precisely, its diagonal entries are the variances of the parameters after the inversion,
and the off-diagonal entries are the covariances between parameters. It can be shown
that �post can be computed as follows:

�post = Hess−1[−logρpost
(
μpost

)]
(12)

i.e., the inverse of the Hessian of the negative log posterior distribution evaluated
at its center, μpost , which is now known. Just like in the previous section, since C
and ρprior are constant in our case, we can replace -log(ρpost) in the equation above
with NLLjoint . Moreover, instead of computing directly the Hessian of the NLLjoint we
employ certain classical approximated formulas detailed in the following (Bui-Thanh
et al. 2013; Piazzola et al. 2021; Nocedal and Wright 1999), which require computing
two easier objects only, namely the Jacobian of the model responses at μpost , i.e.,
the matrices of partial derivatives of the model responses at μpost with respect to the
uncertain parameters, both head measurements and surface flooding, called Jh and
JHPAS respectively. More in detail, Jh is a matrix with nbwells rows and 4 columns,
defined as:

[Jh]l, j = ∂h
(
xl , μpost

)
∂ p j

(13)

and similarly for JHPAS:

[JHPAS ] j = ∂HPAS
(
μpost

)
∂ p j

(14)

123



    8 Page 14 of 32 GEM - International Journal on Geomathematics             (2023) 14:8 

To compute the entries of these matrices, we employ a forward finite difference
scheme, centered atμpost and with step	j along each parameter which is proportional
to the nominal value of that parameter (i.e.,	j = 0.02%μpost,j, the value 0.02% having
been selected by a convergence study of the values of the partial derivatives at some
pilot wells). For instance, denoting the components of μpost as μpost = [Kzone1,post ,
Kzone2,post , Kzone3,post , Rirrig,post], we have

[Jh] j,2 = ∂h
(
x j , μpost

)
∂Kzone2

≈ h
(
x j ,

[
Kzone1,post , Kzone2,post + 	zone2, Kzone3,post , Rirrig,post

]) − h
(
x j , μpost

)
	2

,

	2 = 2 × 10−4 × Kzone2,post (15)

Using these Jacobian matrices, the Hessian matrix can be approximated by the
above-mentioned formula, which reads:

Hess
[−logρpost

(
μpost

)] ≈ 1

σ 2
h

J Th Jh + 1

σ 2
HPAS

J THPAS
JHPAS (16)

and finally,�post is obtained by inverting theHessianmatrix just computed, see Eq. 12.
Note that since the Hessian is computed at the minimum of NLLjoint , it is expected
to be positive definite (i.e., its eigenvalues are expected to be positive), and therefore
its inverse is expected to be positive definite as well, which is a property that must
be satisfied by a covariance matrix. For a well-peaked posterior, NLLjoint will have a
narrow minimum, therefore the eigenvalues of Hess will be positive and large. Upon
inverting Hess, we will then get that �post is a matrix with small diagonal entries,
which means that the residual uncertainty on the values of the parameters is small.
Conversely, a posterior that has a smeared peak will eventually lead to large diagonal
entries in �post , i.e., to a large residual uncertainty.

3.4 Identifiability analysis

As just motivated, the procedure outlined above, and in particular the assumption that
the posterior pdf can be approximated by a Gaussian, works well if the posterior pdf is
symmetric, unimodal and “well-peaked”, which is typically true if the available data
are “enough” and “not too noisy”. To assess the validity of these assumptions, we
perform an “identifiability analysis”. Synthetic head data were generated by running
the groundwater flow model using a known set of parameter values (see Table 1, row
2); Gaussian noise was then added to the synthetic head data, with a mean of 0 m
and standard deviations (σ h) of 0.25 m, 0.5 m, 1.0 m, 2.0 m, 3.0 m and 4.0 m. For
each σ h value, 5 different sets of Gaussian noise were generated (for a total of 30
synthetic data sets). The procedure (minimization of NLLjoint and computation of the
covariance matrix) was then repeated for each set of Gaussian noises and the quality
of the results (in terms of position and standard deviation of the posterior pdfs) was
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then compared to the known set of parameter values. Ideally, the following behaviors
are expected from the posterior pdfs:

• they should be centered near the exact value of the corresponding parameters, such
that the exact value is included in their support;

• the standard deviation of the pdf should not be too large (otherwise the posterior
pdf would not be more informative than the prior about the value of the parameter)
and in any case be small enough such that the parameters cannot be negative values
(which would be unphysical) with practically zero probability.

