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Chapter 1

Finite-dimensional vector
spaces

1.1 Notations

Let X be a set, we write x ∈ X for the statement ”x is an element of X” and
x /∈ X for the statement ”x is not an element of X”. If Y is a subset of X we
write Y ⊂ X. Given A and B subsets of X, we define the following subsets of
X,

A ∪B = {x ∈ X | x ∈ A or x ∈ B}, (1.1)

A ∩B = {x ∈ X | x ∈ A and x ∈ B}, (1.2)

called the union and the intersection of A and B. We denote by ∅ the empty
set; two sets A and B are disjoint if A ∩B = ∅.

If A is a subset of X, the difference

X −A = {x ∈ X | x ∈ X and x /∈ A}, (1.3)

is the complement of A (in X) and is denoted by {A.
Let X1 and X2 be two sets. The set of the ordered pairs (x1, x2), with

x1 ∈ X1 and x2 ∈ X2, is the Cartesian product of X1 and X2; it is denoted by
X1 ×X2.

We denote by N = {0, 1, 2, ...} the set of natural numbers, by Q the set of
rational numbers and by R the set of real numbers.

Let X and Y be two nonempty sets, a function T from X to Y (or mapping
on X into Y ) is a rule that assigns to each x ∈ X a unique element y ∈ Y,

T : X → Y (1.4)

we denote by T (x) the element y called the image of x under T .
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Let A be a subset of X, the set

T (A) = {v ∈ Y | v = T (u) for some u ∈ A} (1.5)

is the image of A under T (T (∅) = ∅).
Let B be a subset of Y , the set

T−1(B) = {u ∈ X | T (u) ∈ B} (1.6)

is the inverse image of B (T−1(∅) = ∅).
The function T : X → Y is injective (or one-to-one) if

u1 6= u2 =⇒ T (u1) 6= T (u2), (1.7)

and is surjective (or onto Y ) if for each w ∈ Y there exists (at least) u ∈ X such
that w = T (u), in this case T (X) = Y. A function T which is both injective and
surjective is bijective.

Let X be a set. A distance (o metric) on X is a function d on the Cartesian
product X ×X with real values,

d : X ×X → R (1.8)

such that for each x, y, z ∈ X:

d1. d(x, y) ≥ 0,

d2. d(x, y) = d(y, x),

d3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

d4. d(x, y) = 0 if and only if x = y.

The real number d(x, y) is the distance between x and y. A set X with the
distance d is called metric space and is usually denoted by (X, d). The elements
of X are called points.

Conditions d1 and d4 are quite natural and intuitive. Condition d3 gen-
eralizes the triangle inequality for the triangles in the Euclidean space and has
important consequences, in particular it allows to prove that the limit of a
convergent sequence in a metric space is unique.

Two different metrics d and d′ on the same set X define different metric
spaces (X, d) and (X, d′).

Proposition 1. Let X be a set with the metric d; for each x, y, z ∈ X we have

|d(x, z)− d(y, z)| ≤ d(x, y). (1.9)

Proof. From the triangle distance in d3 it follows that

d(x, z)− d(y, z) ≤ d(x, y),

Changing x with y and taking d2 into account, we have

d(y, z)− d(x, z) ≤ d(x, y),

and (1.9) follows.
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Let Rn be the set of the n-tuples of ordered real numbers x = (x1, x2, ..., xn),
the function

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2, (1.10)

with x, y ∈ Rn is a metric called Euclidean distance. The conditions d1, d2
and d4 are easy to prove; relation d3 follows from the inequality√√√√ n∑

i=1

(ai + bi)2 ≤

√√√√ n∑
i=1

a2i +

√√√√ n∑
i=1

b2i , (1.11)

putting ai = xi − yi and bi = yi − zi, i = 1, ..., n.
The inequality (1.11) is trivial if ai = 0 or bi = 0 for i = 1, ..., n; then let us

assume that some ai and some bi are different from zero. For each λ > 0, from
the inequalities

(
√
λai +

1√
λ
bi)

2 ≥ 0, (
√
λai −

1√
λ
bi)

2 ≥ 0,

we get

2|aibi| ≤ λa2i +
1

λ
b2i , i = 1, ..., n (1.12)

and then

2|
n∑
i=1

aibi| ≤ λ
n∑
i=1

a2i +
1

λ

n∑
i=1

b2i (1.13)

follows. The two addends in the right-hand side are equal for λ =
√∑n

i=1 b
2
i /
√∑n

i=1 a
2
i

and for this value of λ equation (1.13) becomes

|
n∑
i=1

aibi| ≤

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i , (1.14)

which is known as Cauchy-Schwarz inequality. Thus, in view of (1.14), we have

n∑
i=1

(ai + bi)
2 =

n∑
i=1

a2i +

n∑
i=1

b2i + 2

n∑
i=1

aibi

≤
n∑
i=1

a2i +

n∑
i=1

b2i + 2|
n∑
i=1

aibi| ≤
n∑
i=1

a2i +

n∑
i=1

b2i + 2

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i

=

√√√√ n∑
i=1

a2i +

√√√√ n∑
i=1

b2i

2

which coincides with (1.11).
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Let X be a set (X 6= ∅), the function

d(x, y) =

{
0 x = y,
1 x 6= y,

(1.15)

is a metric called discrete metric.
Let X be the set of all possible sequences of k bits, each element of X is

constituted by a string x = x1x2...xk of k symbols with xi ∈ {0, 1}, i = 1, ..., k.
We define the distance between two strings x and y of X as the number of
positions at which the corresponding symbols are different. This distance, called
Hamming distance, measures the number of substitutions needed to convert a
string in the other, or, equivalently, the number of errors that have transformed
a string in the other. For example, for k = 6, given x = 001001 and y = 000011,
we have d(x, y) = 2.

The functions

d1(x,y) =

n∑
i=1

|xi − yi|, (1.16)

and
d∞(x,y) = max

i=1,...,n
|xi − yi|, (1.17)

with x, y ∈ Rn are distances in Rn
In the set

C[a, b] = {f : [a, b]→ R | f is continuous in [a, b]}, (1.18)

the functions
d∞(f, g) = max

t∈[a,b]
|f(t)− g(t)|, (1.19)

and

d1(f, g) =

∫ b

a

|f(t)− g(t)|dt, (1.20)

with f, g ∈ C[a, b] are distances.

Let A be a subset of R, b ∈ R is an upper bound for A if a ≤ b, for each
a ∈ A. In this case A is bounded from above. We define the least upper bound
or supremum of A, denoted by supA, as the minimum s of the upper bounds
of A. The supremum s is characterized by the following properties,

a ≤ s, for each a ∈ A, (1.21)

for aech ε > 0 there exists a ∈ A such that a > s− ε. (1.22)

c ∈ R is a lower bound for A if a ≥ c, for each a ∈ A. In this case A
is bounded from below. We define the greatest lower bound or infimum ofA,
denoted by inf A, as the maximum i of the lower bounds of A. The infimumi is
characterized by the following properties,

a ≥ i, for each a ∈ A, (1.23)

for each ε > 0 there exists a ∈ A such that a < i+ ε. (1.24)
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1.2 Vector spaces

A (real) vector space is a set S of elements called vectors satisfying the following
axioms.

(A) To every pair, a and b, of vectors in S there corresponds a vector a + b,
called the sum of a and b, in such a way that

1. addition is commutative, a + b = b + a,

2. addition is associative, a + (b + c) = (a + b) + c,

3. there exists in S a unique vector 0 (called the origin) such that a+0 =
a per for every vector a,

4. to every vector a in S there corresponds a unique vector −a such
that a + (−a) = 0.

(B) To every pair, α and a, where α is a real number and a is a vector in S,
there corresponds a vector αa, called the product of α and a, in such a
way that

1. multiplication by scalars is associative, α(βa) = (αβ)a,

2. 1a = a for every vector a.

(C) The following properties hold

1. multiplication by scalars is distributive with respect to vector addi-
tion, α(a + b) = αa + αb, for each a, b ∈ S, α ∈ R,

2. multiplication by vectors is distributive with respect to scalar addi-
tion, (α+ β)a = αa + βa, for each a ∈ S, α, β ∈ R.

The sets
Rn = {x = (x1, ..., xn) | xi ∈ R, i = 1, ..., n}, (1.25)

constituted by the n-tuples of real numbers,

Pn = {p(x) = a0 + a1x+ ...+ anx
n | x ∈ [0, 1], ai ∈ R, i = 0, ..., n}, (1.26)

constituted by the polynomials of degree less than or equal to n and real coef-
ficients,

Mm,n = {A = [aij ] | aij ∈ R, i = 1, ...,m, j = 1, ..., n}, (1.27)

constituted by the matrices with real coefficients, m rows and n columns, are
real vector spaces.
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1.3 Norms on a vector space

Given the vector space S, a norm is a function ‖ ‖ on S into R such that

n1. ‖a‖ ≥ 0 for all a ∈ S,

n2. ‖a‖ = 0 if and only if a = 0,

n3. ‖αa‖ = |α| ‖a‖ for all a ∈ S, α ∈ R,

n4. ‖a + b‖ ≤ ‖a‖+ ‖b‖ for all a,b ∈ S (triangle inequality).

The vector space S with the norm ‖ ‖ is a normed space.

On Rn we can define the following norms

‖x‖∞ = max
i=1,...,n

|xi|, (1.28)

‖x‖k =

(
n∑
i=1

|xi|k
)1/k

, with k integer, k ≥ 1, (1.29)

and on Pn we can consider the following norms

‖f‖∞ = max
x∈[0,1]

|f(x)| (1.30)

and

‖f‖k =

 1∫
0

|f(x)|k dx

1/k

, with k integer, k ≥ 1. (1.31)

Lastly

‖A‖ = max
i=1,...,m

n∑
j=1

|aij |, (1.32)

‖A‖ = max
i,j
|aij |, (1.33)

‖A‖F =

∑
i,j

|aij |2
1/2

, (1.34)

are norms on Mm,n. The latter is called Frobenius norm.

From the property n4, it follows that

| ‖a‖ − ‖b‖ | ≤ ‖a− b‖ , for each a,b ∈ S. (1.35)

A normed space S is a metric space with the distance induced by the norm
‖ ‖

d(a,b) = ‖a− b‖ , a,b ∈ S. (1.36)
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For example, on Rn the norm ‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

induces the Euclidean

metric (1.10).
It is possible to prove that a distance d on a vector space S is induced by a

norm if and only if

1. d is invariant with respect to translations,

d(a + c,b + c) = d(a,b), for each a,b, c ∈ S, (1.37)

2. d is invariant with respect to homotheties,

d(λa,0) = |λ|d(a,0), for each a ∈ S, λ ∈ R. (1.38)

There exist metrics on a vector space S that are not induced by any norm.
For example, on Rn there is no norm that induces the metric d defined in (1.15),
since d does not satisfy (1.38). On R2 let us consider the Euclidean distance d
defined in (1.10), it is easy to prove that

d′ =
d

1 + d
(1.39)

is a distance on R2, in fact properties d1, d2 and d4 are easy to prove and, as
far as the triangle inequality is concerned, for each x,y, z ∈ R2 we have

d′(x,y) + d′(y, z) =
d(x,y)

1 + d(x,y)
+

d(y, z)

1 + d(y, z)
≥ d(x,y)

1 + d(x,y) + d(y, z)

+
d(y, z)

1 + d(x,y) + d(y, z)
≥ d(x, z)

1 + d(x, z)
,

because f(b) = b
1+b , b ≥ 0, is an increasing function and d satisfies the triangle

inequality. Since d′ does not satisfy (1.38), there exists no norm that induces it.

1.4 Inner products

Let S be a vector space, an inner product (or scalar product) is a function <,>
on S × S into R such that

s1. < a,b >=< b,a > for each a,b ∈ S (symmetry),

s2. < α1a1 +α2a2,b >= α1 < a1,b > +α2 < a2,b > for each a1,a2,b ∈ S, e
α1, α2 ∈ R (bilinearity),

s3. < a,a >≥ 0 for each a ∈ S (positivity),

s4. < a,a >= 0 if and only if a = 0.
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Vectors a,b ∈ S are orthogonal if < a,b >= 0. Vectors u1, ...,um ∈ S are
orthonormal if

< ui,uj >= δij =

{
1, i = j,
0, i 6= j.

(1.40)

In this case we say that {u1, ...,um} is an orthonormal set of vectors in S.

On Rn we can define the inner product

< x,y >=

n∑
i=1

xiyi, x,y ∈ Rn; (1.41)

in the vector space Pn the product

< f, g >=

∫ 1

0

f(x)g(x)dx, f, g ∈ Pn (1.42)

is an inner product. On the space Mm,n the product

< A,B >=
∑

i=1,...,m
j=1,...,n

aijbij , A,B ∈Mm,n (1.43)

is an inner product. In R3 the vectors

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1) (1.44)

are orthonormal. In Pn the polynomials f(x) = 1, g(x) = x − 1/2, x ∈ [0, 1],
are orthogonal with respect to the scalar product (1.42), in fact < f, g >=∫ 1

0
(x− 1/2)dx = 0.

Given a scalar product in S, the function that assigns to each vector a the
quantity

‖a‖ =
√
< a,a > (1.45)

satisfies the conditions n1-n4 and thus is a norm on S, called norm induced by
the inner product <,>. The quantity (1.45) is called length (or norm) of the
vector a ∈ S.

Proposition 2. Let S be a vector space equipped with the scalar product <,>.
Given the vectors a,b ∈ S,, the Schwarz inequality

| < a,b > | ≤ ‖a‖ ‖b‖ , (1.46)

the parallelogram law

‖a + b‖2 + ‖a− b‖2 = 2 ‖a‖2 + 2 ‖b‖2 , (1.47)

and the Pitagora theorem

if < a,b >= 0 then ‖a + b‖2 = ‖a‖2 + ‖b‖2 , (1.48)

hold
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Proof. If a = 0, (1.46) is trivially verified. Let us assume that a 6= 0 and
consider α ∈ R,

0 ≤< αa + b, αa + b >= α2 ‖a‖2 + 2α < a,b > + ‖b‖2 =

‖a‖2
[
α2 +

2α

‖a‖2
< a,b > +

< a,b >2

‖a‖4

]
+ ‖b‖2 − < a,b >2

‖a‖2
=

‖a‖2
[
α+

< a,b >

‖a‖2

]2
+ ‖b‖2 − < a,b >2

‖a‖2
. (1.49)

If we put α = − < a,b > / ‖a‖2 , from (1.49) we get

‖b‖2 ≥ < a,b >2

‖a‖2

and then (1.46).

We have seen that given an inner product on S, it is possible to define in a
natural way the norm (1.45) on S.

In Rn the norm ‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

is induced by the scalar product (1.41)

and in Pn, the norm ‖f‖2 =

(
1∫
0

|f(x)|2 dx
)1/2

is induced by the scalar product

(1.42). In the space Mm,n the Frobenius norm defined in (1.34) is associated
to the scalar product (1.43).

Nevertheless, it is possible define norms that are not induced by any inner
product, For example, in P1, the norm (1.30) is not induced by any inner prod-
uct. This follows from the fact that (1.30) does not satisfy the parallelogram
law, as it is easy to prove choosing the polynomials f1(x) = 1 and f2(x) = x,
x ∈ [0, 1], for which ‖f1‖∞ = ‖f2‖∞ = 1, ‖f1 − f2‖∞ = 1 and ‖f1 + f2‖∞ = 2.

Analogously, in R2 the norm (1.28) does not satisfy the parallelogram law
(for x = (1, 1) and y = (1, 0) we have ‖x‖∞ = ‖y‖∞ = 1, ‖x− y‖∞ = 1 and
‖x + y‖∞ = 2) and then it is not induced by any inner product.

It is possible to prove that if a norm ‖ ‖ satisfies the parallelogram law, then
‖ ‖ is induced by the following scalar product

< a,b >=
1

4
(‖a + b‖2 − ‖a− b‖2). (1.50)

1.5 Bases of a vector space

Let S be a vector space. Given the vectors u1, ...,um ∈ S and the scalars
α1, ..., αm, the vector α1u1 + ...+ αmum is a linear combination of u1, ...,um.
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Vectors u1, ...,um ∈ S are linearly independent if

α1u1 + ...+ αmum = 0 =⇒ α1 = ... = αm = 0. (1.51)

If there exist αi different from zero such that α1u1 + ... + αmum = 0, then
vectors u1, ...,um are linearly dependent.

A basis of S is a set B of linearly independent vectors of S such that each
vector in S is a (finite) linear combination of elements of B. Of course, this
combination is unique. It is possible to prove that every vector space has at
least a basis.

A vector space has finite dimension if it has a finite basis. It is possible to
prove that if B1 and B2 are two bases of the finite-dimensional vector space S,
then B1 and B2 have the same numbers of elements.

Thus, it is possible to define the dimension of a finite-dimensional vector
space S, which is the number of elements of a basis of S.

Herein after we shall consider vector spaces S of finite dimension n and
denote by {u1, ...,un} a basis of S. For each u ∈ S there exist (and are unique)
β1, ..., βn ∈ R such that

u =

n∑
i=1

βiui. (1.52)

If S has an inner product and u1, ...,un are orthonormal, then {u1, ...,un} is
an orthonormal basis.

In Rn let us consider the vectors

x1 = (1, 0, ..., 0),

x2 = (0, 1, ..., 0),

...

xn = (0, 0, ..., 1),

{x1, ...,xn} is an orthonormal basis, called canonic basis. The dimension of Rn
is n.