3.5 Step 2: forward UQ analysis of travel times

Uponverifying the validity of theGaussian approximation of the posterior,MODPATH
version 7 (Pollock 1988, 1994, 2016) was then used to perform particle tracking
using the flow data generated by MODFLOW. Particles were placed in every fifth cell
within the top layer of grid cells (for a total of 40,090 particles) and tracked until
they were discharged from the model. The porosity value of the aquifer was set to
0.2 based on data collected in the basin (Regione Lombardia 2022). The tracking
was repeated for 500 values of the uncertain parameters, generated according to their
posterior distribution, to determine the effect of the residual parameter uncertainty on
the estimated particle travel times; we point out that for each value of the uncertain
parameters one needs first to solve the flowequation and then performparticle tracking.
The entire procedure was repeated for 6 different posterior distributions, coming from
one set of synthetic data for each level of Gaussian noise (σ h = 0.25 m, 0.5 m,
1.0 m, 2.0 m, 3.0 m and 4.0 m, for a total of 3000 particle tracking tests), to gain
insight on the impact of the noise level on the results, and then finally applied to
the posterior pdf obtained from the actual groundwater data (i.e. 500 further particle
tracking tests). Summary statistics of the particle travel times were calculated for each
of the 6 (synthetic) + 1 (observational) groups of particle tracking tests, to determine
how the residual parameter uncertainty affects the estimated groundwater travel times.
The examined summary statistics include calculating 25th, 50th, 75th, 90th, and 99th
percentiles over the 40,090 particles for each of the 500 simulations, and then taking
the median, maximum and minimum of said percentiles over the 500 simulations
at each level of noise and plotting these median, maximum and minimum values.
Travel time distribution histograms and cumulative distributions were also plotted,
as well as histograms of the 50th percentile travel times for each simulation, and the
percentage of particles with travel times less than 25 years for each of the simulations.
Prior to examining these summary statistics, particles with a travel time of exactly
0 were excluded since these represent particles that were placed in discharging cells
(e.g., sinks such as river cells and spring cells) and so never entered the modeled
groundwater system.

4 Results and discussion

We are now ready to discuss the results of the different steps of our analysis: we first
discuss in Sect. 4.1 the results obtained by applying the Bayesian inversion procedure
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to the synthetic head data sets, highlighting advantages and limitations of the Gaussian
approximation of the posterior pdf of the uncertain parameters of MODFLOW. This
allows us to apply the same procedure to the real data sets with more confidence on
the interpretation of the results (Sect. 4.2). Then, in Sects. 4.3 and 4.4 we perform
the forward UQ analysis for the travel times, propagating through MODPATH the
uncertainty on the parameters as encoded in their posterior pdfs. The insights gained
in Sect. 4.3 on synthetic data provide us with a deeper understanding of the results
obtained on the real data in Sect. 4.4.

4.1 Identifiability analysis

The posterior pdfs obtained applying the Bayesian procedure with Gaussian approx-
imation for the different sets of synthetic head data considered are reported in Fig. 2
(posterior pdfs ofKzone1 andKzone2) and Fig. 3 (posterior pdfsKzone3 and Rirrig). Each
panel shows the five posterior pdfs computed for the datasets at the same level of noise
σ h, and moving downward across panels in the same column shows the behavior of
the posterior pdfs as the noise on the measurements increases. Furthermore, the black
vertical solid line shows the exact value of the parameter (cf. Table 1, row 2), whereas
the two dashed lines mark respectively half and twice the exact value. The green back-
ground highlights the support of the prior pdf. Several observations can be drawn from
these figures:

• For small values of σ h, the exact values of the parameters are quite accurately
recovered, since the centers of the pdfs are all very close to the exact value. As
σ h increases, the estimated parameter values drift to values that are further from
the true (base case) parameter values. However, even at the largest levels of noise
the estimated parameter values are still close to the exact values, most often within
a factor of 2 (or 0.5) from the exact value, which we deem small enough for our
purposes. A closer look at the values of the ratios between the estimated and exact
parameter values is shown in Fig. 4.

• In Fig. 4 we also report the ratio between the estimated and exact values of the
Gaussian noise applied to create the synthetic data (see discussion after Eq. 11).
This ratio is very close to 1 for every value of noise, which indicates that we can
accurately estimate the amount of uncertainty in well observation data.

• Kzone3 is the parameter most inaccurately predicted at lower levels of noise in the
synthetic data (≤ 1.0 m). This is likely because only a few observation wells are
located within this region, affecting the reliability with which this parameter can be
estimated. Meanwhile, at higher levels of noise (≥ 2.0 m) the recharge rate due to
irrigation is typically the least accurately predicted. This might be due to a trade-off
effect between Rirrig and the values of K, since if Rirrig increases, the conductivities
might end up increasing accordingly to match the original well data—however,
analysis of the correlations between the different K values and Rirrig (not shown for
brevity) did not support this intuition, and further investigations on this matter are
left for a future work. Kzone1 is typically predicted most accurately regardless of the
level of noise in the synthetic data, likely because the highest number of observation
wells are in this area.
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Fig. 2 For a fixed row, each panel shows the five posterior pdfs computed for the datasets at the same level of
noise, σ h_noise, forKzone1 (left panel) andKzone2 (right panel). Different rows report the results obtained as
the noise on the measurements increases from σ h = 0.25 m (top row) to σ h = 4 m (bottom row). The black
vertical solid line shows the exact value of the parameter (cf. Table 1, row 2), whereas the two dashed lines
mark respectively half and twice the exact value. The thick gray line with “X” markers on the horizontal
axis denotes the support of the prior pdf: for Kzone1, the right marker is replaced by an arrowhead, denoting
that the prior support would extend further to the right but is not shown to maximize visibility. The unit of
measure of the vertical axes is (m/s)−1 (not shown in the panels for sake of readability). Note that the scale
of the vertical axis is not constant across noise levels, to maximize visibility

• On average, the standard deviations of the posterior pdfs also increase with the level
of noise; moreover, as the level of noise increases, the standard deviations are less
consistently estimated (i.e., the estimated standard deviations are not always similar
for fixed large values of sigma). In particular, for larger values of noise it occasionally
happens that the standard deviation of the posterior is so large that negative (hence
unphysical) values of the parameters have non-zero probability—which suggests
that results have to be taken cautiously for larger values of noise. Amore quantitative
evaluation of this issue is provided in Fig. 5a, where we show the coefficient of
variation of the posterior pdfs (ratio of their estimated standard deviation to their
mean, ie. to the predicted parameter value): this coefficient increases with the noise
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Fig. 3 For a fixed row, each panel shows the 5 posterior pdfs computed for the datasets at the same level of
noise σ h_noise, for Kzone3 (left panel) and Rirrig (right panel). Different rows report the results obtained as
the noise on the measurements increases from σ h = 0.25 m (top row) to σ h = 4 m (bottom row). The black
vertical solid line shows the exact value of the parameter (cf. Table 1, row 2), whereas the two dashed lines
mark respectively half and twice the exact value. The thick gray line with “X” markers on the horizontal
axis denotes the support of the prior pdf: for Rirrig, the right marker is replaced by an arrowhead, denoting
that the prior support would extend further to the right but is not shown to maximize visibility. The unit of
measure of the vertical axes is (m/s)−1 (not shown in the panels for sake of readability). Note that the scale
of the vertical axis is not constant across noise levels, to maximize visibility

level, as does its spread across data sets. The horizontal dashed line marks the
threshold 0.5 (i.e., STD≥0.5mean, or equivalentlymean≤2STD), abovewhich the
Gaussian posterior can provide negative values of the parameters with a probability
that is non-negligible from an engineering point of view (> 2.5%): this is due to
the well-known fact that for a Gaussian variable approximately 95% of the values
are within the interval [mean − 2STD; mean + 2STD], which means that the mean
must be larger than 2STD to have less than 2.5% probability that the parameter can
assume negative values.

• The desired property that the exact value of the parameter is always included in the
range of the pdf is unfortunately not valid, even for small values of noise. In the case
of small values, this problem is mitigated by the fact that the predicted values of the
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Fig. 4 Jitter plot (with y-axis in
log scale) of the ratios between
the predicted and true parameter
values for each parameter at
different levels of Gaussian
noise σ h (color of symbol). The
three dashed lines show the
location of ratios equal to 0.5/1/2
(from lower to upper lines). The
last column shows the same
information for the ratio
between the estimated and true
value of the artificial noise used
to generate the synthetic heads
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parameters are in any case very accurately predicted, and the associated standard
deviations are small (therefore, we are never committing a large mistake). In the
case of larger noises, results are still somewhat encouraging since most often 2 or
3 pdfs out of 5 still encompass the exact value, which means that even poor data
might still give somewhat reliable information.