In R2 let us consider the vectors x1 = (1, 0) and x2 = (1, 1), {x1,x2} is a
basis of R2, which is not orthonormal.

In P1 let us consider the polynomials f1(x) = 1, f2(x) = x, g2(x) =
√

3(1−
2x), x ∈ [0, 1], {f1, f2} is a basis and {f1, g2} is an orthonormal basis of P1.
The dimension of the vector space Pn is n+ 1.

In Mm,n the matrices {Aij}i=1,...,m
j=1,...,n

with coefficients

aijkl =

{
1, k = i, l = j
0, otherwise.

(1.53)

are an orthonormal basis and the dimension of Mm,n is m× n.
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Let U and W be two vector spaces, a function T : U → W is linear if it is
homogenous

T (αa) = αT (a), for each a ∈ U , α ∈ R, (1.54)

and additive
T (a + b) = T (a) + T (b), for each a,b ∈ U . (1.55)

In particular, if T is linear then T (0) = 0.
A bijective linear function is called isomorphism and two vector spaces U

and W are isomorphic if there exists an isomorphism T : U → W.
Vector spaces with the same dimension are isomorphic. In fact, the following

theorem holds.

Theorem 1. Every vector space S of dimension n is isomorphic to Rn.

Proof. Let {u1, ...,un} be a basis of S. Then, each u ∈ S can be written in the

form u =
n∑
i=1

βiui, with the scalars β1, ..., βn being uniquely determined. The

bijective function
u 7→ (β1, ..., βn) (1.56)

from S to Rn is the required isomorphism.

Vice versa, two isomorphic vector spaces U andW have the same dimension.

Theorem 2. If the vector spaces U and W are isomorphic, then they have the
same dimension.

Proof. If {u1, ...,un} is a basis of U , then {Tu1, ..., Tun} is a basis ofW. Firstly,
we prove that the vectors Tu1, ..., Tun are linearly independent. In fact,

α1Tu1 + ...+ αnTun = 0

implies
T (α1u1 + ...+ αnun) = 0

and then, in view of the fact that T is injective, we have

α1u1 + ...+ αnun = 0

from which we deduce
α1 = ... = αn = 0,

because u1, ...,un are linearly independent. To prove that each w ∈ W can
be written as a unique linear combination of vectors Tu1, ..., Tun, we proceed
in the following way. Since T is bijective, given w ∈ W there exists u ∈ U
such that Tu = w. From the relation u = α1u1 + ... + αnun it follows that
w = α1Tu1 + ...+ αnTun.

13



1.6 Subspaces

A non-empty subsetM of the vector space S is a subspace if for each a,b ∈M,
α, β ∈ R, the vector αa + βb belongs to M.

Let D be a non-empty set of vectors of S, the intersection of all subspaces
containing D is a subspace of S, called subspace spanned by D and denoted by
Span(D). Span(D) contains all possible (finite) linear combinations of elements
of D.

If M1 and M2 are two subspaces of S, Span(M1,M2) is the subspace of S
constituted by all the vectors a + b with a ∈ M1,b ∈ M2 and is denoted by
M1 + M2.

A subspace M2 of S is a complement of a subspace M1 if

M1 ∩M2 = {0} and S =M1 +M2. (1.57)

In this case, we say that S is the direct sum of the subspaces M1 and M2 and
we write

S =M1 ⊕M2. (1.58)

If that is the case, every vector s ∈ S can be written in a unique way as

s = a + b, with a ∈M1,b ∈M2. (1.59)

In fact, (1.59) follows from the definition ofM1 +M2, and to prove the unique-
ness of a and b, let us assume to have

s = a1 + b1 = a2 + b2, a1,a2 ∈M1,b1,b2 ∈M2. (1.60)

Then,
a1 − a2 = b2 − b1,

and, from (1.57)1, we get a1 = a2 and b1 = b2.

In R2, given x1 = (1, 0) and x2 = (1, 1), let us consider M1 =Span(x1) and
M2 =Span(x2), we have

M1 ∩M2 = {(0, 0)} and M1 +M2 = R2,

thus R2 =M1 ⊕M2.
In R3 let us consider the vectors x1 = (1, 0, 0),x2 = (0, 1, 0) and x3 =

(0, 0, 1); forM1 =Span(x1,x2) andM2 =Span(x2,x3), we haveM1+M2 = R3,
but M1 ∩M2 =Span(x2), then R3 is not direct sum of M1 and M2.

The subspaceM of S has dimension m if it is spanned by m linear indepen-
dent vectors of S.

Given a subspaceM of dimension m of a vector space S of dimension n (m ≤
n), there exists a basis of S which contains a basis of M.

Let S be a vector space with the scalar product <,>. Two subspaces M1

and M2 of S are orthogonal if each vector of the former is orthogonal to each
vector of the latter.
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Proposition 3. Let S be a vector space with the scalar product <,>. Let
{u1, ...,um} be an orthonormal set of vectors of S. For each u ∈ S, putting
αi =< u,ui >, the following Bessel inequality holds

m∑
i=1

|αi|2 ≤ ‖u‖2 . (1.61)

Moreover, the vector u′ = u−
∑m
i=1 αiui is orthogonal to Span(u1, ...,um).

Proof. We have

0 ≤ ‖u′‖2 =< u−
m∑
i=1

αiui,u−
m∑
i=1

αiui >=

‖u‖2 −
m∑
i=1

|αi|2 −
m∑
i=1

|αi|2 +

m∑
i=1

|αi|2 =

‖u‖2 −
m∑
i=1

|αi|2,

from which (1.61) follows. Moreover, we have

< u′,uj >=< (u,uj > −
m∑
i=1

αi < ui,uj >= αj − αj = 0.

1.7 Orthonormal bases

An orthonormal set {u1, ...,um} of vectors of S is complete if it not contained
in any larger orthonormal set. In particular, a complete orthonormal set of S is
an orthonormal basis of S, in fact, the following proposition holds.

Proposition 4. Let O = {u1, ...,um} be an orthonormal set of vector in the
vector space S equipped with the inner product <,>. The following conditions
are equivalent to each other.

(1) The orthonormal set O is complete.

(2) If < u,uj >= 0 for j = 1, ...,m then u = 0.

(3) The subspace Span(O) coincides with S.

(4) If u ∈ S, we have u =
∑m
i=1 < u,ui > ui.

(5) If u,v ∈ S, the Parseval identity holds,

< u,v >=

m∑
i=1

< u,ui >< v,ui > . (1.62)
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(6) If u ∈ S, then we have

‖u‖2 =

m∑
i=1

< u,ui >
2 . (1.63)

Proof. (1) =⇒ (2) If < u,uj >= 0 for j = 1, ...,m with u 6= 0, the union of O
and the vector u/ ‖u‖ , is an orthonormal set of S containing O.

(2) =⇒ (3) If there were u ∈ S which is not a linear combination of vectors
ui, then, in view of proposition 3 the vector u′ = u−

∑m
i=1 < u,ui > ui would

be different from zero and orthogonal to each ui.
(3) =⇒ (4) If each u ∈ S had the expression u =

∑m
j=1 αjuj , the, for each

i = 1, ...,m, it would be

< u,ui >=

m∑
j=1

αj < uj ,ui >= αi.

(4) =⇒ (5) If u =
∑m
i=1 < u,ui > ui, v =

∑m
j=1 < v,uj > uj , then

< u,v >=

m∑
i,j=1

< u,ui >< v,uj >< ui,uj >=

m∑
i=1

< u,ui >< v,ui > .

(5) =⇒ (6) Put u = v in (1.62).
(6) =⇒ (1) Let u0 ∈ S be orthogonal to all ui. Then,

‖u0‖2 =

m∑
i=1

< u0,ui >
2= 0

which implies u0 = 0.

Let M be a subspace of S; the set

M⊥ = {u ∈ S | < v,u >= 0 for each v ∈M} (1.64)

is a subspace of S called orthogonal complement of M. The vector space S is
the direct sum of M and M⊥,

S =M⊕M⊥. (1.65)

In fact, if {e1, ..., em} is an orthonormal basis of M, for each v ∈ S we have

v = v + vo, (1.66)

where v =
∑m
i=1 < ei,v > ei ∈ M e vo = v −

∑m
i=1 < ei,v > ei ∈ M⊥, in

view of proposition 3.
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Let S1 and S2 two vector spaces with inner products < ., . >S1 and < ., . >S2 .
A linear function T : S1 → S2 which satisfies

< u,v >S1=< T (u), T (v) >S2 , for each u,v ∈ S1, (1.67)

is an isometry. An isomorphism satisfying (1.67) is called isometric isomorphism
and the space S1 and S2 are called isometrically isomorphic.

An isometry preserves the scalar product and then preserves the norm

||u||S1 = ||T (u)||S2 , for each u ∈ S1. (1.68)

From (1.68) it follows that if |T (u)||S2 = 0 then ||u||S1 = 0, thus an isometry
is injective.

Proposition 5. Every vector space S of dimension n with inner product < ,>S
is isometrically isomorphic to Rn.

Proof. Let {e1, ..., en} be an orthonormal basis of S, the function T on S into
Rn defined by

T (u) = (u1, ..., un), ui =< ei,u >S , i = 1, ..., n (1.69)

is an isometric isomorphism, in fact, for each u,v ∈ S we have

< T (u), T (v))Rn =

n∑
i=1

uivi =

n∑
i=1

< ei,u >S< ei,v >S=< u,v >S , (1.70)

where the last equality follows from (1.62).

1.8 Convergence of vectors

Let us now introduce the notion of convergence of a sequence of vectors in a
vector space equipped with a scalar product.

A sequence {v(k)}k∈N of vectors in S converges to a vector v ∈ S if for each
ε > 0 there exists k > 0 such that∥∥∥v(k) − v

∥∥∥ < ε for each k ≥ k. (1.71)

In that case, the sequence {v(k)}k∈N is convergent and the vector v is the limit
of {v(k)}k∈N for k going to infinity,

lim
k→∞

v(k) = v, or v(k) → v, for k →∞. (1.72)

In Rn the sequence {x(k)}k∈N converges to x if the sequence of real numbers∥∥x(k) − x
∥∥2
2

=
n∑
i=1

|x(k)
i − xi|2 converges to 0 for k going to infinity and, in

particular, if
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x
(k)
i → xi for k →∞, i = 1, ..., n. (1.73)

The convergence defined above is also called strong convergence. It is easy
to prove that the limit of a convergent sequence {v(k)}k∈N is unique. In fact,
let us assume that

v(k) → v and v(k) → w, for k →∞. (1.74)

Then we have
‖v −w‖ ≤

∥∥∥v − v(k)
∥∥∥+

∥∥∥v(k) −w
∥∥∥ , (1.75)

from which, in view of (1.71), we get ‖v −w‖ = 0.

For each w ∈ S, from the Schwarz inequality it follows that

| < v(k) − v,w > | ≤
∥∥∥v(k) − v

∥∥∥ ||w||
therefore, if {v(k)}k∈N converges to v we have that

lim
k→∞

< v(k),w >=< v,w > for each w ∈ S. (1.76)

If condition (1.76) is satisfied, we say that the sequence {v(k)}k∈N in S converges
weakly to v ∈ S and we write

v(k) ⇀ v, for k →∞. (1.77)

Of course, if a sequence is strongly convergent, then it is weakly convergent.
Unlike infinite dimensional vector spaces, where strong and weak convergence
do not coincide, in finite-dimensional vector spaces each weakly convergent se-
quence is (strongly) convergent. In fact, let us assume that (1.76) holds and let
{u1, ...,un} an orthonormal basis of S. Then, we have that < v(k)−v,ui >→ 0
when k →∞, for each i = 1, ..., n. In view of relation (1.63) of the Proposition
4 we have ∥∥∥v(k) − v

∥∥∥2 =

n∑
i=1

< v(k) − v,ui >
2,

thus, lim
k→∞

v(k) = v.

Let S be a normed vector space, a sequence {v(k)}k∈N ⊂ S is a Cauchy
sequence if for each ε > 0 there is q ∈ N such that

∥∥v(p) − v(q)
∥∥ < ε when

p, q > q or, equivalently, if
∥∥v(p) − v(q)

∥∥→ 0, for p, q →∞.
If {v(k)}k∈N is a convergent sequence, with limit v, then it is a Cauchy

sequence, in fact ∥∥∥v(p) − v(q)
∥∥∥ ≤ ∥∥∥v(p) − v

∥∥∥+
∥∥∥v − v(q)

∥∥∥ , (1.78)

and
∥∥v(p) − v(q)

∥∥ converges to 0 for p, q →∞.

A normed vector space S is complete if for each Cauchy sequence {v(k)}k∈N ⊂
S there is a unique vector v ∈ S such that vk → v when k →∞.
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Proposition 6. Each finite-dimensional vector space S with inner product <,>
is complete.

Proof. From Proposition 5 it follows that if S has dimension n then it is isomet-
rically isomorphic to Rn. Let T be be isometric isomorphism definite in (1.69)
and {v(k)}k∈N ⊂ S a Cauchy sequence, we have

||T (v(p))− T (v(q))||2Rn =< T (v(p))− T (v(q)), T (v(p))− T (v(q)) >Rn

=< v(p) − v(q),v(p) − v(q) >S= ||v(p) − v(q)||2S , (1.79)

therefore, {T (v(k))}k∈N is a Cauchy sequence in Rn. Since Rn is complete, there
is x ∈ Rn such that T (v(k)) → x for k → ∞, and in view of the fact that T is
surjective, there exists v ∈ S such that T (v) = x. Then we have,

||v − v(k)||S = ||T (v)− T (v(k))||Rn = ||x− T (v(k))||Rn , (1.80)

from which it follows that v(k) → v when k →∞.

Two norms ‖ ‖1 and ‖ ‖2 on a vector space U are equivalent if there are two
positive constants λ and µ such that

λ ‖u‖1 ≤ ‖u‖2 ≤ µ ‖u‖1 for each u ∈ U . (1.81)

The following theorem holds.

Theorem 3. In a finite-dimensional vector spaces all the norms are equivalent.

1.9 Open and closed sets, neighborhoods

Let S be a vector space with the norm ‖ ‖ . Given a ∈ S, r > 0, the sets

B(a, r) = {b ∈ S | ‖a− b‖ < r}, (1.82)

B′(a, r) = {b ∈ S | ‖a− b‖ ≤ r}, (1.83)

S(a, r) = {b ∈ S | ‖a− b‖ = r}, (1.84)

are the open ball, closed ball e sphere of center a and radius r.
For example, in S = R2 with the inner product (1.41) we have

B(0, r) = {x ∈ R2 | x21 + x22 < r2}, (1.85)

B′(0, r) = {x ∈ R2 | x21 + x22 ≤ r2}, (1.86)

S(0, r) = {x ∈ R2 | x21 + x22 = r2}. (1.87)
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A subset A of S is open if for each a ∈ A there exists r > 0 such that
B(a, r) ⊂ A. A subset C of S is closed if its complement S − C is open.
Given a ∈ S, a subset Ua of S which contains an open ball with center a is a
neighborhood of a.

Open balls, closed balls and spheres can be defined in a set X with metric
d, they have been introduced in a normed vector space because in these notes
we are interested in focusing on normed vector spaces.

The following propositions holds.

Proposition 7. Sets S and ∅ are closed and open.
The union of an arbitrary family of open sets is open.
The intersection of a finite family of open sets is open.
The intersection of an arbitrary family of closed sets is closed.
The union of a finite family of closed sets is closed.

A subset K of S is convex if given a,b ∈ K, we have αa + (1 − α)b ∈ K,
for each α ∈ [0, 1]. A subset K of S is bounded if there exists κ > 0 such that
||a|| ≤ κ for every a ∈ K.

The balls B(a, r) and B′(a, r) are convex. The subset K = {v(k)}k∈N of S
constituted by the elements of the convergent sequence {v(k)}k∈N is bounded
and not convex, on the contrary, Span(K) is convex but not bounded.

1.10 Mappings on vector spaces

Let U andW be normed vector spaces and T : U → W a mapping (or function).
T is continuous at a0 ∈ U if for each ε > 0 there is δ > 0 such that for each

a ∈ U satisfying ||a− a0||U < δ, we have||T (a)− T (a0)||W < ε. T is continuous
on U if it is continuous at each a0 ∈ U .

In other words, T is continuous at a0 if for every open ball B(T (a0), ε) with
center T (a0) and radius ε there is an open ball B(a0, δ) with center a0 and
radius δ such that T (B(a0, δ)) ⊂ B(T (a0), ε).

An alternative formulation of continuity can be expressed in terms of open
and closed sets.

Proposition 8. Let U and W be normed vector spaces and T : U → W a
mapping. T is continuous on U (that is at each a0 ∈ U) if and only is for each
open (closed) set A in W, the inverse image T−1(A) of A under T , is an open
(closed) set in U .

The notion of convergence of a sequence of vectors can be used to characterize
closed sets and continuous functions. In fact, the following propositions hold.

Proposition 9. Let C be a non-empty set of the normed vector space S. C
is closed if and only if each convergent sequence constituted by vectors in C ,
converges to a vector of C.
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The following result generalizes the well known relationship between conti-
nuity of real functions and convergence of sequences.

Proposition 10. Let U and W be normed vector spaces and T : U → W a
mapping. T is continuous at a0 ∈ U if and only if for each sequence {a(k)}k∈N ⊂
U such that lim

k→∞
a(k) = a0, we have lim

k→∞
T (a(k)) = T (a0).

A mapping T : U → W is linear if the properties (1.54) and (1.55) are
satisfied.