• The range of the posterior pdf is often significantly smaller than the range of the prior
pdf, which means that in general the procedure can be very effective in reducing
the uncertainty on the values of the parameters. Figure 5b shows the ratio of the
posterior variance to the prior variance of the parameters, to provide a quantitative
insight on the variance reduction obtained after the inversion procedure. Only a few
realizations show a ratio equal to or above 1, while most (106 out of 120) show the
variance in the parameters has been reduced by at least a factor of 10.

All considered, the Gaussian approximation of the posterior gives partially satisfac-
tory results. It is quite effective in delivering approximated values of the parameters,
which gives us confidence that the results obtained when running MODFLOW with
them can be representative. However, it is less satisfactory in quantifying the residual
uncertainty on the parameters especially if the noise on the data is too large, which
means that forward UQ analysis might be biased (i.e., structurally underestimating
or overestimating reality). However, even for large levels of noise the results can be
good: for example, at 3 m and 4 m of noise the nominal value of the parameters is
included in the predicted range of uncertainty 11 times out of 20 and 13 times out
of 20, respectively. The lesson learnt is that results must be approached judiciously
but are not to be entirely distrusted. It is particularly crucial to be able to estimate the
level of noise affecting the data: in this respect, our results suggest that the employed
algorithm is quite reliable. Algorithms that deliver an approximation of the posterior
pdf without resorting to an assumption of Gaussian approximability are available in
the literature (Markov-Chain Monte Carlo algorithms, see, e.g., Brooks et al. 2011)
and might help in providing posterior pdfs whose range “always” includes the exact
parameter values. However, these algorithms are typically computationally expensive,
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Fig. 5 a Ratio of the estimated standard deviation of the parameter value to the predicted parameter value
for each model parameter at each level of Gaussian noise (color of symbol). The black dashed line is where
the standard deviation is half the value of the predicted parameter value. b Ratio of the posterior variance to
the prior variance of the parameters at each level of Gaussian noise. The black dashed line indicates where
the posterior and prior variances are equal (color figure online)

require adjusting a number of tuning parameters and are also not immune to data qual-
ity issues. The assessment of their performance in the context of our problem is thus
left to future works.

4.2 Inversion of real data

The insights gained from analysis of the optimization procedure for the synthetic data
can then be applied to the real observation well data from the study area. When the
NLL functional is minimized using the observed groundwater head data and a σHPAS

of 0.33%, σ h is equal to 3.60 m and the optimized parameter values and associated
posterior standard deviations are shown in lines 3 and 4 of Table 1. Such a value of σ h

(comparable to the RMSE of the heads of 3.64 m) is a realistic amount of uncertainty
in our observed groundwater heads given that they were measured over a span of
almost a month, some levels may not have fully recovered from pumping prior to
measurement, and because the groundwater flowmodel is highly simplified compared
to the natural groundwater system.

The results shown in Fig. 2 from the synthetic data show that even when data with
σ h values of 3 to 4 m are used, the parameter values can be estimated within half an
order of magnitude or less of their true value, which is a large improvement from the
initial parameter uncertainty which can often span multiple orders of magnitude for
input parameters such as aquifer hydraulic conductivity and recharge. The resulting
percentage of model grid cells with calculated heads above the land surface is 1.26%,
which is reasonable given the abundance of springs in the study area that may occur in
slightly different locations in the model domain than in reality and given the wetland
areas adjacent to certain sections of the Ticino River. The modeled flux rate of ground-
water from the springs (79.1 l/s) and the groundwater flux rate into the Ticino River
(1.38 × 10–4 m3/s/m) are also reasonable (Baker et al. 2022) and in accordance with

123



GEM - International Journal on Geomathematics             (2023) 14:8 Page 21 of 32     8 

(m/s)

5

10
(m

/s
)-1

K zone1

(m/s)

0

0.5

1.0

1.5

2.0
K zone2

(m/s)

0

100

200

300

(m
/s

)-1

K zone3

(m/s)

0

0.5

1.0

1.5

2.0
R irrig

(m
/s

)-1
(m

/s
)-1

104 104

107
10-4 10-3

10-7

0
0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5

0 0.005 0.01 0.015 0.02 0 0.2 0.4 0.6 0.8 1.0

(a) (b)

(c) (d)

Fig. 6 Posterior pdfs of the uncertain parameters after inversion based on the observed well data

the results of previous studies (De Luca et al. 2014; Balestrini et al. 2021; Musacchio
et al. 2021), supporting the accuracy of the groundwater flow model.

The posterior pdfs of the uncertain parameters after inversion are shown in Fig. 6.
The pdfs are such that the probability of having negative values of the parameters
is essentially zero. The standard deviations of the pdfs are to be contrasted with the
last two rows of Figs. 2 and 3, as similarly the coefficients of variation of these pdfs
(see Table 1, row 5) should be compared with the orange and purple dots reported in
Fig. 5a: upon inspection, the posterior pdfs based on the real data are comparable with
the narrower pdfs for synthetic data at similar values of noise.

Notice though that for such levels of σ h, Figs. 2 and 3 also point out that we might
be in the situation such that the exact parameter values are not included in the range
of the posterior, such that we cannot blindly rely on the ranges of the parameters
suggested by the posterior pdfs.

4.3 Forward uncertainty quantification of particle travel times for synthetic data

The estimated posterior pdfs obtained in Sect. 4.1 can then be used to understand
how the residual uncertainty on the parameter values impacts the robustness of the
calculated distributions of groundwater travel times. Note that even if such pdfs are not
always optimal in terms of “consistency with the true parameters”, it is nonetheless
instructive to understand how the uncertainty in the random parameters propagates to
the travel times, e.g., whether uncertainty gets amplified, if the symmetry in the pdf
of the parameters is lost, etc.

Travel time distributions were calculated in MODPATH, using first the base values
of the parameters used to generate the synthetic data (see Table 1) and then consider-
ing 500 parameter sets for each level of Gaussian noise (3000 travel time distributions
in total). Each of the 500 parameter sets were randomly generated from the normal,
multivariate Gaussian distribution using the optimized parameter values and the cor-
responding posterior covariance matrices.
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Table 2 Particle travel times in years for the base case model run that uses the parameter values in line 2 of
Table 1

Travel time percentiles over the 40,090 particles

25% 50% 75% 90% 99%

1.73 5.55 18.16 42.68 136.09

Particle Travel Times (years)
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Fig. 7 Travel time distributions for the 40,090 particles released in the model configurations optimized using
the synthetic groundwater head data with random Gaussian noise of a 0.25 m, b 0.5 m, c 1.0 m, d 2.0 m,
e 3.0 m, and f 4.0 m. We report in each panel 500 travel time distributions, each corresponding to one of
the 500 sets of input parameters generated from their Gaussian posterior density

For the simulation with the base values, the 25th, 50th, 75th, 90th, 99th percentiles
of the travel time distributions are reported in Table 2. For the other simulations, Fig. 7
reports for each of the six levels of noise the histograms of travel time distributions for
all of the 500 sets of parameter values that were considered: the results show that the
particle travel times consistently follow a seemingly exponential distribution across the
500 realizations at all levels of Gaussian noise, with many particles having short travel
times of only a few years and most having travel times less than about 20–25 years. As
expected, as the amount of Gaussian noise applied to the synthetic head data increases
from 0.25 to 4.0 m, the travel time distributions show a larger variability across the
500 realizations, particularly in the range of Gaussian noise from 1.0 to 4.0 m, as
seen in the cumulative distributions plotted in Fig. 8, indicating that the more noise
in the head data the more uncertainty on the travel time distributions. The horizontal
and vertical dashed lines in Fig. 8 indicate the 50th percentile of the travel times and
the percentage of particles with travel times less than 25 years (approximately the
75th-80th percentile), respectively. The histograms of these cross-sections are plotted
in Figs. 9 and 10.