Example 1. Let {e1, ..., em} be an orthonormal set S, function L defined from
S into Span(e1, ..., em) such that

L(u) =

m∑
i=1

< u, ei > ei, ∀u ∈ S, (1.88)

is linear, on the contrary, the function that assigns to each vector u in S the
constant vector u is not linear.

A bijective map T is invertible and the function T−1 : W → U defined by
T−1(v) = u, if and only if T (u) = v is called inverse of T . If T is linear and
invertible, then T−1 is linear. In fact, for z, w ∈ W, let u, v the unique vectors
of U such that T (u) = z and T (v) = w. For α and β ∈ R we have

αz + βw = αT (u) + βT (v) = T (αu + βv) (1.89)

and then

T−1(αz + βw) = αu + βv = αT−1(z) + βT−1(w). (1.90)

Let T : U → W be a linear mapping, T is bounded if there is κ > 0 such that

||T (a)||W ≤ κ||a||U , for each a ∈ U . (1.91)

All linear mappings on finite-dimensional vector spaces are bounded. The
following proposition holds.

Proposition 11. Let U and W be finite-dimensional normed vector spaces.
Every linear mapping L : U → W is bounded.

Proof. For the sake of simplicity, let us limit ourselves to prove the proposition
in the case in which the norm on U is induced by the scalar product <,>U . Let
{e1, ..., en} be an orthonormal basis of U , for each u ∈ U we have

u =

n∑
i=1

uiei, (1.92)
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with ui =< u, ei >U , i = 1, ..., n, and

L(u) =

n∑
i=1

uiL(ei). (1.93)

Therefore, in view of the properties n3 and n2 of the norm, from (1.93) we get

||L(u)||W ≤
n∑
i=1

|ui| ||L(ei)||W ≤ β
n∑
i=1

|ui|, (1.94)

where β = max
i=1,...,n

||L(ei)||W . Finally, from (1.94), using the Schwarz inequality

we obtain that

||L(u)||W ≤ β
n∑
i=1

| < u, ei >U | ≤ β
n∑
i=1

||ei||U ||u||U = βn||u||U , (1.95)

for each u ∈ U , and then L is bounded.

Proposition 12. Let T : U → W be a linear mapping; T is continuous on U
if and only if it is continuous at 0 ∈ U .

Proof. Let us assume that T is continuous at 0 ∈ U , then for each ε > 0 there
is δ > 0 such that if ||a||U < δ then ||T (a)||V < ε (in view of the linearity of
T, T (0) = 0). Now consider a0 ∈ U , for each a ∈ U such that ||a − a0||U < δ
we have ||T (a) − T (a0)||V = ||T (a − a0)||V < ε, therefore if T is continuous at
a0.

Proposition 13. Let T : U → W be a linear mapping. T is continuous on U
if and only if is bounded on U .

Proof. Let us assume that T is bounded, then from (1.91) it follows that for
each ε > 0 putting δ = ε/κ we have

||T (u)||W ≤ κ||u||U ≤ κδ = ε (1.96)

and then T is continuous at 0 ∈ U ; the thesis follows from Proposition 12.
Vice versa let us assume that T is continuous but not bounded (reductio ad
absurdum): then, for each k ∈ N there is u(k) ∈ U such that

||T (u(k))||W > k||u(k)||U . (1.97)

In particular, we have u(k) 6= 0, then, we can put

v(k) =
u(k)

k||u(k)||U
. (1.98)

The sequence {v(k)}k∈N converges to 0, but

||T (v(k))||W =
||T (u(k))||W
k||u(k)||U

> 1 (1.99)

which is in contrast with the continuity of T .
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Remark 1. In infinite dimensional vector spaces there are linear functions that
are not continuous. Let us consider the set P of the polynomials on [0, 1] with

the scalar product < f, g >=
∫ 1

0
f(t)g(t)dt and let L : P → P be the mapping

that assigns to each polynomial its derivative. L is linear, but not bounded.
Given the polynomials fk(t) = tk, k ∈ N, we have

||fk||2 =
1

2k + 1
< 1

and

||L(fk)||2 = k2
∫ 1

0

t2k−2dt =
k2

2k − 1
,

therefore, ||L(fk)||2 → +∞ when k →∞ and L is not bounded.

Proposition 14. Every subspace M of a vector space S with inner product is
closed.

Proof. The proof is based on Proposition 9. LetM be a subspace of the vector
space S and {v(k)}k∈N ⊂ M a sequence converging to v ∈ S. For {u1, ...,um}
an orthonormal basis of M, we have

v(k) =

m∑
i=1

< v(k),ui > ui, k ∈ N,

and ∥∥∥v(k) − v
∥∥∥→ 0 when k →∞.

From the inequality∥∥∥∥∥
m∑
i=1

< v,ui > ui − v

∥∥∥∥∥ ≤
∥∥∥∥∥
m∑
i=1

< v,ui > ui −
m∑
i=1

< v(k),ui > ui

∥∥∥∥∥+
∥∥∥v(k) − v

∥∥∥
taking into account that {v(k)}k∈N converges t v and then converges weakly to
a v, we get that v ∈M.

Let U and W be vector spaces with inner product and dimension n and m,
respectively. Let us denote by L(U ,W) the set of all linear mappings on U into
W

L(U ,W) = {L : U → W | L is linear}. (1.100)

If we define the sum of two mappings and the product by a scalar in the following
natural way

(L1 + L2)(u) = L1(u) + L2(u), (1.101)

(αL1)(u) = αL1(u)

for each u ∈ U , α ∈ R, L(U ,W) turns out to be a vector space.
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Let {u1, ...,un} and {w1, ...,wm} be two orthonormal bases of U and W,
respectively. The m× n linear mappings Lij defined by

Lij(uk) =

{
wi k = j
0 k 6= j

, i = 1, ...,m, j = 1, ..., n (1.102)

are linear independent. In fact, from the condition
∑
i,j

αijLij = 0 we get that∑
i,j

αijLij(uk) = 0, k = 1, ..., n and then, in view of (1.102),
∑
i

αikwi = 0,

k = 1, ..., n. From the linear independence of vectors w1, ...,wm it follows that
the coefficients αij are zero. Moreover, for each L ∈ L(U ,W) we have

L =
∑

i=1,...,m
j=1,...,n

(L(uj),wi)W Lij . (1.103)

In fact, for each u ∈ U , we have u =
∑n
k=1(u,uk)U uk, from which

∑
i=1,...,m
j=1,...,n

(L(uj),wi)W Lij(u) =
∑

i=1,...,m
j=1,...,n

(L(uj),wi)W Lij

(
n∑
k=1

(u,uk)U uk

)
=

∑
i=1,...,m
j=1,...,n

(L(uj),wi)W (u,uj)U wi =

∑
i=1,...,m

(L

 ∑
j=1,...,n

(u,uj)U uj

 ,wi)W wi =

∑
i=1,...,m

(L(u),wi)W wi = L(u),

and then (1.103) is proved. Thus the linear mappings defined in (1.102) are a
basis of the vector space L(U ,W) and the dimension of L(U ,W) is m× n. The
vector spaces L(U ,W) and Mm,n are isomorphic.

For each L ∈ L(U ,W) let us consider the quantity

||L||N = sup
u∈U, u6=0

||L(u)||W
||u||U

. (1.104)

It is easy to verify that (1.104) is a norm on L(U ,W). Firstly, if L ∈ L(U ,W)
then L is bounded (Proposition 11), then there is κ > 0 such that ||L(u)||V ≤
κ||u||U for each u ∈ U , and sup

u∈U, u6=0
||Lu||W/||u||U exists and is finite. Moreover,

from the linearity of L it follows that

sup
u∈U, u6=0

||L(u)||W
||u||U

= sup
||u||U=1

||L(u)||W (1.105)
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and

||L1 + L2||N = sup
||u||U=1

||L1(u) + L2(u)||W ≤ sup
||u||U=1

(||L1(u)||W + ||L2(u)||W)

≤ sup
||u||U=1

||L1(u)||W + sup
||u||U=1

||L2(u)||W = ||L1||N + ||L2||N . (1.106)

In a similar way we can prove that ||αL||N = |α| ||L||N for each L ∈ L(U ,W)
and α ∈ R. Finally we have ||L||N = 0 if and only if sup

||u||U=1

||L(u)||W = 0 if and

only if ||L(u)||W ≤ 0 for each u ∈ U , ||u||U = 1, if and only if L(u) = 0 for each
u ∈ U . We can the conclude that (1.104) is a norm on L(U ,W) called natural
norm.

The norm (1.104) is not induced by any scalar product. To prove this, let
us put U =W and let {u1, ...,un} be an orthonormal basis of U . For the linear
mappings

L1(u) = u, L2(u) = (u,u1)u1;

we have ||L1 + L2||N = 2, ||L1 − L2||N = 1, ||L1||N = ||L2||N = 1, then (1.104)
does not satisfy the parallelogram law.

Example 2. Let T : U → W be an isometry, we have

||T ||N = sup
u∈U, u6=0

||T (u)||W
||u||U

= sup
u∈U, u6=0

||u||U
||u||U

= 1. (1.107)

For the mapping (1.88) defined in the example 1, we have

||L||N = sup
u∈S, u6=0

||L(u)||S
||u||S

= sup
u∈S, u6=0

√
k∑
i=1

|(u, ei)|2

||u||S
≤ 1,

choosing u ∈Span(e1, ..., ek), we get ||L||N = 1.

1.11 Functionals

Let S be a vector space with inner product <,>. A function ψ on S into R is
called functional. ψ is a linear functional if the properties (1.54) and (1.55)are
satisfied,

1. ψ(αa) = αψ(a), for each a ∈ S, α ∈ R (homogeneity).

2. ψ(a + b) = ψ(a) + ψ(b), for each a,b ∈ S (additivity),

Given b ∈ S, the functional ψ(u) =< u,b >, u ∈ S is linear, on the
contrary ψ(u) = ||u||, u ∈ S, is not linear, in fact,in general we have ||αu|| = |α|
||u|| 6= α||u||.

The following theorem is known are representation theorem for linear func-
tionals.
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Theorem 4. Let S be a finite-dimensional vector space with inner product <,>
and ψ : S → R a linear functional. There exists a unique a ∈ S such that

ψ(u) =< a,u >, for each u ∈ S. (1.108)

Proof. If ψ = 0, (1.108) is verified by a = 0. Them let us assume that ψ 6= 0
and consider the subspaces of S,

M = {v ∈ S | ψ(v) = 0} (1.109)

and
M⊥ = {u ∈ S | < v,u >= 0 for each v ∈M}. (1.110)

Since ψ 6= 0, M⊥ contains at least an element z different from zero, and then
we can put a = ψ(w)w, where w = z/||z||. We have

< a,w >= ψ(w) < w,w >= ψ(w) (1.111)

and, if u ∈M, 0 = ψ(u) =< a,u > .
Let us fix u ∈ S; for each λ ∈ R we have

u = λw + u− λw, (1.112)

where λw ∈M⊥, and if we choose λ = ψ(u)/ψ(w) we have

ψ(u− λw) = ψ(u)− ψ(u)

ψ(w)
ψ(w) = 0, (1.113)

and then u− λw ∈ M. Taking into account the linearity of ψ, the choice of λ
and (1.111), we have

< a,u >=< a, λw + u− λw >=< a, λw >=
ψ(u)

ψ(w)
< a,w >= ψ(u), (1.114)

which proves the existence of a. As far as the uniqueness is concerned, let us
assume that there exist a1,a2 ∈ S such that

ψ(u) =< a1,u >=< a2,u >, for each u ∈ S. (1.115)

Chosen u = a1 − a2 from (1.115) we get

< a1 − a2,a1 − a2 >= 0, (1.116)

from which, in view of the property s3. of the inner product, the equality
a1 = a2 follows

The subspaceM is called the kernel of ψ. From the theorem above it follows
that if S has dimension n and ψ is different from 0, then the dimension of M
is n− 1.
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A functional ϕ : S → R is continuous at a0 ∈ S if for each ε > 0 there is δ > 0
such that for each a ∈ S satisfying ||a− a0|| < δ, we have |ϕ(a)− ϕ(a0)| < ε.

ϕ is continuous on S if it is continuous at each a0 ∈ S.

The functional || || : S → R which assigns to each vector its norm, is contin-
uous at each a0 ∈ S, in fact, in view of the inequality (1.35) we have

|||a|| − ||a0||| ≤ ||a− a0||.

Analogously, from the inequality (1.35) it follows that for each given a ∈ S, the
functional ϕ : S → R defined by ϕ(v) = ||v − a|| with v ∈ S is continuous.

Remark 2. From theorem 4 it follows that every linear functional ψ : S → R is
bounded and then continuous on S. In fact, from both (1.108) and the Schwarz
inequality (1.46) we get

|ψ(v)| ≤ ||a|| ||v|| for each v ∈ S, (1.117)

then ψ is bounded

The vector space S∗ = L(S,R) constituted by all linear functionals on S is
called the dual space of S. If the vector space S has dimension n, then S∗ has
dimension n. For {e1, ..., en} an orthonormal basis of S, the n linear functionals
ϕi ∈ S∗ with ϕi(u) =< ei,u >, for each u ∈ S are a basis of S∗. In fact, the
linear independence of ϕi, i = 1, ..., n follows from the linear independence of
vectors ei, i = 1, ..., n, moreover, given ϕ ∈ S∗ in virtue of Theorem 4 there
exist a ∈ S such that ϕ(u) = (a,u), for each u ∈ S and

ϕ =

n∑
i=1

< a, ei > ϕi.

In view of (1.104) and (1.117) we have

||ϕ||N = ||a||. (1.118)

The vector spaces S and S∗, having the same dimension, are isomorphic.

1.12 Projections

Let M1 and M2 be subspaces of S with M2 complement of M1. Then each
s ∈ S can be written in a unique way as s = s1+s2, with s1 ∈M1 and s2 ∈M2.
The projection on M1 along M2 is the mapping PM1 defined by PM1(s) = s1.
PM1 is linear and idempotent, (PM1)2 = PM1 .

Example 3. In R2 given x1 = (1, 0) and x2 = (1, 1), consider the subspaces
M1 =Span(x1) andM2 =Span(x2). For each v = (v1, v2), we have v = v1+v2,
with v1 = (v1 − v2, 0) ∈ M1, v2 = (v2, v2) ∈ M2, and the projection on M1

along M2 is defined by PM1
(v) = v1. For x3 = (1, 2) and M3 =Span(x3), we

have v = u1 + u2, with u1 = ( 2v1−v2
2 , 0) ∈ M1, u2 = ( v22 , v2) ∈ M3, and the

projection on M1 along M3 is defined by PM1
(v) = u1.
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Let M be a subspace of S with an inner product, the orthogonal projection
on M is the linear mapping PM that assigns to each vector v ∈ S the vector
v = PM(v) ∈M defined in (1.66). v satisfies the condition

< v − v,w >= 0 for each w ∈M. (1.119)

Now we are in the position to extend the notion of projection to a non-empty
closed convex set of S.

Given a subset A of S and u0 ∈ S, the distance of u0 from A is the scalar

dist((u0,A) = inf
v∈A
||u0 − v||. (1.120)

The following result is known as minimum norm theorem.

Theorem 5. Let S be a finite-dimensional real vector space with the inner
product <,> and let K ⊂ S be a non-empy closed convex subset of S. For each
f ∈ S there is a unique u ∈ K which satisfies the following equivalent conditions

‖f − u‖ = min
v∈K
‖f − v‖ = dist(f ,K), (1.121)

< f − u,v − u >≤ 0 for each v ∈ K. (1.122)

The vector u = PK(f) is called projection of f onto the closed convex set K.

Proof. First of all, let us prove that there exists u ∈ K which satisfies (1.121),
then we prove the equivalence of (1.121) and (1.122) and finally the uniqueness
of u ∈ K satisfying (1.122).

If f ∈ K, then u = f ; if f /∈ K, we set d = dist(f ,K). From the definition
of infimum it follows that there is a sequence {u(k)}k∈N ⊂ K such that dk =∥∥u(k) − f

∥∥ → d, for k → ∞. {u(k)}k∈N is a Cauchy sequence, in fact, by using

the parallelogram law (1.47) with a = f −u(p), b = f −u(q), recalling that K is
convex, we have

||u(p) − u(q)||2 ≤ 2d2p + 2d2q − 4d2, (1.123)

from which we get

||u(p) − u(q)|| → 0, when p, q →∞. (1.124)

Thus, u(p) → u ∈ K for p → ∞ (see Proposition 9) and d = ‖u− f‖ because
the norm is a continuous functional.

Now we have to prove the equivalence of (1.121) and (1.122). Let us assume
that u ∈ K satisfies (1.121), for each w ∈ K we have

v = (1− t)u + tw ∈ K for each t ∈ [0, 1]

and then

‖f − u‖ ≤ ‖f − (1− t)u− tw‖ = ‖f − u− t(w − u)‖ .
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As a consequence, for t ∈ (0, 1], we have

‖f − u‖2 ≤ ‖f − u‖2 − 2t(f − u,w − u) + t2 ‖w − u‖2

and then 2 < f − u,w − u >≤ t ‖w − u‖2 which implies (1.122) when t→ 0.
Vice versa, let us assume that u ∈ K satisfies (1.122), we have

‖u− f‖2 − ‖v − f‖2 = 2 < f − u,v − u > −‖u− v‖2 ≤ 0 for each v ∈ K,

from which (1.121) follows.
In order to prove the uniqueness of u, let u1,u2 ∈ K satisfy (1.122). We

have
< f − u1,v − u1 >≤ 0 for each v ∈ K, (1.125)

< f − u2,v − u2 >≤ 0 for each v ∈ K. (1.126)

Setting v = u2 in (1.125) and v = u1 in (1.126), and summing we get

||u2 − u1||2 ≤ 0. (1.127)

Example 4. Consider S = R2 with the scalar product defined in (1.41), K =
{(x1, x2) ∈ R2 : x21 + x22 ≤ 1}. If f /∈ K, we have PK(f) = f/||f ||. In fact, for
each v ∈ K, we have

||f − v|| ≥ |||f || − ||v||| = ||f || − ||v|| ≥ ||f || − 1 = |||f || − 1| = ||f − f

||f ||
||.