In detail, the histograms of the 50th percentile travel times are plotted in Fig. 9
(horizontal cross-sections of Fig. 8) and can be compared with the corresponding base
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Fig. 8 Cumulative travel time distributions for the 40,090 particles released in the model configurations
optimized using the synthetic groundwater head data with random Gaussian noise of a 0.25 m, b 0.5 m,
c 1.0 m, d 2.0 m, e 3.0 m, and f 4.0 m. The sets of travel time distributions were each generated using
500 sets of input parameters generated from their mean value and covariance. The horizontal dashed line
crosses at the 50th percentile travel times, with the distribution of these travel times shown in Fig. 9. The
vertical dashed line crosses at a travel time of 25 years, with the distribution of these travel times shown in
Fig. 10
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Fig. 9 Histograms of the 50th percentile travel times over the 500 simulations for each synthetic data set
(horizontal cross-sections of Fig. 8) using fixed bin widths of 0.05%. Synthetic data sets were created by
adding a 0.25 m, b 0.5 m, c 1.0 m, d 2.0 m, e 3.0 m, and f 4.0 m of Gaussian noise to the base case heads

case value for the same percentile reported in Table 2 (5.55 years). Ideally, we wish
that all the histograms in Fig. 9 are centered at 5.55 years (or at least that the histograms
are supported over an interval that includes 5.55 years) but this depends on the extent
to which the posterior pdfs of the parameters are centered close to the exact values of
the parameters. Inspection of Fig. 9 reveals that for 0.25, 0.5, and 1.0 m of noise in the
synthetic data we are in the ideal situation: at these levels of noise the 50th percentiles
of the travel times are indeed about 5.2–5.8 years, with similarly symmetric shaped
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Fig. 10 Histograms of the percentage of particles with travel times less than 25 years for each of the 500
simulations (vertical cross-sections of Fig. 8) using fixed bin widths of 0.1%. a 0.25 m, b 0.5 m, c 1 m,
d 2 m, e 3 m, and f 4 m of Gaussian noise was added to the synthetic head data used to determine the
optimal parameter values and their estimated covariances

histograms of sets of 500 simulations. Meanwhile, at higher levels of Gaussian noise
(2.0, 3.0, 4.0 m) the consistency with the base case is lost. In particular, for 2 m and
4 m of Gaussian noise (Fig. 9d and f, respectively) the histograms show that the 50th
percentile is overestimated for all the 500 simulations, while for 3 m of Gaussian noise
(Fig. 9e) the histogram of the 50th percentile has a maximum close to 5.55 years but
is skewed towards larger values instead of being symmetric as at the smaller values
of noise. These results are consistent with Table 3, where we report the ratio of the
estimated to true parameter values for the six cases considered in Fig. 9: while all ratios
are between 0.5 and 2 (as in Figs. 2, 3), in the three cases of smaller Gaussian noise
such ratios are much closer to 1 (perfect estimate) than at the larger three levels of
noise. Note in particular that for the cases of 2m and 4mof noise, all the parameters are

Table 3 Ratios of the estimated to true parameter values. The true parameter values are in line 2 of Table 1.
The estimated parameter values are obtained from the NLL optimizations using the synthetic head data at
each level of Gaussian noise, σ h

σ h (m) Parameters

Kzone1 Kzone2 Kzone3 Rirrig

0.25 0.93 1.06 1.27 0.88

0.5 1.02 1.01 1.26 1.02

1.0 1.20 0.97 0.90 1.16

2.0 0.84 0.86 0.82 0.74

3.0 0.61 0.45 2.00 0.73

4.0 0.80 0.97 0.67 0.49
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underestimated, which means that the three predicted permeabilities are too smaller,
implying longer travel times for the particles; conversely in the case of 3 m of noise,
Kzone3 (permeability of the zone closest to the river, see Fig. 1d) is overestimated,
which implies faster travel through zone 3, which compensates for the slower travel in
zones 1 and 2, such that the overall travel times are coincidentally accurate. It is useful
to highlight that a factor of at most two in underestimating the parameters translates
into a 50th percentile of the travel times which is also off by a factor two, which means
that errors are still acceptable for engineering evaluations.

Figure 10 contains histograms of the percent of particles with travel times less than
25 years for each of the 500 simulations at each level of Gaussian noise (vertical cross-
sections of Fig. 8). These plots indicate that about three-quarters of the particles have
travel times less than 25 years. At lower levels of noise (0.25 to 1.0 m), about 77–83%
of particles exit the model through rivers or springs within 25 years of recharging the
aquifer. As the noise increases to 2.0 to 4.0 m, the range of this percentage decreases
while spanning a broader group of values, such that anywhere from 68 to 79% of
particles exit the model within 25 years depending on the simulation. Moreover, as
the level of noise increases, the histograms of the percent of particles with travel times
less than 25 years become less peaked, depending on the estimated standard deviations
and covariances between the parameters, indicating more uncertainty in the predicted
travel times when the amount of Gaussian noise in the synthetic data is greater.