If K is not convex, the uniqueness of the projection is not guaranteed (for
S = R2 and K = S(0, 1), PK(0) = S(0, 1)) and if K is not closed the existence
of the projection is guaranteed (see for example K = B(0, 1)).

The mapping PK : S → K defined in the preceding theorem is continuous.
In fact, the following proposition holds.

Proposition 15. Under the hypotheses of theorem 5 we have

||PK(f1)− PK(f2)|| ≤ ||f1 − f2||, for each f1, f2 ∈ S. (1.128)

Proof. Setting u1 = PK(f1) and u2 = PK(f2), in view of (1.122) we have

< f1 − u1,v − u1 >≤ 0 for each v ∈ K, (1.129)

< f2 − u2,v − u2 >≤ 0 for each v ∈ K. (1.130)

Putting v = u2 in (1.129) and v = u1 in (1.130), and summing we get

||u1 − u2||2 ≤< f1 − f2,u1 − u2 >,

that, by taking the Schwarz inequality into account, implies

||u1 − u2|| ≤ ||f1 − f2||.
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Since a subspace is closed and convex, the orthogonal projection onto a
subspace defined in (1.119) can be obtained as particular case of the minimum
norm theorem and the following proposition holds. Unlike the projection onto
a convex closed set, the projection onto a subspace is linear.

Proposition 16. If K =M, with M subspace of S, for each f ∈ S the projec-
tion u = PM(f) of f onto M is characterized by

u ∈M, < f − u,v >= 0, for each v ∈M, (1.131)

and PM is a linear mapping.

Proof. From (1.122) we get

< f − u,v − u >≤ 0 for each v ∈M,

and then

< f − u, tv − u >≤ 0 for each v ∈M, for each t ∈ R,

thus, it follows that

< f − u,v >= 0, for eachv ∈M.

Moreover, if u satisfies (1.131) we have

< f − u,v − u >= 0 for each v ∈M.

Given f1, f2 ∈ S, putting u1 = PM(f1) and u2 = PM(f2), from (1.131) it follows
that

< f1 + f2 − u1 − u2,v >=< f1 − u1,v > + < f2 − u2,v >= 0, (1.132)

for each v ∈M, then, PM(f1 + f2) = PM(f1) + PM(f2). Analogously, we prove
that PM(αf) = αPM(f) for each α ∈ R, f ∈ S.

Example 5. Let A ∈Mm,n and y ∈ Rm be given. For m > n the linear system

Ax = y, x ∈ Rn (1.133)

may be overdetermined and can be solved via the least squares approach, which
consists in minimizing the functional

φ(x) = ||Ax− y||2, x ∈ Rn. (1.134)

For i = 1, ..., n, the vectors a(i), constituted by the columns of A, belongs to Rm.
Assuming that they are linearly independent, the subspaceM = span(a(1), ...,a(n))
of Rm has dimension n and Ax ∈M for each x ∈ Rn. Then, minimize (1.134)
is equivalent to calculate

min
v∈M

||v − y||2. (1.135)
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In view of the minimum norm theorem, there is a unique u ∈ Rm such that

||u− y||2 = min
v∈M

||v − y||2 (1.136)

and
< y − u > ·v = 0, for each v ∈M. (1.137)

Vector u is the projection PM(y) of y onto M and the unique x ∈ Rn such
that Ax = u is the minimum point of (1.134).

1.13 Differentiation

Here we introduce the notion of differentiation of functions on normed vector
spaces. Let U and W be two vector spaces with inner product and let T be a
function defined on a neighborhood of 0 ∈ U with values in W. We say that
T (u) approaches zero faster than u and we write

T (u) = o(u) as u→ 0 (1.138)

if

lim
u6=0, u→0

||T (u)||W
||u||U

= 01. (1.139)

If T1 and T2 are two functions, T1(u) = T2(u)+o(u) means that T1(u)−T2(u) =
o(u).

For example, for U =W = R and T (t) = tα with α > 1, we have T (t) = o(t)
as t→ 0.

Let g be a function defined on the open set D ⊂ R into the vector space W,
the derivative of g at t, if it exists, is defined by

·

g(t) =
d

dt
g(t) = lim

s→0

g(t+ s)− g(t)

s
. (1.140)

In that case we say that g is differentiable at t. The function g : D → W is

of class C1 (or smooth) if
·

g(t) exists at each t ∈ D and if the function
·

g is
continuous on D.

Let g be differentiable at t, then we have

lim
s→0

g(t+ s)− g(t)− s ·

g(t)

s
= 0, (1.141)

or equivalently

g(t+ s) = g(t) + s
·

g(t) + o(s), s→ 0. (1.142)

1In other words, for every k > 0 there is k′ > 0 such that ||T (u)||W < k||u||U if ||u||U < k′.
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Since s
·

g(t) is linear in s, g(t+ s)− g(t) is equal to a function linear in s plus a
term that approaches zero faster than s.

Let U and W be normed vector spaces, D an open subset of U and T :
D → W a function. We say that T is (Fréchet) differentiable at u ∈ D if the
difference T (u + h) − T (u) is equal to a linear function of h plus a term that
approaches zero faster than h. More precisely, if there exists a linear mapping

DT (u) : U → W (1.143)

such that
T (u + h) = T (u) +DT (u)[h] + o(h), as h→ 0. (1.144)

If DT (u) exists, it is unique. In fact, for each h ∈ U we have

DT (u)[h] = lim
α→0

T (u + αh)− T (u)

α
=

d

dα
T (u + αh)|α=0. (1.145)

We call DT (u) the (Fréchet) derivative of T at u.
If T is differentiable at each u ∈ D, then DT is a function from D to the

space L(U ,W) of linear mappings from U to W, introduced in (1.100),

DT : D → L(U ,W), (1.146)

which assigns to each u ∈ D the linear mapping DT (u).

A function T : D → W is of class C1 (or smooth) if T is differentiable at
each u ∈ D and DT is continuous.

If D is an open subset of R and g a function from D to W, from (1.142) it

follows that Dg(t)[s] = s
·

g(t).

The following theorem holds.

Theorem 6. Let T : D → W be a function, with D open subset of U . If T is
(Fréchet) differentiable at u0 ∈ D then T is continuous at u0.

Proof. For u ∈ U , we have

T (u0 + u)− T (u0) = T (u0 + u)− T (u0)−DT (u0)[u] +DT (u0)[u], (1.147)

since the ratio
||T (u0 + u)− T (u0)−DT (u0)[u]||

||u||
(1.148)

converges to 0 as u→ 0, there is δ0 > 0 such that if 0 < ||u|| < δ0 we have

||T (u0 + u)− T (u0)−DT (u0)[u]|| ≤ ||u||. (1.149)
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Moreover, since DT (u0) is linear, from Proposition 11, it is bounded as well,
the there exists κ > 0 such that

||DT (u0)[u]|| ≤ κ||u||, for each u ∈ U . (1.150)

Then, for ||u|| < δ0 we have

||T (u0 + u)− T (u0)|| ≤ ||T (u0 + u)− T (u0)−DT (u0)[u]||+

||DT (u0)[u]|| ≤ (1 + κ)||u||. (1.151)

Finally, for each ε > 0, putting δ = min(δ0, ε/1 + κ), the continuity of T at u0

follows.

Example 6. Let L : U → W be a linear application. For u0,u ∈ U we have

L(u0 + u) = L(u0) + L(u), (1.152)

therefore, DL(u0) = L, that is DL is constant.
LetM be a subspace of the vector space S with inner product, {e1, ..., ek} an

orthonormal basis M and PM the projection onto M, PM(v) =
k∑
i=1

< v, ei >

ei. We have

DPM(v)[h] =

k∑
i=1

< h, ei > ei = PM(h), for each h ∈ S. (1.153)

Example 7. Let U a vector space with inner product <,>, φ : U → R the
nonlinear functional defined by φ(u) =< u,u >, u ∈ U . We have

φ(u + h) =< u + h,u + h >= φ(u) + 2 < u,h > +φ(h), (1.154)

with φ(h) = o(h) as h→ 0, in fact,

< h,h >

||h||
= ||h|| → 0 as h→ 0. (1.155)

Since 2(u,h) is linear in h, we have that

Dφ(u)[h] = 2 < u,h >, for each h ∈ U . (1.156)

Let X , X1, X2 and Y be finite-dimensional vector spaces with inner product;
let D be an open subset of X .

Let us consider the bilinear mapping 2 π : X1 × X2 → Y which assigns to
each f0 ∈ X1 and g0 ∈ X2 the product π(f0,g0) ∈ Y. Within this framework,
the product P = π(F,G) of two functions F : D → X1 and G : D → X2 is the
function P : D → Y defined by

P (u) = π(F (u), G(u)), for each u ∈ D. (1.157)

Let us state the following fundamental proposition.

2A mapping π : X1 × X2 → Y is bilinear if π(αf1 + βf2,g) = απ(f1,g) + βπ(f2,g) and
π(f , αg1 + βg2) = απ(f ,g1) + βπ(f ,g2) for each f , f1, f2 ∈ X1, g,g1,g2 ∈ X2, α, β ∈ R.
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Proposition 17. (Product Rule) Let F and G be differentiable at u ∈ D. Then
their product P = π(F,G) is differentiable at u and

DP (u)[h] = π(DF (u)[h], G(u)) + π(F (u), DG(u)[h]) (1.158)

for all h ∈ X .

Remark 3. If X = R, by replacing u with t in (1.158) we have

·

P (t) = π(
·

F (t), G(t)) + π(F (t),
·

G(t)). (1.159)

Let G be an open subset of X1, F : D → X1 and G : G → Y, with F (D) =
{v ∈ X1 : v = F (u), u ∈ D} ⊂ G.

Proposition 18. (Chain Rule)
Let F be differentiable at u ∈ D and G be differentiable at v = F (u). The

the composition C = G ◦ F is differentiable at u and

DC(u)[h] = DG(F (u))[DF (u)[h]] (1.160)

for every h ∈ X .

Remark 4. If X = R, writing t in place of u in (1.160) we have

d

dt
C(t) = DG(F (t)[

·

F (t)]. (1.161)

Example 8. Let us consider the functional ψ : U − 0 → R defined by ψ(u) =√
< u,u >, u ∈ U . ψ if the composition of the function f : R+ → R defined by

f(s) =
√
s, for each s ∈ R+ and the functional φ given in Example 7,

ψ(u) = f(φ(u)), u ∈ U . (1.162)

From Proposition 18, by taking (1.156) into account, we get that the derivative
of ψ at u is given by

Dψ(u)[h] = Df(φ(u))[Dφ(u)[h]] (1.163)

=
1

2
(φ(u))−1/2 2 < u,h >=

1

||u||
< u,h >, for every h ∈ U . (1.164)
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Chapter 2

Tensor calculus

This chapter is devoted to some results of tensor algebra and analysis. The term
tensor stands for a linear function from an inner product space to itself.

Let V be a real vector space of dimension n ≥ 2 equipped with the scalar
product · . Denoted by {e1, e2, ..., en} an orthonormal basis of V, for every
u ∈ V the quantities

ui = u · ei, i = 1, ..., n (2.1)

are the (Cartesian) components of u and we have

u ·v =

n∑
i=1

uivi e ‖u‖ =

√√√√ n∑
i=1

u2i . (2.2)

If n = 3 it is possible to prove via geometric considerations that u ·v = ||u||
||v|| cos θ, where θ ∈ [0, π] is the angle between the vectors u and v.

2.1 Second-order tensors

A (second-order) tensor A is a linear mapping from V into V,

A(αu + βv) = αAu + βAv, for each α, β ∈ R, u,v ∈ V. (2.3)

The set

Lin = {A : V → V | A is linear} (2.4)

of all tensors is a vector space. Given A,B ∈Lin, α ∈ R, the tensors A+B and
αA are defined as in the following

(A + B)v = Av + Bv, for all v ∈ V, (2.5)

(αA)v = αAv, for all v ∈ V. (2.6)
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The zero tensor in Lin is the tensor 0 defined by

0v = 0, for all v ∈ V, (2.7)

and the identity tensor I is defined by

Iv = v, for all v ∈ V. (2.8)

For α ∈ R, the mapping that assigns to each v ∈ V the vector αv is a tensor,
on the contrary the function that assigns to each v the vector (v ·v)v is not a
tensor, because it is not linear.

If A,B ∈ Lin, then the product AB ∈ Lin is defined by (AB)u = A(Bu)
for all u ∈ V. In general, AB 6= BA; if AB = BA then we say that A and B
commute. Given A ∈ Lin and the integer k ≥ 0, we define the following powers
of A

Ak =

{
I if k = 0,

Ak−1A if k ≥ 1.
(2.9)

Proposition 19. For every tensor A ∈ Lin there is a unique tensor AT such
that

ATv ·u = v ·Au for all u,v ∈ V. (2.10)

Tensor AT is called transpose of A.

Proof. Let us first prove that for each A ∈ Lin there is a tensor AT which
satisfies (2.10). To this end, for a fixed v ∈ V, let us consider the linear func-
tional ψ : V → R defined by ψ(u) = Au ·v, u ∈ V. From the theorem of
representation of linear functionals it follows that there is a unique av ∈ V such
that

ψ(u) = Au ·v = av ·u, for aech u ∈ V. (2.11)

Now let us consider the function B from V to V defined by

Bv = av, for each v ∈ V; (2.12)

B is linear, in fact if v,w ∈ V and α ∈ R, we have

B(v + w) ·u = av+w ·u = Au · (v + w) =

Au ·v + Au ·w = av ·u + aw ·u =

Bv ·u + Bw ·u, for each u ∈ V; (2.13)

B(αv) ·u = aαv ·u = Au · (αv) =

αav ·u = αBv ·u, for each u ∈ V. (2.14)

Let us put AT = B, we have

Au ·v = av ·u = Bv ·u = ATv ·u for each u,v ∈ V. (2.15)
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To prove the uniqueness, let as assume that there exist two tensors B and C
such that

v ·Au = Bv ·u = Cv ·u for all u,v ∈ V, (2.16)

then
(B−C)v ·u = 0 (2.17)

for each u,v ∈ V. Setting u = (B −C)v from (2.17) we get ||(B −C)v|| = 0,
from which we obtain (B−C)v = 0 for each v ∈ V, and then B−C = 0.

Proposition 20. For A,B ∈Lin, the following properties hold,

(A + B)T = AT + BT , (2.18)

(AB)T = BTAT , (2.19)

(AT )T = A. (2.20)

Proof. For each u,v ∈ V we have

u · (A + B)Tv = (A + B)u ·v = (Au + Bu) ·v = (2.21)

u ·ATv + u ·BTv = u · (AT + BT )v, (2.22)

which proves (2.18). Properties (2.19) and (2.20) follows directly from the fol-
lowing equalities,

u · (AB)Tv = (AB)u ·v = A(Bu) ·v = Bu ·ATv = (2.23)

u ·BTATv, (2.24)

u · (AT )Tv = ATu ·v = u ·Av. (2.25)

2.2 Symmetric and skew-symmetric tensors

A tensor A ∈ Lin is symmetric if AT = A and is skew-symmetric if AT = −A.
Let us denote by

Sym = {A ∈ Lin : A = AT } (2.26)

the subspace of Lin of all symmetric tensors and by

Skw = {W ∈ Lin : W = −WT } (2.27)

the subspace of Lin of all skew-symmetric tensors. Every A ∈ Lin can be written
in a unique way as the sum of (A + AT )/2 ∈ Sym and (A − AT )/2 ∈ Skw.
Moreover, since Sym∩Skw = {0}, Lin is the direct sum of Sym and Skw,

Lin = Sym⊕ Skw. (2.28)

Tensors (A+AT )/2 e (A−AT )/2 are called symmetric part and skew-symmetric
part of A.
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2.3 Dyads

For a,b ∈ V, a⊗ b is the element of Lin defined by,

(a⊗ b)u = (u ·b)a for all u ∈ V. (2.29)

Tensor a⊗ b is also called dyad and the symbol ⊗ denotes the tensor product.
The relation (2.29) defines a tensor, in fact,

a⊗ b(u + v) = [(u + v) ·b]a = (u ·b + v ·b)a =

(a⊗ b)u + (a⊗ b)v, (2.30)

a⊗ b(αu) = α(u ·b)a = α(a⊗ b)u (2.31)

for all u,v ∈ V, α ∈ R.

Proposition 21. Consider a,b, c,d ∈ V and and let {e1, ..., en} be an or-
thonormal basis of V.

(i) The following properties hold

(a⊗ b)T = (b⊗ a), (2.32)

(a⊗ b)(c⊗ d) = (b · c)(a⊗ d), (2.33)

(ei ⊗ ej)(ek ⊗ el) =

{
0, j 6= k,
ei ⊗ el, j = k,

(2.34)

n∑
i=1

ei ⊗ ei = I. (2.35)

(ii) The dyad a ⊗ b is symmetric if and only if b = αa, α ∈ R and id skew-
symmetric if and only if a = b = 0.