Going further in the analysis, Fig. 11 extends the results of Fig. 9 and shows the
median, maximum and minimum across the 500 computed travel time distributions of
the 25th, 50th, 75th, 90th and 99th percentile of travel times (i.e., we show results for
additional horizontal cuts of Fig. 8). This figure shows that higher levels of Gaussian
noise in the well data results inmore variability in the predicted travel times, especially
at the larger percentiles, whose prediction is thus less reliable. Indeed, the median,
maximum and minimum of all the analyzed percentiles over the 500 travel time dis-
tributions are similar for up to 1.0 m of applied Gaussian noise; then the values begin
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Fig. 11 Percentiles of the particle travel times for the 500 simulations at each level of noise. The solid line
in the envelope represents the median travel time at each of the percentiles for the 500 simulations while
the boundaries of the envelope are the maximum and minimum travel times for each percentile over the
500 simulations
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to differ and to be more spread out. Had travel time distributions been computed with
the prior pdf, there would be even more uncertainty in the travel times. Instead, by
reducing the uncertainty in the parameters during the inversion, especially for Kzone1

and Rirrig, the uncertainty in the travel times have also been reduced. Reducing the
uncertainty ofKzone1 was especially helpful because this zone has the lowest hydraulic
conductivity values and so acts to slow down the particles traveling through it.

4.4 Uncertainty quantification of travel times for real data

When the nominal parameter values that were predicted from the observed head data
and expected drainage area (i.e., those obtained upon minimizing the NLL functional,
see Sects. 3.2 and 3.4) are used to calculate the groundwater travel time distributions,
the travel times of the 40,090 particles for the recharge due to precipitation and rice
field irrigation have an average of 10.9 years, with a 50% percentile of travel times of
about 3.9 years. Additional travel time percentile data for this simulation are in the last
rowof Table 4. The travel time of every particle calculated using the nominal parameter
values are shown in Fig. 12a; particles that recharge the aquifer in locations closer to
the center of the valley, where the stream is located, tend to have shorter travel times
on the order of a few months to a few years, while particles that recharge the aquifer
closer to the eastern and western boundaries of the basin have longer travel times (on
the order of 10–50 years) since the particles must both travel a greater distance and
through Zone 1 which has a lower hydraulic conductivity. However, there are some
particles with shorter travel times near the edges of the basin, which are particles
discharged through drain boundaries (i.e., springs).

To quantify the uncertainty on these nominal predictions, we perform once more
the procedure employed in the previous section, i.e., the estimated covariance matrices
of the nominal values of the parameters are used to generate a group of 500 model
runs, whose travel time cumulative distributions are shown in Fig. 12b. The mean over
the 500 model runs of the average travel time of the 40,090 particles is 11.9 years

Table 4 Median, maximum, and minimum particle travel times across various percentiles for 500 model
runs and for the NLL optimized set of parameters where the optimized parameter values were estimated
using the observed groundwater head data. The sets of parameter values for the 500 runs were generated
according to the calculated covariances of the optimized parameter values

Travel time (years) Percentiles over the 40,090
particles

25% 50% 75% 90% 99%

Summary statistics across 500 model simulations

Max 1.53 5.77 24.68 49.45 131.49

Min 0.94 3.03 9.56 23.02 78.55

Median 1.21 4.09 13.66 30.67 95.99

Statistics of the model run with optimized parameters
based on observed head data

1.23 3.85 12.17 28.24 90.37
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Fig. 12 Travel time results when the observed head data are used to predict the model parameter values using
the NLL optimization procedure. a Particle travel times according to starting locations using the optimized
parameter values. b Travel time distributions for 500 different parameter sets generated from the estimated
parameter standard deviations and covariance matrix. c Maximum, minimum, and median travel times of
the 500 simulations across various percentiles. d 50th percentile travel times of the particles for each of the
500 simulations. e Percent of particles with travel times less than 25 years for each of the 500 simulations

while the median across the 500 simulations of the 50th percentile of the particle
travel times is 4.1 years. The maximum and minimum across the 500 simulations for
this percentile (as well as for the 25th, 75th, 90th, 99th) were also calculated, see
Table 4. The maximum and minimum across the simulations are similar up to the 50th
percentile, while their spread is larger at the higher percentiles, especially past the 90th
percentile, as shown also in Fig. 12c. Figures 12d and e show the 50th percentile of the
travel times (analogous to Fig. 9) and the percentage of particles with travel times less
than 25 years for the set of 500 simulations (analogous to Fig. 10). The histogram of
the 50th percentile travel times is fairly symmetric, with median travel times typically
between 3 and 5 years, but with a slight tail in the direction of longer median travel
times up to 5.8 years. Meanwhile the histogram of the percentage of particles with
travel times less than 25 years is skewed to the left, with 85–91% of particles typically
exiting the model within 25 years, but with some simulations having less than 80% of
particles exiting in 25 years, as shown in Fig. 12e.