Proof. The proof of (2.32) follows from the equalities

u · (a⊗ b)Tv = (a⊗ b)u ·v = (u ·b)(a ·v) =

u · (a ·v)b = u · (b⊗ a)v, for each u,v ∈ V. (2.36)

From the relations

(a⊗ b)(c⊗ d)u = (a⊗ b)(d ·u)c = (b · c)(d ·u)a =

(b · c)(a⊗ d)u, for all u ∈ V, (2.37)

condition (2.33) follows, moreover (2.34) follows directly from (2.33). As far as
(2.35) is concerned, we have

(e1 ⊗ e1 + ...+ en ⊗ en)u =

u1e1 + ...+ unen = Iu, for eachu ∈ V. (2.38)
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Next exercise summarizes some properties of the tensor product.

Exercise 1. Prove that given A ∈ Lin and a,b ∈ V, we have

A(a⊗ b) = Aa⊗ b, (2.39)

(a⊗ b)A = a⊗ATb. (2.40)

Solution. For each u ∈ V, we have

A(a⊗ b)u = A(b ·u)a = (b ·u)Aa = (Aa⊗ b)u, (2.41)

(a⊗ b)Au = (b ·Au)a = (ATb ·u)a = (a⊗ATb)u. (2.42)

Consider e ∈ V with ||e|| = 1, for each v ∈ V the vector (e⊗ e)v = (v · e)e
is the projection of v onto Span(e); the vector (I− e⊗ e)v is the projection of
v onto the subspace orthogonal to e,

PSpan(e) = e⊗ e, PSpan(e)⊥ = I− e⊗ e.

2.4 Components of a tensor

Given an orthonormal basis {e1, ..., en} of V, the Cartesian components of a
tensor A ∈ Lin are

Aij = ei ·Aej , i, j = 1, ..., n. (2.43)

For u ∈ V, we have

u =

n∑
j=1

ujej , (2.44)

putting v = Au, for each i = 1, ..., n we have

vi = v · ei = Au · ei = ei ·

n∑
j=1

A(ujej) =

n∑
j=1

ei ·Aejuj =

n∑
j=1

Aijuj . (2.45)

Proposition 22. Let {e1, ..., en} be an orthonormal basis of V, the dyads {ei⊗
ej}i,j=1,...,n are a basis of Lin. In particular, for each A ∈ Lin, we have

A =

n∑
i,j=1

Aij(ei ⊗ ej). (2.46)
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Proof. Let us start by proving that the dyads {ei ⊗ ej}i,j=1,...,n are linearly
independent tensors. Let us consider the linear combination of the dyads {ei ⊗
ej}i,j=1,...,n with coefficients αij , we have

n∑
i,j=1

αijei ⊗ ej = 0 (2.47)

if and only if

n∑
i,j=1

αij(ei ⊗ ej)u =

n∑
i,j=1

αijujei = 0, for each u ∈ V. (2.48)

Putting

βi =

n∑
j=1

αijuj , i = 1, ..., n (2.49)

from (2.48) we get β1 = ... = βn = 0 and then n∑
j=1

αijej


·u = 0, for each u ∈ V, i = 1, ..., n. (2.50)

The relations in (2.50) are equivalent to

n∑
j=1

αijej = 0, i = 1, ..., n, (2.51)

that, in their turn, taking into account the linear independence of vectors
e1, ..., en, imply the equalities αij = 0, i, j = 1, ..., n.

For each u ∈ V we have

Au =

n∑
i=1

(Au)iei =

n∑
i=1

n∑
j=1

Aijujei =

n∑
i,j=1

Aij(u · ej)ei =

n∑
i,j=1

Aij(ei ⊗ ej)u,

which proves (2.46) and allows to conclude that {ei ⊗ ej}i,j=1,...,n is a basis of
the vector space Lin that, therefore, has dimension n2.

Proposition 23. Given A ∈ Lin, we have

A =

n∑
j=1

(Aej ⊗ ej). (2.52)

Proof. To prove (2.52) we use the representations (2.46) and (2.43) along with
the relation (2.33), from which we get

A =

n∑
i,j=1

Aij(ei ⊗ ej) =

n∑
i,j=1

(ei ·Aej)(ei ⊗ ej) =

n∑
i,j=1

(ei ⊗ ei)(Aej ⊗ ej) =
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(
n∑
i=1

ei ⊗ ei

) n∑
j=1

Aej ⊗ ej

 =

n∑
j=1

Aej ⊗ ej ,

where the latest equality follows from (2.35).

For a,b ∈ V, we have

(a⊗ b)ij = aibj , i, j = 1, ..., n, (2.53)

in fact,
(a⊗ b)ij = ei · (a⊗ b)ej = (a · ei)(b · ej) = aibj .

Moreover the components of the identity tensor I are

Iij =

{
1 if i = j,
0 if i 6= j,

(2.54)

and, for S a symmetric tensor and W a skew-symmetric tensor, we have

Sij = ei ·Sej = Sei · ej = Sji, i, j = 1, ..., n, (2.55)

Wij = ei ·Wej = −Wei · ej = −Wji, i, j = 1, ..., n, (2.56)

Given a tensor A ∈ Lin, the matrix

[A] =


A11 A12 . A1n

A21 A22 . A2n

. . . .
An1 An2 Ann

 (2.57)

is the matrix of the components of A with respect to {e1, ..., en}.

Given the tensors A,B ∈Lin, we have

[AT ] = [A]T , (2.58)

[AB] = [A][B], (2.59)

[I] =


1 0 . 0
0 1 . 0
. . . .
0 0 . 1

 . (2.60)
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2.5 Inner product and norm on Lin

The trace is the linear functional on Lin that assigns to each tensor A the scalar
trA and satisfies

tr(a⊗ b) = a ·b, for each a,b ∈ V (2.61)

From the relation (2.46) and the linearity of tr we have

trA = tr

 n∑
i,j=1

Aij(ei ⊗ ej)

 =

n∑
i,j=1

Aijtr(ei ⊗ ej) =

n∑
i,j=1

Aij(ei · ej) =

n∑
i=1

Aii. (2.62)

Proposition 24. The trace has the following properties

trA = trAT , (2.63)

tr(AB) = tr(BA), (2.64)

for each A,B ∈Lin.

Proof. We have

trA =

n∑
i=1

Aii =

n∑
i=1

ei ·Aei =

n∑
i=1

ei ·ATei = trAT ,

and (2.63) is proved. As far as (2.64) is concerned, we remark that

AB =

 n∑
i,j=1

Aij(ei ⊗ ej)

 n∑
l,m=1

Blm(el ⊗ em)

 =

n∑
i,j,l,m=1

AijBlm(ei ⊗ ej)(el ⊗ em) =

n∑
i,j,m=1

AijBjm(ei ⊗ em), (2.65)

BA =

 n∑
l,m=1

Blm(el ⊗ em)

 n∑
i,j=1

Aij(ei ⊗ ej)

 =

n∑
i,j,l,m=1

AijBlm(el ⊗ em)(ei ⊗ ej) =

n∑
i,j,l=1

AijBli(el ⊗ ej). (2.66)

From (2.65) we get

tr(AB) =

n∑
i,j,m=1

AijBjm(ei · em) =

n∑
i,j=1

AijBji,
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and from (2.66) we have

tr(BA) =

n∑
i,j,l=1

AijBli(el · ej) =

n∑
i,j=1

AijBji,

and the thesis follows.

In particular, from the preceding proof, it follows that the components of
the product AB are given by

(AB)ml =

n∑
j=1

AmjBjl, m, l = 1, ..., n. (2.67)

The vector space Lin can be equipped with the inner product

A ·B = tr(ATB), A,B ∈ Lin. (2.68)

Let us verify that (2.68) is scalar product. The symmetry is satisfied, in fact

A ·B =tr(ATB) = tr(BTA) = B ·A,

as for the bilinearity, given A,B,C ∈Lin we have

A · (B + C) = tr(AT (B + C)) = tr(ATB) + tr(ATC) =

A ·B + A ·C,

moreover, for each α ∈ R,

A · (αB) = tr(αATB) = αtr(ATB) = αA ·B.

Finally, as for the positivity, we have

A ·A =tr(ATA) = tr

 n∑
i,j=1

Aij(ej ⊗ ei)

 n∑
l,m=1

Alm(el ⊗ em)

 =

tr

 n∑
i,j,l,m=1

AijAlm(ej ⊗ ei)(el ⊗ em)

 = tr

 n∑
i,j,m=1

AijAim(ej ⊗ em)

 =

n∑
i,j=1

A2
ij ≥ 0,

moreover, A ·A = 0 if and only if Aij = 0 for i, j = 1, ..., n.

The inner product of A and B in terms of components is given by

A ·B =

n∑
i,j=1

AijBij , (2.69)

43



in fact,

A ·B = tr(ATB) = tr(

n∑
i,j=1

Aij(ej ⊗ ei)

n∑
k,l=1

Bkl(ek ⊗ el))

= tr(

n∑
i,j,l=1

AijBil(ej ⊗ el)) =

n∑
i,j=1

AijBij . (2.70)

In the vector space Lin the norm induced by the inner product (2.68) is

||A|| =
√
A ·A =

√
tr(ATA), A ∈ Lin. (2.71)

In particular, we have
||A|| = ||AT ||, (2.72)

in fact,
||A||2 = A ·A = tr(ATA) = tr(AAT )

= tr((AT )TAT ) = AT
·AT = ||AT ||2. (2.73)

Exercise 2. The norm (2.71) is submultiplicative,

||AB|| ≤ ||A|| ||B|| for each A,B ∈ Lin. (2.74)

Proposition 25. For A,B,C ∈Lin, u,v,a,b ∈ V, the following relations hold

I ·A = trA, (2.75)

C · (AB) = (ATC) ·B = (CBT ) ·A, (2.76)

u ·Av = A · (u⊗ v), (2.77)

(a⊗ b) · (u⊗ v) = (a ·u)(b ·v), (2.78)

||u⊗ u|| = ||u||2. (2.79)

Proof. (2.75) is trivial; to prove (2.76) we remark that

C · (AB) = tr(CTAB) = tr((ATC)TB) = (ATC) ·B =

tr(BCTA) = tr((CBT )TA) = (CBT ) ·A.

Moreover,

u ·Av =

n∑
i=1

ui

n∑
j=1

Aijvj =

n∑
i,j=1

Aijuivj =

n∑
i,j=1

Aij(u⊗ v)ij = A · (u⊗ v),

then (2.77) is proved. Finally,

(a⊗ b) · (u⊗ v) =

n∑
i,j=1

aibjuivj =

(
n∑
i=1

aiui

)(
n∑
i=1

bjvj

)
= (a ·u)(b ·v),
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and (2.78) is proved as well. Finally,

||u⊗ u||2 = tr((u⊗ u)(u⊗ u)) = (u ·u)2 = ||u||4.

From (2.78) and (2.46) it follows that {ei ⊗ ej}i,j=1,...,n is an orthonormal
basis of Lin,

(ei ⊗ ej) · (ek ⊗ el) = (ei · ek)(ej · el) =

{
1 i = k, j = l,
0 otherwise.

Given A ∈Lin, for each u ∈ V, we have

||Au||2 = Au ·Au = u ·ATAu = ATA · (u⊗ u) ≤ ||ATA|| ||u⊗ u||

≤ ||AT || ||A|| ||u⊗ u|| ≤ ||A||2 ||u||2,

then,
||Au|| ≤ ||A|| ||u||, for each u ∈ V. (2.80)

In particular, in agreement with the fact that A is linear, A is bounded (Propo-
sition 11)

Proposition 26. Given A,B ∈Lin, the following properties hold,

(1) If A is symmetric, we have

A ·C = A ·CT = A ·

1

2
(C + CT ), for each C ∈ Lin. (2.81)

(2) If B is skew-symmetric, we have

B ·C = −B ·CT = B ·

1

2
(C−CT ), for each C ∈ Lin. (2.82)

(3) If A is symmetric and B is skew-symmetric, we have A ·B = 0.

(4) If A ·C = 0 for every symmetric tensor C, then A is skew-symmetric.

(5) If A ·C = 0 for every skew-symmetric tensor C, then A is symmetric.

Proof. (1) If A = AT , then

A ·C = tr(ATC) = tr(AC) = A ·CT ,

moreover,

A ·C =
1

2
(A ·C + A ·C) =

1

2
(A ·C + A ·CT ) =
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A ·

1

2
(C + CT ).

(2) On the contrary, if A = −AT , we have

A ·C = tr(ATC) = −tr(AC) = −A ·CT ,

and

A ·C =
1

2
(A ·C + A ·C) =

1

2
(A ·C−A ·CT ) =

A ·

1

2
(C−CT ),

(3) If A is symmetric and B is skew-symmetric, then

A ·B = tr(AB) = BT
·A = −B ·A,

then A ·B = 0.
(4) Let us assume that A is not skew-symmetric, then A = S + W, with

S ∈Sym, W ∈Skw; in view of (3) we have

0 = A ·C = S ·C + W ·C = S ·C, for each C ∈ Sym;

in particular, choosing C = S, we have S ·S = 0 and then S = 0.
(5) The proof is analogous to that of point (4).

We know that Lin=Sym⊕Skw, from the previous proposition it follows that
Skw is the orthogonal complement of Sym and Sym is the orthogonal comple-
ment of Skw,

Sym⊥ = Skw, Skw⊥ = Sym (2.83)

and that PSym(A) = A+AT

2 e PSkw(A) = A−AT

2 are the orthogonal projections
of A onto the subspaces Sym and Skw, respectively.

2.6 Invertible tensors

A tensor A is called invertible if it is injective

(i) if u1 6= u2 then Au1 6= Au2,

and surjective,

(ii) for each v ∈ V there exists (at least) u ∈ V such that Au = v.

If A is invertible, the tensor A−1, called inverse of A, is defined as follows.
Given v0 ∈ V there is a unique (in view of (i)) u0 ∈ V such that Au0 = v0,
then, we can define A−1v0 = u0. A

−1 is linear, in fact, given v1,v2 with
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Au1 = v1,Au2 = v2, from the linearity of A it follows that A(α1u1 +α2u2) =
α1v1 + α2v2, then

A−1(α1v1 + α2v2) = α1u1 + α2u2 =

α1A
−1v1 + α2A

−1v2. (2.84)

From the definition it follows that if A is invertible then

AA−1 = A−1A = I. (2.85)

These relations characterize A−1, in fact, the following theorem holds.

Theorem 7. Let A be a tensor. If there exist two tensors B,C ∈ Lin such that

AB = CA = I, (2.86)

then A is invertible and B = C = A−1.

Proof. If Au1 = Au2 then CAu1 = CAu2 and u1 = u2, then A has the
property (i). For each v ∈ V put u = Bv, then Au = ABv = v and A satisfies
(ii). From AB = I, multiplying (left) by A−1 we get B = A−1, and from
CA = I, multiplying (right) by A−1 we have C = A−1.

Theorem 8. A ∈ Lin is injective if and only is surjective.

Proof. Let us assume that A is injective, that is Au = 0 implies u = 0. Let
{e1, ..., en} be a basis of V, then {Ae1, ...,Aen} is also a basis of V. In fact,
from

0 =

n∑
i=1

αiAei = A

(
n∑
i=1

αiei

)
(2.87)

we get
∑n
i=1 αiei = 0 and then α1 = ... = αn = 0. Therefore each v ∈ V can

be written as v =
∑n
i=1 αiAei = A (

∑n
i=1 αiei) = Au and A is surjective.

Now let us assume that A is surjective, that is each v ∈ V can be written
as v = Au. If {f1, ..., fn} is a basis of V, let e1, ..., en ∈ V be vectors such that
fi = Aei, i = 1, ..., n, then {e1, ..., en} is a basis of V, in fact

∑n
i=1 αiei = 0

implies A (
∑n
i=1 αiei) =

∑n
i=1 αifi = 0 and then α1 = ... = αn = 0. Thus, we

have proved that if Au = 0 then u = 0, and then A is injective.

In a infinite dimensional vector space theorem 8 does not hold. Let P[0, 1] be
the vector space of polynomials with real coefficients, p(x) = a0+a1x+...+akx

k,
with k integer and x belonging to the interval [0, 1]. Consider the linear function
T : P[0, 1] → P[0, 1] defined by T (p(x)) = xp(x). T is injective, but not
surjective, in fact given the polynomial p(x) = a0, there is no q ∈ P[0, 1] such
that T (q) = p. Moreover the linear function D : P[0, 1] → P[0, 1] defined
by T (p(x)) = p′(x), is surjective, but not injective, in fact for p(x) = a0 and
q(x) = b0, with a0 6= b0 we have D(p) = D(q).
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Theorem 9. (1) Let A,B ∈ Lin be invertible tensors, then AB is invertible
and

(AB)−1 = B−1A−1. (2.88)

(2) Let A ∈ Lin be invertible and α 6= 0, then αA is invertible and

(αA)−1 =
1

α
A−1.

(3) Let A ∈ Lin be invertible, then A−1 is invertible and

(A−1)−1 = A. (2.89)

(4) Let A ∈ Lin be invertible, then AT is invertible and

(AT )−1 = (A−1)T (2.90)

(5) Let A ∈ Lin be invertible, then Ak is invertible for each k ∈ N and

(Ak)−1 = (A−1)k. (2.91)

Let us consider the functional det :Lin→ R that assigns to each tensor A the
determinant of the matrix [A] of the Cartesian components of A with respect
to the orthonormal basis {e1, ..., en} of V

detA = det[A]. (2.92)

detA is called determinant of the tensor A. In the following, we will prove that
the definition does not depend on the choice of the basis {e1, ..., en} di V.

The following properties of the determinant of a tensor are a direct conse-
quence of the analogous properties of the determinant of a matrix. For each
A,B ∈ Lin we have

det(AB) = detA detB, (2.93)

det(AT ) = detA, (2.94)

det(αA) = αn detA, α ∈ R, (2.95)

det(I) = 1. (2.96)

The following proposition holds.

Proposition 27. A tensor A is invertible if and only if detA 6= 0, in this case

det(A−1) = (detA)−1. (2.97)
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Proof. If A is invertible, from (2.85), taking (2.93) into account, it follows that

1 = detA det(A−1),

from which detA 6= 0 and (2.97) follow. Vice versa, Let us assume that detA is
different from 0, Then A is injective. In fact, the relation Au = 0 is equivalent

to the linear system
n∑
j=1

Aijuj = 0, i = 1, ..., n whose unique solution is u1 = ... =

un = 0. Then, in virtue of the theorem 8 we conclude that A is invertible.

Example 9. Given e ∈ V with ||e|| = 1, the tensor e⊗ e which assigns to each
v ∈ V the vector (e ·v)e is not invertible since it maps the subspace orthogonal
to e in the vector 0.

2.7 Orthogonal tensors

A tensor Q is orthogonal if it preserves the inner product · on V,

Qu ·Qv = u ·v, for each u,v ∈ V. (2.98)

In particular, an orthogonal tensor is invertible, in fact, from(2.98) for v = u
we get

||Qu|| = ||u||, (2.99)

thus, if Qu = 0, then u = 0. An orthogonal tensor is an isometry (see (1.67)).
Condition (2.99) expresses the fact that Q preserves the norm of vectors.

Proposition 28. Q ∈ Lin is orthogonal if and only if

QQT = QTQ = I. (2.100)

Proof. Let us assume that condition (2.100) is satisfied, then

Qu ·Qv = u ·QTQv = u ·v, for each u,v ∈ V,

and Q is orthogonal. Vice versa, let us assume that Q is orthogonal,

u ·v = Qu ·Qv = u ·QTQv, for each u,v ∈ V,

then we have that u · (v−QTQv) = 0 for each u ∈ V, therefore, v−QTQv = 0
for each v ∈ V and finally

QTQ = I. (2.101)

If we right multiply (2.101) by QT we get

QTQQT = QT ,

from which, left multiplying by Q−T , we deduce that QQT = I.
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From the preceding proposition, we get that Q is orthogonal if and only
if QT = Q−1, moreover, if Q is orthogonal then detQ = ±1. An orthogonal
tensor R with detR = 1 is called rotation.

We have seen that if A is an invertible tensor and {e1, ..., en} is a basis of V,
then {Ae1, ...,Aen} is a basis of V. If A is an orthogonal tensor the following
proposition holds.

Proposition 29. If {e1, ..., en} is an orthonormal basis of V and Q is an orthog-
onal tensor, then {Qe1, ...,Qen} is an orthonormal basis of V. Vice versa, if Q
is a tensor such that if {e1, ..., en} is an orthonormal basis then {Qe1, ...,Qen}
is an orthonormal basis, Q is orthogonal.

Proof. Let Q be an orthogonal tensor, we have

Qei ·Qej = ei · ej = δij ,

then {Qe1, ...,Qen} is an orthonormal basis of V.
Now let us assume that {Qe1, ...,Qen} is an orthonormal basis of V. Since

Qei ·Qej = δij = ei · ej ,

it is an easy matter to verify that

Qu ·Qv = u ·v, for each u,v ∈ V.

Let E = {e1, ..., en} and F = {f1, ..., fn} be two orthonormal bases of V.
The tensor

Q =

n∑
i=1

fi ⊗ ei (2.102)

is orthogonal and
fi = Qei, i = 1, ..., n. (2.103)

Given u ∈ V we have

u =

n∑
i=1

ξiei, u =

n∑
i=1

ηifi,

with

ξi = u · ei =

n∑
j=1

ηjfj · ei

=

n∑
j=1

ηjQej · ei =

n∑
j=1

Qijηj i = 1, ..., n, (2.104)

where Qij = ei ·Qej are the components of Q with respect to the basis E.
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Given (ξ1, ..., ξn) ∈ Rn, the vectors u =
∑n
i=1 ξiei and v =

∑n
i=1 ξifi, in

view of (2.103), are linked by the following relation

v = Qu. (2.105)

Thus, tensor Q (or more precisely the matrix with components Qij) can be con-
sidered a coordinate transformation as in (2.104) or as a vector transformation,
as in (2.105). In this case, Q represents a change of basis, from basis E to basis
F .

Given the tensor B, we wonder what is the relationship between the matrix
of its components Bij with respect to E and the matrix of its components B′ij
with respect to F

B =

n∑
i,j=1

Bijei ⊗ ej , (2.106)

B =

n∑
i,j=1

B′ijfi ⊗ fi. (2.107)

We have
B′ij = fi ·Bfj = Qei ·BQej = ei ·QTBQej , (2.108)

and

[B′] = [Q]T [B][Q], (2.109)

where [B] and [Q] are the matrices of the components of B and Q with respect
to E.

Finally, if Bij are the components of a matrix, we want to determine the
relationship between the tensors B and C defined, respectively, by

B =

n∑
i,j=1

Bijei ⊗ ej , (2.110)

and

C =

n∑
i,j=1

Bijfi ⊗ fj . (2.111)

Fom (2.110), (2.111) and (2.103) we get

C = QBQT . (2.112)

Relation (2.112) expresses the link that must exist between a tensor B and a
tensor C such that if Bu = v, then CQu = Qv, for each u ∈ V,

u
B−→ v

↓ ↓
Qu −→

C
Qv

(2.113)

Tensor QBQT is called orthogonal conjugate of B with respect to Q.
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Example 10. Let us put n = 3 and consider the change of basis

f1 = cos θe1 + sin θe2, (2.114)

f2 = − sin θe1 + cos θe2, (2.115)

f3 = e3, (2.116)

corresponding to a positive (anticlockwise) rotation of an angle θ about e3. The
rotation

R = e3 ⊗ e3 + sin θ(e2 ⊗ e1 − e1 ⊗ e2) + cos θ(e1 ⊗ e1 + e2 ⊗ e2)

is such that Rei = fi and the matrix of its components Rij = ei ·Rej with
respect to E is  cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 . (2.117)

The orthogonal tensor Q = −I is called central reflection in the space of
vectors.

For n = 3, the orthogonal tensor Q whose matrix of components is given by

[Q] =

 1 0 0
0 1 0
0 0 −1

 , (2.118)

is a reflection with respect to the subspace spanned by vectors e1 and e2.
Now, we can prove the following result.

Proposition 30. The definition of determinant given in (2.92) does not depend
on the choice of the basis of V.

Proof. Let us start by noting that if {e1, ..., en} and {f1, ..., fn} are two or-
thonormal bases of V, there is an orthogonal tensor Q such that

Qei = fi, i = 1, ..., n. (2.119)

In fact, the tensor

Q = f1 ⊗ e1 + f2 ⊗ e2 + ...+ fn ⊗ en (2.120)

satisfies (2.119) and is orthogonal in view of proposition 29. From definition
(2.92) it follows that detA = det[A], where the matrix [A] has components
Aij = ei ·Aej , i, j = 1, ..., n. Let [A′] be the matrix of the components of A
with respect to the basis {f1, ..., fn},

A′ij = fi ·Af j , i, j = 1, ..., n (2.121)
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and let [QTAQ] be the matrix of the components of the tensor QTAQ with
respect to the basis {e1, ..., en},

A
′′

ij = ei ·QTAQej , i, j = 1, ..., n, (2.122)

in view of(2.119) we have

A′ij = Qei ·AQej = A
′′

ij , i, j = 1, ..., n. (2.123)

Still from definition (2.92) we have

detQTAQ = det[QTAQ] = det[A′], (2.124)

from the relation (2.226) we finally get that

det[A] = det[A′]. (2.125)

2.8 Some subsets of Lin

A tensor A is positive semidefinite if

v ·Av ≥ 0, for each v ∈ V, (2.126)

is positive definite if v ·Av > 0, for each v 6= 0.
A tensor A is negative semidefinite if

v ·Av ≤ 0, for each v ∈ V, (2.127)

is negative definite if v ·Av < 0, for each v 6= 0.

Let us consider the following subsets of Lin,

Lin+ = {A ∈ Lin : detA > 0} , (2.128)

Psym = {A ∈ Sym : A is positive definite} , (2.129)

Sym+ = {A ∈ Sym : A is positive semidefinite} , (2.130)

Nsym = {A ∈ Sym : A is negative definite} , (2.131)

Sym− = {A ∈ Sym : A is negative semidefinite} , (2.132)

Orth =
{
Q ∈ Lin : QQT = QTQ = I

}
, (2.133)

Orth+ = {R ∈ Orth : detR = 1} . (2.134)
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Lin+,Orth e Orth+ are groups1 with respect to the multiplication by tensors;
Orth is called orthogonal group, Orth+ is called rotation group. Psym, Nsym,
Sym+ and Sym− are convex cones2. Sets Sym and Skw defined in (2.26) and

(2.27) are vector spaces of dimension n(n+1)
2 and n(n−1)

2 , respectively. For n = 3
the sets {

e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3,
1√
2

(e1 ⊗ e2 + e2 ⊗ e1),

1√
2

(e1 ⊗ e3 + e3 ⊗ e1),
1√
2

(e2 ⊗ e3 + e3 ⊗ e3)

}
, (2.135)

and {
1√
2

(e1 ⊗ e2 − e2 ⊗ e1),

1√
2

(e1 ⊗ e3 − e3 ⊗ e1),
1√
2

(e2 ⊗ e3 − e3 ⊗ e3)

}
, (2.136)

are an orthonormal basis of Sym and Skw, respectively.
A tensor is called spherical if A = αI, with α ∈ R. Given A ∈ Lin, the

tensor

A0 = A− 1

n
(trA)I, (2.137)

is called deviatoric part of A. From (2.137) it follows that trA0 = 0. Let

Dev = {A ∈ Lin : trA = 0} (2.138)

be the set of deviatoric part of all tensors and

Sph = {αI : α ∈ R} (2.139)

be the set of all spherical tensors. It is an easy matter to prove that Dev and
Sph are subspaces of Lin with dimension n2− 1 and 1, respectively, that Dev is
orthogonal to Sph and that

Lin = Dev + Sph. (2.140)

Thus, it holds that
Lin = Dev⊕ Sph

and the orthogonal projections PDev and PSph of Lin onto Dev and Sph are
defined by

PDev(A) = A0, PSph(A) =
1

n
(trA)I, A ∈ Lin. (2.141)

Exercise 3. For D ∈ Psym, Q ∈ Orth, show that QDQT ∈ Psym.
1A group G is a set of elements with the operation * which satisfies the following properties:

1. If a, b ∈ G, then a ∗ b ∈ G,

2. Fir each a, b, c ∈ G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c),
3. There exists the identity element 1 such that 1 ∗ a = a ∗ 1 = a, for each a ∈ G,
4. For each a ∈ G, there is an element a−1 ∈ G, such that a−1 ∗ a = a ∗ a−1 = 1.

2A subset C of a vector space S is a cone if λu ∈ C for each λ > 0 and u ∈ C.
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2.9 Vector product

In this section we fix n = 3. Given u,v ∈ V let us denote by u ∧ v the vector
product of u and v.

Let {e1, e2, e3} be a right orthonormal basis, the components of u ∧ v with
respect to this basis are

u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1. (2.142)

The vector product ∧ has the following properties,

(αu + βv) ∧w = αu ∧w + βv ∧w, (bilinearity) (2.143)

u ∧ v = −v ∧ u, (skew-symmetry) (2.144)

u ∧ u = 0, (2.145)

u · (v ∧w) = w · (u ∧ v) = v · (w ∧ u) (2.146)

for each u,v,w ∈ V, α, β ∈ R.
Moreover, if u 6= 0, then u ∧ v = 0 if and only if v = αu with α ∈ R. In

fact, from (2.142) the following relations follow

u2v3 = u3v2, u3v1 = u1v3, u1v2 = u2v1. (2.147)

From (2.147) assuming, for example, that u1 6= 0, we get

v2 =
u2
u1
v1, v3 =

u3
u1
v1, (2.148)

and then v = v1
u1
u.

The vector u ∧ v is orthogonal to the subspace spanned by u and v and we
can prove that

||u ∧ v|| = ||u|| ||v|| sin θ, (2.149)

where θ ∈ [0, π] is the angle between the vectors u and v. Moreover, the
mixed product u · (v ∧w) is equal to zero if and only if u,v and w are linearly
dependent; in fact, if u · (v ∧w) = 0 then u = 0, or v ∧w = 0, that is w = αv
for some α ∈ R, or u is orthogonal to v ∧w and then belongs to the subspace
spanned by v and w.

The further properties hold,

||u ∧ v||2 = ||u||2||v||2 − (u ·v)2, for each u,v ∈ V, (2.150)

||u ∧ v||2 + (u ·v)2 = 1, for each u,v ∈ V con ||u|| = ||v|| = 1. (2.151)
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Proposition 31. For u,v,w ∈ V, we have

(u ∧ v) ∧w = (u ·w)v − (v ·w)u = (v ⊗ u− u⊗ v)w. (2.152)

Exercise 4. For a,b ∈ V, show that the unique solution to the linear equation

x + a ∧ x = b (2.153)

is

x =
1

1 + ||a||2
[b + (a ·b)a + b ∧ a]. (2.154)

Now we are in the position to prove that (for n = 3) there exists a linear
bijective mapping from Skw to V, which therefore, are isomorphic. For a vector
w with components w1, w2, w3, let us consider the skew-symmetric tensor

W = −w3(e1 ⊗ e2 − e2 ⊗ e1) + w2(e1 ⊗ e3 − e3 ⊗ e1)

−w1(e2 ⊗ e3 − e3 ⊗ e3). (2.155)

It is easy to verify that

Wa = w ∧ a, for each a ∈ V. (2.156)

w is called axial vector of W.
Vice versa let W be a skew-symmetric tensor

W =

3∑
i,j=1
i<j

Wij(ei ⊗ ej − ej ⊗ ei). (2.157)

For every a ∈ V we have

(ei ⊗ ej − ej ⊗ ei)a = (ej ·a)ei − (ei ·a)ej = (ej ∧ ei) ∧ a, (2.158)

then

Wa =

3∑
i,j=1
i<j

Wij(ej ∧ ei) ∧ a, (2.159)

and

w =

3∑
i,j=1
i<j

Wij(ej ∧ ei) (2.160)

is the axial vector of W.
From (2.250) it follows that (for W 6= 0) the subspace of V

KerW = {v ∈ V |Wv = 0} (2.161)
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has dimension 1 and is spanned by w. KerW is called axis of W.
Given e1, e2 orthonormal vectors, the vector e3 = e1 ∧ e2 is the axial vector

of the skew-symmetric tensor

W = e2 ⊗ e1 − e1 ⊗ e2. (2.162)

Proposition 32. Consider Q ∈Orth, if detQ = 1, then there exists e ∈ V such
that Qe = e. If, on the contrary, detQ = −1, then there exists e ∈ V such that
Qe = −e.

Proof. We have

det(Q− I) = det[Q(I−QT ) = detQdet(I−QT ) =

− detQdet(Q− I) = −det(Q− I),

then det(Q− I) = 0 and in virtue of theorem 8, there is e ∈ V, e 6= 0 such that
(Q− I)e = 0. If detQ = −1, the proof is analogous.

Exercise 5. Let Q ∈Orth and e ∈ V be vectors such thatQe = e.

1. Prove that QTe = e.

2. Let w be the axial vector of the skew-symmetric part of Q, prove that
e ∈Span(w).

Solution. 1. Qe = e =⇒ QTQe = QTe =⇒ QTe = e.
2. Let W = (Q−QT )/2 be the skew-symmetric part of Q, we have

Wv =
1

2
(Q−QT )v = w ∧ v, v ∈ V, (2.163)

in particular,
w ∧ e = We = 0, (2.164)

then e ∈Span(w).

From the proposition 32 we get that the subspace A(Q) = {e ∈ V : Qe = e}
contains non-zero elements. A(Q) is called axis of Q and, in view of the exercise
5, has dimension 1.

Exercise 6. Given W,Z ∈Skw, let w, z ∈ V be the corresponding axial vectors.
Prove that

WZ = z⊗w − (z ·w)I; (2.165)

thus, in particular
WZ− ZW = z⊗w −w ⊗ z, (2.166)

Z ·W = 2(z ·w),

and

||w|| = 1√
2
||W||. (2.167)
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Solution. In view of (2.250) and (2.152) we have

WZv = w ∧ (z ∧ v) = (v ·w)z− (z ·w)v

= [z⊗w − (z ·w)I]v, for each z ∈ V.

If the vectors u,v,w ∈ V are linearly independent, then the scalar |u · (v ∧
w)| is the volume of the parallelepiped P determined by u,v,w.