Since the real observation well data is estimated to have an uncertainty of 3.6 m,
the results from the synthetic simulations using 3–4 m of Gaussian noise are most
appropriate for comparison. Therefore, the estimates of the true parameter values may
contain some error, though most likely within a factor of 2 (Figs. 2, 3, 4), and we
might be in the situation such that the exact parameter values are not included in the
range of the posterior, such that travel time predictions must be interpreted cautiously:
consistent underestimation of the parameter values might lead to overestimation of
the travel times, overestimation might lead to underestimation of the travel times,
and finally if some parameters are overestimated and others underestimated, this can
sometimes result in seemingly accurate travel time predictions. While it is impossible
to knowwhether the parameter values estimated using the real data are overestimated or
underestimated, the results from the synthetic data demonstrate that evenwith errors in
the estimated parameter values, the estimated travel times are still accurate within less
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than a factor of 2. Using the method detailed above we are able to quantify the amount
of uncertainty in the estimated travel times induced by the residual uncertainty after
inversion, and ultimately see that this uncertainty does not affect the conclusion that
groundwater travel times in the lower Ticino basin are relatively short. The travel time
distributions represent a first estimate for the study area since the conditions modeled
are only for the period of August/September 2014. However, the same method can
be applied to future transient groundwater flow models that encompass longer time
periods with a greater range of climatic and irrigation conditions.

5 Conclusions

This work deals with the simulation of groundwater transport in the aquifer of the
Ticino river basin.As is common ingroundwater flowsimulations, the input parameters
are uncertain. In this study we perform uncertainty quantification (UQ) analysis by
incorporating suitable error metrics into the negative log likelihood (NLL) functional
(Eq. 11). We demonstrate how the NLL functional can be used to incorporate multiple
error metrics into a single optimization function. The resulting optimized parameter
values can then be used to calculate the covariance matrix of the parameters. Although
the RMSE and the percentage of modeled grid cells with heads above the land surface
(HPAS) were the error metrics incorporated into the NLL functional in this study,
different or additional error metrics could be used in other studies depending on the
most informative error metrics for the given field site. For example, the measured and
modeled groundwater flux rate into a river could be substituted for HPAS

* and HPAS ,
and σHPAS would instead be a value that defines the range of plausible groundwater
flux values to the river. The values of the optimized parameter standard deviations and
their related covariance matrices can then be used to assess the potential variability in
the calculated groundwater travel time distributions due to this remaining uncertainty.
By first applying such a method to synthetic data created by adding Gaussian noise to
model generated head data, the modeler can assess the given model’s ability to make
accurate predictions under their specific set of conditions and uncertainties. In this
work the method has been tested on the relatively complex groundwater system of the
southern half of the Ticino basin where a steady-state groundwater flow model was
set up. Obtained results show that the method allows for quantification of the amount
of uncertainty in the input parameters (i.e., hydraulic conductivity and recharge).
Furthermore,we show that the amount of uncertainty present in themodel did not affect
the conclusion that groundwater travel times in the lower Ticino basin are relatively
short, while admittedly a precise estimate (i.e., with an error of less than a factor 2)
might be out of reach due to the limitations introduced by theGaussian approximations
of the posterior pdf of the parameters. More advanced calibration methodologies that
do not require such approximations (such as Bayesian inversion by full Markov Chain
MonteCarlo, see e.g.Brooks et al. 2011)might delivermore robust results, but aremore
computationally expensive and still dependent on the quality of the data; they will be
the focus of futureworks. Such amethod gives themodeler a better idea of the potential
problems and biases that may affect their estimates of groundwater flow-controlled
variables, such as the travel time analyzed in this work, with potential applications to
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solute transport processes and other conclusions drawn fromgroundwater flowmodels.
Therefore, thismethod represents a significant step in quantifyingmodel reliability and
assessing its suitability for engineering applications in complex groundwater systems.
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