Proposition 33. Given the linearly independent vectors u,v,w ∈ V and A ∈Lin
we have

detA =
Au · (Av ∧Aw)

u · (v ∧w)
. (2.168)

In particular, from (2.168) we get the relation

|detA| = V ol(A(P))

V ol(P)
, (2.169)

which gives a geometrical interpretation of the determinant. In (2.169) A(P) is
the image of P under A and V ol designates the volume.

Relation (2.168) comes from the following propositions.

Proposition 34. For A ∈ Lin, let {u,v,w} and {u′ ,v′,w′} two sets of linearly
independent vectors of V. We have

Au · (Av ∧Aw)

u · (v ∧w)
=

Au′ · (Av′ ∧Aw′)

u′ · (v′ ∧w′)
. (2.170)

Proof. Since u,v,w are linearly independent, we have that u · (v ∧w) 6= 0. Let
{e1, e2, e3} be an orthonormal basis of V, with e3 = e1 ∧e2. To prove (2.170) it
is sufficient to prove that for each set of linearly independent vectors {u,v,w}
we have

Au · (Av ∧Aw) = u · (v ∧w)[Ae1 · (Ae2 ∧Ae3)]. (2.171)

The following relations hold

u = u1e1 + u2e2 + u3e3, (2.172)

v = v1e1 + v2e2 + v3e3, (2.173)

w = w1e1 + w2e2 + w3e3, (2.174)

from which we get

Au · (Av ∧Aw) = (u1Ae1 + u2Ae2 + u3Ae3) · [(v1Ae1 + v2Ae2+

v3Ae3) ∧ (w1Ae1 + w2Ae2 + w3Ae3)] =

(u1Ae1 + u2Ae2 + u3Ae3) · [v1w2Ae1 ∧Ae2 + v1w3Ae1 ∧Ae3+
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v2w1Ae2 ∧Ae1 + v2w3Ae2 ∧Ae3 + v3w1Ae3 ∧Ae1 + v3w2Ae3 ∧Ae2] =

u1v2w3Ae1 · (Ae2 ∧Ae3) + u1v3w2Ae1 · (Ae3 ∧Ae2)+

u2v1w3Ae2 · (Ae1 ∧Ae3) + u2v3w1Ae2 · (Ae3 ∧Ae1)+

u3v1w2Ae3 · (Ae1 ∧Ae2) + u3v2w1Ae3 · (Ae2 ∧Ae1) =

Ae1 · (Ae2 ∧Ae3)[u1v2w3 − u1v3w2 − u2v1w3 + u2v3w1+

u3v1w2 − u3v2w1] = [u · (v ∧w)]Ae1 · (Ae2 ∧Ae3).

Proposition 35. Let {e1, e2, e3} be an orthonormal basis of V, with e3 =
e1 ∧ e2; for each tensor A we have

detA = Ae1 · (Ae2 ∧Ae3). (2.175)

Proof. We have

Aek =

3∑
i=1

Aikei, k = 1, 2, 3. (2.176)

then
Ae2 ∧Ae3 = A12A23e3 −A12A33e2 −A13A22e3+ (2.177)

A22A33e1 −A13A32e2 −A32A23e1, (2.178)

Ae1 · (Ae2∧Ae3) = A11(A22A33−A32A32)+A21(A13A32−A12A33)+ (2.179)

A31(A12A23 −A13A22). (2.180)

On the other hand

detA = A11(A22A33 −A32A32) +A21(A13A32 −A12A33)+ (2.181)

A31(A12A23 −A13A22), (2.182)

from which the thesis follows.

Exercise 7. Let ϕ : V × V × V → R be a skew-symmetric trilinear functional,
that is linear in each argument and

ϕ(u,v,w) = −ϕ(v,u,w) = −ϕ(u,w,v) = −ϕ(w,v,u), (2.183)

for all u,v,w ∈ V. Let {e1, e2, e3} be an orthonormal basis of V, for A ∈
Lin, prove that

ϕ(Ae1, e2, e3) + ϕ(e1,Ae2, e3) + ϕ(e1, e2,Ae3) = (trA)ϕ(e1, e2, e3). (2.184)
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Solution.

ϕ(Ae1, e2, e3) = ϕ(

3∑
i=1

Ai1ei, e2, e3) = (2.185)

ϕ(A11e1, e2, e3) + ϕ(A21e2, e2, e3) + ϕ(A31e3, e2, e3). (2.186)

On the other hand we have

ϕ(A21e2, e2, e3) = A21ϕ(e2, e2, e3) = −A21ϕ(e2, e2, e3), (2.187)

then ϕ(A21e2, e2, e3) = 0. In a similar way we prove that ϕ(A31e3, e2, e3) = 0
and from (2.186) we get

ϕ(Ae1, e2, e3) = ϕ(A11e1, e2, e3). (2.188)

Using the same arguments for ϕ(e1,Ae2, e3) and ϕ(e1, e2,Ae3) the thesis fol-
lows.

2.10 Cofactor of a second-order tensor

Put n = 3. Given A ∈ Lin, the cofactor A∗ of A is the unique element of Lin
such that for each w ∈ V, W ∈ Skw linked by the relation

Wv = w ∧ v, for each v ∈ V, (2.189)

vector A∗w and tensor AWAT in their turn, satisfy the relation

AWATv = (A∗w) ∧ v, for each v ∈ V. (2.190)

Proposition 36. Consider A ∈ Lin, its cofactor A∗, and c ∈ V. The following
properties hold.

(1) For each a,b ∈ V, we have

A∗(a ∧ b) = (Aa) ∧ (Ab). (2.191)

(2) If A is invertible, then A∗ is invertible

A∗ = (detA)A−T . (2.192)

(3) The rotation group Orth+ coincides with the set

C = {R ∈ Lin− {0} : R = R∗}. (2.193)

(4) The dyad c⊗ c satisfies the relation

(I− c⊗ c)∗ = (1− c · c)I + c⊗ c. (2.194)
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(5) Let {e1, e2, e3} be an orthonormal basis of V, we have

3∑
i=1

(I− ei ⊗ ei)
∗ = I. (2.195)

Proof. (1) Given w = a∧b and W = b⊗a−a⊗b, the skew-symmetric tensor
associated to w, in view of (2.190) we have

(A∗w) ∧ v = A(b⊗ a− a⊗ b)ATv (2.196)

= (Ab⊗Aa−Aa⊗Ab)v = (Aa ∧Ab) ∧ v for all v ∈ V, (2.197)

from which we deduce (2.191).
(2) Let A be an invertible tensor and assume that there is v ∈ V, v 6= 0 such

that A∗w = 0. Take a,b ∈ V, both differente from zero such that v = a ∧ b.
In view of (2.191) we have

0 = A∗(a ∧ b) = Aa ∧Ab, (2.198)

from which, taking into account the properties of the vector product, we deduce
that Aa = αAb, then a−αb = 0 and finally v = 0. Now, let {e1, e2, e3} be an
orthonormal basis of V with e3 = e1 ∧ e2. We have

A∗e1 = Ae2 ∧Ae3, (2.199)

A∗e2 = Ae3 ∧Ae1, (2.200)

A∗e3 = Ae1 ∧Ae2, (2.201)

and, in view of Proposition 35,the following relations hold

ATA∗e1 · e1 = A∗e1 ·Ae1 = detA, (2.202)

ATA∗e2 · e2 = A∗e2 ·Ae2 = detA, (2.203)

ATA∗e3 · e3 = A∗e3 ·Ae3 = detA, (2.204)

and
ATA∗ei · ej = A∗ei ·Aej = 0 if i 6= j, (2.205)

we can thus conclude that

ATA∗ = (detA)I, (2.206)

from which (2.192) follows.
(3) Consider R ∈Orth+, from (2.192) taking account that detR = 1 and

RT = R−1, we get that R∗ = R and then R ∈ C. Vice versa, let us assume
that R ∈ C, then

R(a ∧ b) = R∗(a ∧ b) = (Ra) ∧ (Rb), a,b ∈ V. (2.207)
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Let {e1, e2, e3} be an orthonormal basis of V with e3 = e1 ∧ e2, in view of
(2.207) we have

Re3 = Re1 ∧Re2, (2.208)

Re2 = Re3 ∧Re1, (2.209)

Re1 = Re2 ∧Re3, (2.210)

then

Rei ·Rej =

{
detR i = j,

0 i 6= j,
(2.211)

and finally
RTR = (detR)I. (2.212)

From (2.212) it follows that

(detR)2 = detR, (2.213)

from which we obtain that detR = 0 or detR = 1. If detR = 0, from (2.212)
we get RTR = 0 and then R = 0 which is excluded b that fact that R ∈ C.
Therefore, we have that detR = 1, which, along with (2.212), allows to conclude
that RT = R−1.

(4) For each u,v ∈ V, we have

(I− c⊗ c)∗(u ∧ v) = (I− c⊗ c)u ∧ (I− c⊗ c)v (2.214)

= u ∧ v − (c ·u)c ∧ v + (c ·v)c ∧ u, (2.215)

and

[(1− c · c)I + c⊗ c](u ∧ v) = u ∧ v − (c · c)u ∧ v + [c · (u ∧ v)]c (2.216)

= u ∧ v + c ∧ [c ∧ (u ∧ v)], (2.217)

where the latest equality comes from (2.152). On the other hand,

c ∧ [c ∧ (u ∧ v)] = −c ∧ [(u ∧ v) ∧ c] (2.218)

= −c ∧ [(u · c)v − (v · c)u] = −(u · c)c ∧ v + (v · c)c ∧ u, (2.219)

substituting (2.219) in (2.217) and comparing the obtained expression with
(2.217), we get (2.194).

(5) To prove (2.195) it is sufficient to note that in view of (2.194) we have

3∑
i=1

(I− ei ⊗ ei)
∗ =

3∑
i=1

ei ⊗ ei = I. (2.220)

62



2.11 Principal invariants

For each A ∈ Lin, let us introduce the following scalar quantities,

I1(A) = trA, (2.221)

I2(A) =
1

2
[(trA)2 − tr(A2)] (2.222)

I3(A) = detA. (2.223)

I1(A), I2(A), I3(A) are called principal invariants of A. For i = 1, 2, 3 we have

Ii(QAQT ) = Ii(A), for each Q ∈ Orth. (2.224)

In fact, for Q ∈Orth we have

I1(A) = trA = tr(QTQA) = tr(QAQT ) = I1(QAQT ). (2.225)

Moreover, let us note that

tr(A2) = tr(QTQAQTQA) = tr(QAQTQAQT ) = tr[(QAQT )2],

and then, in view of (2.225)

I2(A) = I2(QAQT ).

Finally, in view of (2.93) we have

I3(A) = detA = (detQ)(detA)(detQT )

= det(QAQT ) = I3(QAQT ). (2.226)

It is easy to verify that if n = 3 and Aij , i, j = 1, 2, 3 are the components of
A with respect to an orthonormal basis {e1, e2, e3} of V, we have

I1(A) = A11 +A22 +A33, (2.227)

I2(A) = A11A22 +A22A33 +A11A33 −A12A21 −A13A31 −A23A32, (2.228)

I3(A) = A11(A22A33 −A32A32) +A21(A13A32 −A12A33)+

A31(A12A23 −A13A22), (2.229)

or equivalently,
I1(A) = I ·A, (2.230)

I2(A) = e1 · (Ae2 ∧Ae3) + e2 · (Ae3 ∧Ae1) + e3 · (Ae1 ∧Ae2), (2.231)

I3(A) = Ae1 · (Ae2 ∧Ae3), (2.232)

Let η(A) = {I1(A), I2(A), I3(A)} be denote the list of the principal invari-
ants of A.
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2.12 Eigenvalues and eigenvectors

A real number a is an eigenvalue of A ∈ Lin if there is a vector u ∈ V, ||u|| = 1,
such that

Au = au, (2.233)

u is called eigenvector of A. Given an eigenvalue a of A,

M(a) = {u ∈ V | Au = au} (2.234)

is a subspace of V called characteristic space of A corresponding to the eigen-
value a. If M(a) has dimension m, then the eigenvalue a is said to have mul-
tiplicity m. The set σ(A) of the eigenvalues of A, each repeated a number of
times equal to its multiplicity is called spectrum of A.

a is an eigenvalue of A if and only if the tensor A− aI is not invertible and
then a is a real root of the characteristic polynomial of A,

p(a) = det(A− aI). (2.235)

The eigenvalues of a tensor are also called principal components (of the
tensor), and the eigenvectors are called principal vectors.

Proposition 37. If n = 3 the characteristic polynomial (2.235) of A ∈ Lin ha
the following expression

p(a) = −a3 + I1(A)a2 − I2(A)a+ I3(A). (2.236)

Proof. To prove (2.236) take into account that if {e1, e2, e3} is an orthonormal
basis of V, in view of proposition 35 we have,

det(A− aI) = (A− aI)e1 · [(A− aI)e2 ∧ (A− aI)e3].

The third degree polynomial (with real coefficients) (2.236) has at least a
real root.

2.13 Spectral theorem

Proposition 38. The following properties hold.

(a) The characteristic spaces of a tensor S ∈ Sym are mutually orthogonal.

(b) The eigenvalues of a tensor P ∈ Psym are positive, the eigenvalues of a
tensor S ∈ Sym+ are non-negative.

(c) The eigenvalues of a tensor N ∈ Nsym are negative, the eigenvalues of a
tensor S ∈ Sym− are non-positive.
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Proof. (a) Let a and b be the eigenvalues of S ∈ Sym and let u, v the corre-
sponding eigenvectors,

Su = au, Sv = bv.

We have
au ·v = Su ·v = u ·Sv = bu ·v,

then
(a− b)u ·v = 0,

therefore, if a 6= b then u ·v = 0.
(b) Given P ∈ Psym let a be an eigenvalue and v the corresponding eigen-

vector of P, we have
a = av ·v = Pv ·v > 0.

Theorem 10. (Spectral theorem). Let S be a symmetric tensor. There exist
an orthonormal basis of V constituted by eigenvectors g1, ...,gn of S, and n
eigenvalues s1, ..., sn of S,

Sgi = si gi, i = 1, ..., n, (2.237)

such that

S =

n∑
i=1

si gi ⊗ gi. (2.238)

In particular, for n = 3, one of the following cases hold:
1. S has three distinct eigenvalues, then the characteristic spaces of S are

Span(g1), Span(g2) and Span(g3).
2. S has two distinct eigenvalues s1 6= s2, s2 = s3, then (2.238) reduces to

S = s1g1 ⊗ g1 + s2(I− g1 ⊗ g1). (2.239)

Span(g1) is the characteristic space corresponding to s1 and Span(g1)⊥ the
characteristic space corresponding to s2.

3. S has only one eigenvalue s1 = s2 = s3 = s,

S = sI, (2.240)

in this case V is the only characteristic space of S.

The relation (2.238) is the spectral decomposition of S.
If Mi (i = 1, ..., k ≤ n) are the characteristic spaces of S, then each vector

v can be written in the form

v =

k∑
i=1

vi, vi ∈Mi, (2.241)
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and
S =M1 ⊕ ...⊕Mk. (2.242)

The matrix [S] of the components of S with respect to the basis {g1, ...,gn}
of eigenvectors has the form

[S] =


s1 0 . 0
0 s2 . 0
. . . .
0 0 . sn

 . (2.243)

For n = 3, from the spectral theorem it follows that if S ∈ Sym, η(S) is
completely characterized by the spectrum σ(S); it is easy to prove that

I1(S) = s1 + s2 + s3, (2.244)

I2(S) = s1s2 + s1s3 + s2s3, (2.245)

I2(S) = s1s2s3. (2.246)

If S ∈ Sym, the multiplicity of an eigenvalue s coincides with the multiplic-
ity of s as root of the characteristic equation det(S − sI) = 0. The following
proposition follows directly from the previous remark.

Proposition 39. For n = 3 consider S,T ∈ Sym such that η(S) = η(T), then
S and T have the same spectrum, σ(S) = σ(T).

We point out that this result hold only if S and T are symmetric. Let us
consider the tensors

S = I + e3 ⊗ e3, T = I + e3 ⊗ e3 + e1 ⊗ e2,

we have I1(S) = I1(T) = 4, I2(S) = I2(T) = 5, I3(S) = I3(T) = 2, but
σ(S) = {1, 1, 2} and σ(T) = {1, 2}.

For non-symmetric tensors, eigenvectors corresponding to distinct eigenval-
ues are not necessarily orthogonal. For example, the spectrum of tensor A ∈
Lin

A = e1 ⊗ e1 + 2e2 ⊗ e2 + 3e3 ⊗ e3 + e1 ⊗ e2, (2.247)

is σ(A) = {1, 2, 3}, the corresponding eigenvectors are e1,
1√
2
(e1 +e2) e e3, and

we have that e1 · (e1 + e2) = 1.

Exercise 8. For n = 3, D ∈ Sym, Q ∈ Orth, show that σ(D) = σ(QDQT ).

Solution. It is sufficient to remark that QDQT is symmetric and that η(D) =
η(QDQT ), the desired result follows from proposition 39.
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Consider n = 3. A skew-symmetric tensor W 6= 0 has only one eigenvalue
equal to zero a 0, the remaining roots of the characteristic polynomial are two
conjugate imaginary numbers. The principal invariants of Ware

I1(W) = 0, I2(W) = W 2
23 +W 2

12 +W 2
13, I3(W) = 0, (2.248)

where Wij are the components of W with respect to the orthonormal basis
{e1, e2, e3}. The characteristic polynomial of W is therefore

a3 + I2(W)a = 0, (2.249)

since I2(W) > 0, W has the only zero eigenvalue a = 0. The eigenvector
corresponding to the null eigenvalue is the axial vector w of W. In fact, from
the relation Wa = w ∧ a, a ∈ V, we have that w is the only eigenvector of W
and Ww = 0.

For v ∈ V we have

W2v = w ∧ (w ∧ v) = (v ∧w) ∧w = (v ·w)w − ||w||2v, (2.250)

and W2 has the expression

W2 = w ⊗w − ||w||2I. (2.251)

Tensor W2 turns out to be symmetric and its spectral decomposition is

W2 = −||w||2(I− w

||w||
⊗ w

||w||
). (2.252)

Tensor W3 is instead skew-symmetric and

W3 = −||w||2W. (2.253)

A dyad a⊗b with a,b ∈ V has a null eigenvalue with multiplicity n−1 and
the corresponding characteristic space is the subspace orthogonal to b. Dyad
a ⊗ b has also the eigenvalue a ·b whose characteristic space is Span(a). In
general, these characteristic spaces are not orthogonal, they are orthogonal if
and only if a = αb.

Exercise 9. Consider n = 3. Determine spectrum, characteristic spaces and
spectral decomposition of the following symmetric tensors

A = αI + βm⊗m, B = m⊗ n + n⊗m, (2.254)

con α, β ∈ R, m,n ∈ V, m ·n = 0, ||m|| = ||n|| = 1.

Solution. Putting q = m ∧ n we have

An = αn, Am = (α+ β)m, Aq = αq, (2.255)
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then σ(A) = {α, α, α+β}, the characteristic spaces are Span(n,q) and Span(m)
and the spectral decomposition of A is

A = α(n⊗ n + q⊗ q) + (α+ β)m⊗m

= (α+ β)m⊗m + α(I−m⊗m). (2.256)

Moreover, we have

Bq = 0, B(m + n) = m + n, B(m− n) = n−m, (2.257)

then σ(B) = {−1, 0, 1}, the characteristic spaces are Span(m − n), Span(q) e
Span(m + n) and the spectral decomposition of B is

B =
m + n√

2
⊗ m + n√

(2)
− m− n√

2
⊗ m− n√

(2)
.

Exercise 10. Put n = 3. A tensor P is called orthogonal projection if P ∈
Sym and P2 = P.

(a) For n ∈ V, ||n|| = 1, show that the following tensors are orthogonal projec-
tions,

0, I, n⊗ n, I− n⊗ n. (2.258)

(b) Show that if P is an orthogonal projection, then P admits one of the rep-
resentations (2.258).

Solution. (a) It is easy to verify that tensors in (2.258) are orthogonal
projections.

(b) If P is an orthogonal projection, let us calculate its eigenvalues. Let λ
be an eigenvalue and v the corresponding eigenvector,

λv = Pv = P2v = λ2v,

from which we have λ = 0 or λ = 1. the following four cases are possible,
- σ(P) = {0, 0, 0}, P = 0,
- σ(P) = {1, 1, 1}, P = I,
- σ(P) = {0, 1, 1}, P = I − n ⊗ n, with n eigenvector corresponding to the

0 eigenvalue.
- σ(P) = {0, 0, 1}, P = n ⊗ n, with n eigenvector corresponding to the

eigenvalue 1.

Exercise 11. Put n = 3. Given R ∈Orth+ let e ∈ V be such that Re = e. For
W the skew-symmetric tensor associated to e, prove that R has the following
representation

R = I + sin θW + (1− cos θ)W2, (2.259)

with θ ∈ (−π, π).
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The representation formula (2.259) proves that each rotation is completely
characterized by an axis and an angle.

Some properties of the product of tensors are collected in the following propo-
sitions.

Proposition 40. Put n = 3. A tensor A ∈ Lin commutes with each tensor
W ∈ Skw if and only if A = ωI.

Proof. Let us assume that

AW = WA for each W ∈ Skw. (2.260)

For w ∈ V fixed, let W the the skew-symmetric tensor associated to w, we have

W(Aw) = A(Ww) = A(w ∧w) = 0,

then Aw belongs to the characteristic space of the null eigenvalue of W,

Aw = λw, with λ = λ̃(w) ∈ R. (2.261)

Let w1,w2 be two linearly independent vectors in V, in view of the linearity of
A we have

λ̃(w1)w1 + λ̃(w2)w2 = Aw1 + Aw2 =

A(w1 + w2) = λ̃(w1 + w2)(w1 + w2), (2.262)

from which we get

[λ̃(w1)− λ̃(w1 + w2)]w1 + [λ̃(w2)− λ̃(w1 + w2)]w2 = 0, (2.263)

and then λ̃(w1) = λ̃(w2) = ω.

Proposition 41. A tensor S ∈ Sym commutes with each tensor Q ∈ Orth+ if
and only if S = ωI.

Proof. Let us assume that

SQ = QS for each Q ∈ Orth+

and that S has two distinct eigenvalues ω and λ and let u and v be the cor-
responding orthogonal eigenvectors (of norm 1). Let {u,v, f3, ..., fn} be an or-
thonormal basis of V, put

Q = v ⊗ u− v ⊗ u+

n∑
i=3

fi ⊗ fi,

we have that Qu = v and Q ∈Orth+ since it transforms the orthonormal basis
{u,v, f3, ..., fn} into the orthonormal basis {v,−u, f3, ..., fn} and detQ = 1.
Then, we have

QSu = ωQu = ωv, QSu = SQu = Sv = λv,

from which we get (ω − λ)v = 0 and then ω = λ.
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Theorem 11. (Commutation theorem). Consider S, A ∈ Lin such that SA =
AS. Then, if v ∈ V belongs to a characteristic space of S, Av belongs to the
same characteristic space. Vice versa if A leaves each characteristic space of a
symmetric tensor S ∈ Sym invariant, then S and A commute.

Proof. If S and A commute, let v be an eigenvector of S corresponding to the
eigenvalue ω, Sv = ωv, then

S(Av) = ASv = ωAv,

that is Av belongs to the characteristic space of S corresponding to ω.
Vice versa let Mi, i = 1, ..., k be the characteristic spaces of S. Each v ∈ V

has the representation (2.241) and Avi ∈Mi for each i, then

SAvi = ωiAvi = A(ωivi) = ASvi,

from which it follows that SAv = ASv.

Tensors A and B ∈ Sym are called coaxial if there is at least one orthonormal
basis of common eigenvectors.

Proposition 42. The tensors A,B ∈ Sym commute if and only if are coaxial.

Proof. For the sake of simplicity, take n = 3. Let us assume that A and B are
coaxial, let {g1,g2,g3} be a common basis of eigenvectors

A =

3∑
i=1

ai gi ⊗ gi, B =

3∑
i=1

bi gi ⊗ gi. (2.264)

Then, in view of (2.34) we have AB = BA. Vice versa, let us assume that
AB = BA, we can consider the following cases.

(i) If A = aI, the coaxiality is evident.
(ii) If A has three distinct eigenvalues a1, a2, a3, let us consider its spectral

decomposition

A =

3∑
i=1

ai gi ⊗ gi, (2.265)

and put

B =

3∑
i,j=1

Bij gi ⊗ gj . (2.266)

Then, we have

0 = AB−BA =

3∑
i,j=1
i 6=j

aiBij (gi ⊗ gj − gj ⊗ gi); (2.267)

since the skew-symmetric tensors gi ⊗ gj − gj ⊗ gi are linearly independent,
from (2.267) we get

(a1 − a2)B12 = 0, (2.268)
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(a1 − a3)B13 = 0, (2.269)

(a2 − a3)B23 = 0, (2.270)

from which it follows that B12 = B13 = B23 = 0, thus, g1,g2,g3 are eigenvectors
of B as well.

(iii) Now let us consider the case in which A has two distinct eigenvalues
a1 6= a2 = a3,

A = a1g1 ⊗ g1 + a2(I− g1 ⊗ g1), B =

3∑
i,j=1

Bij gi ⊗ gj , (2.271)

with g2 and g3 belonging to Span(g1)⊥. Considering once again the relation
0 = AB − BA we get that B12 = B13 = 0, then Bg1 = b1g1. Let f2 and f3
be the remaining two eigenvectors of B such that {g1, f2, f3} is an orthonormal
basis of V, we conclude that {g1, f2, f3} is a basis of eigenvectors for both tensors
B and A.

Proposition 43. The following properties hold.

(1) Given A ∈ Sym− (Sym+), if there is u ∈ V such that u ·Au = 0, then
Au = 0.

(2) Consider A,B ∈ Sym. If A ·B ≥ 0 for each B ∈ Sym+ (Sym−) then
A ∈ Sym+ (Sym−).

(3) Consider A ∈ Sym+. For each B ∈ Sym+ (Sym−) we have A ·B ≥ 0
(≤ 0).

(4) Consider A ∈ Sym+, B ∈ Sym+ (Sym−). If A ·B = 0 then AB = BA =
0.

Proof. (1) Let A =
∑n
i=1 aiqi ⊗ qi with ai ≤ 0 (ai ≥ 0) be the spectral decom-

position of A. We have

Au =

n∑
i=1

ai(qi ·u)qi, (2.272)

therefore

0 = u ·Au =

n∑
i=1

ai(qi ·u)2 (2.273)

if and only if
ai(qi ·u)2 = 0, i = 1, ..., n (2.274)

since ai are non positive (non negative). (2.274) is verified if and only if

ai(qi ·u) = 0, i = 1, ..., n, (2.275)
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which is equivalent to the condition Au = 0.
(2) Let us assume that A does not belong to Sym+ (Sym−), then A has an

eigenvalue λ < 0 (λ > 0), Av = λv. The tensor B = −λv⊗ v belongs to Sym+

(Sym−) and
0 ≤ A ·B = −λtr(Av ⊗ v) = −λ2 < 0.

(3) Let

A =

n∑
i=1

aiqi ⊗ qi with ai ≥ 0 (2.276)

be the spectral decomposition of A. Moreover, let

B =

n∑
i=1

bipi ⊗ pi con bi ≥ 0 (bi ≤ 0) (2.277)

be the spectral decomposition of B. We have

AB =

n∑
i,j=1

aibj(qi ⊗ qi)(pj ⊗ pj) =

n∑
i,j=1

aibj(qi ·pj)(qi ⊗ pj), (2.278)

and

A ·B =

n∑
i,j=1

aibj(qi ·pj)
2 ≥ 0 ( ≤ 0). (2.279)

(4) Let (2.276) and (2.277) be the spectral decompositions of A and B,
respectively. In view of (2.279) the condition A ·B = 0 is equivalent to the
conditions

aibj(qi ·pj) = 0, i, j = 1, ..., n, (2.280)

therefore, from (2.278) we get that AB = 0, in a similar way, we prove that
BA = 0.

For A ∈ Sym, the function

qA(u) =
u ·Au

u ·u
, u ∈ V,u 6= 0, (2.281)

is called Rayleigh ratio.

Proposition 44. Given A ∈ Sym, its the Rayleigh ratio qA satisfies the in-
equalities

a1 ≤ qA(u) ≤ an, for each u ∈ V,u 6= 0, (2.282)

where a1 and an are the minimum and the maximum eigenvalue of A.

Proof. Let

A =

3∑
i=1

ai gi ⊗ gi, (2.283)
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be the spectral decomposition of A, with

a1 ≤ a2 ≤ ... ≤ an. (2.284)

For u ∈ V, we have

u =

3∑
i=1

αigi, with αi = u ·gi, (2.285)

and

Au =

3∑
i=1

αiaigi. (2.286)

Putting (2.285) and (2.286) in (2.281), we get

qA(u) =

3∑
i=1

α2
i ai

3∑
i=1

α2
i

, (2.287)

From (2.287), taking (2.284) into account, we get (2.282).

Exercise 12. Given the tensor A, with A 6= αI for each real number α, compute
the orthogonal projection onto Span(I,A).

Solution. From the minimum norm theorem, it follows that given U ∈ Sym,
there is a unique Û ∈ Span(I,A) such that (U − Û) ·V ≤ 0 for each V ∈
Span(I,A). Let us start by determining an orthonormal basis of Span(I,A).
For

A0 = A− trA

n
I, (2.288)

the deviatoric part of A, the tensors

A1 =
I√
n
, (2.289)

and

A2 =
A0

||A0||
, (2.290)

with

||A0|| =
√
||A0||2 −

(trA)2

n
, (2.291)

are orthonormal and then are a basis of Span(I,A). Thus,

Û = PSpan(I,A)(U) = (U ·A1)A1 + (U ·A2)A2

=
trU

n
I + (U ·A2)A2 (2.292)
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2.14 Square root theorem, polar decomposition
theorem

Theorem 12. (Square root theorem) For every C ∈ Psym, there exists a unique
tensor U ∈ Psym such that

U2 = C. (2.293)

We write
√
C for U.

Proof. Let

C =

n∑
i=1

cigi ⊗ gi (2.294)

be the spectral decomposition of C, with ci > 0. Let us define U ∈ Psym in the
following way

U =

n∑
i=1

√
cigi ⊗ gi, (2.295)

(2.293) is trivially verified. To prove the uniqueness of U let us assume that
there exist U1,U2 ∈ Psym such that U2

1 = U2
2 = C. For each i = 1, ..., n we

have
0 = (U2

1 − ciI)gi = (U1 +
√
ciI)(U1 −

√
ciI)gi, (2.296)

putting vi = (U1−
√
ciI)gi, from (2.296) we have that U1vi = −√civi, therefore

vi = 0 since the eigenvalues of U1 are positive. The, we get that U1gi =
√
cigi;

analogously we prove that U2gi =
√
cigi, then U1gi = U2gi for each i =

1, ..., n.

Exercise 13. Put n = 3. For each E ∈Sym, determine the projection PSym−(E)
of E onto Sym−.

We remark that Sym− and Sym+ are convex closed cones of Sym 3, then we
can apply the minimum norm theorem. Thus, given E ∈Sym we have to find
A ∈Sym− such that

(E−A) · (T−A) ≤ 0 for each T ∈ Sym−. (2.297)

Let

E =

3∑
i=1

eigi ⊗ gi (2.298)

be the spectral decomposition of E, we have

E2 =

3∑
i=1

e2igi ⊗ gi,
√
E2 =

3∑
i=1

|ei|gi ⊗ gi. (2.299)

3Sym+ (Sym−) is closed in Sym since it is the inverse image of the closed set {x ∈ R3 :
0 ≤ x1 ≤ x2 ≤ x3} ({x ∈ R3 : x1 ≤ x2 ≤ x3 ≤ 0}) of R3 under the continuous function that
assigns to each tensor its spectrum.
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Tensors

A =
E−
√
E2

2
, B =

E +
√
E2

2
, (2.300)

belong respectively to Sym− and Sym+ and are orthogonal,

A ·B =
1

4
tr(E2 −

√
E2E + E

√
E2 −E2) = 0. (2.301)

It is an easy matter to prove that PSym−(E) = A, with A defined in (2.300), in
fact

(E−A) · (T−A) = B ·T−B ·A = B ·T ≤ 0 (2.302)

for each T ∈ Sym−, because B ∈ Sym+. Finally, we have

E = A + B = PSym−(E) + PSym+(E). (2.303)

The projection PSym− is not linear. For E1 = −g3 ⊗ g3 + 2(I − g3 ⊗ g3),
E2 = −g1 ⊗ g1 − 3g2 ⊗ g2, we have PSym−(E1) = −g3 ⊗ g3, PSym−(E2) =
−g1 ⊗ g1 − 3g2 ⊗ g2 and PSym−(E1 + E2) = −(I− g1 ⊗ g1).

Theorem 13. (Polar decomposition theorem). For each F ∈ Lin+, there exist
U,V ∈ Psym and R ∈ Orth+ such that

F = RU = VR. (2.304)

Moreover, each of these decomposition is unique; in fact,

U =
√
FTF, V =

√
FFT . (2.305)

F = RU is called right polar decomposition of F, F = VR is called left polar
decomposition of F.

Proof. First of all let us prove that FTF and FFT belong to Psym; we have
FTF,FFT ∈ Sym, moreover

v ·FTFv = Fv ·Fv ≥ 0 for each v ∈ V,

and Fv ·Fv = 0 if and only if Fv = 0 or, if and only if v = 0 since F is
invertible. Analogously we prove that FFT ∈ Psym. Therefore, U and V in
(2.305) are well defined. Let us prove the existence of the polar decomposition.

For U =
√
FTF ∈ Psym put R = FU−1, we have to prove that R ∈ Orth+.

Since detF > 0 and detU > 0 we have that detR > 0, moreover

RTR = U−1FTFU−1 = I, (2.306)

and

RRT = FU−1U−1FT = F(U2)−1FT = FF−1F−TFT = I. (2.307)
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Finally, let us define V = RURT , V ∈ Psym; then

v ·Vv = v · (RURT )v = RTv ·URTv > 0 per ogni v 6= 0,

since U ∈ Psym. Moreover, we have

VR = RURTR = RU = F. (2.308)

Now, we have to prove the uniqueness of the polar decomposition. Let F = RU
the right polar decomposition of F, since R ∈ Orth+ we have

FTF = U2. (2.309)

In virtue of the square root theorem, there is a unique U ∈ Psym satisfying
(2.309), thus U =

√
FTF and U is unique. Since R = FU−1, also R is unique.

Analogously, we prove the uniqueness of the decomposition F = VR and this
concludes the proof.

We point out that in general U and V do not coincide, on the other hand, if
F ∈ Lin+∩Sym, then from the relations F2 = U2 = V2 it follows that U = V
and then F = RU = UR.

The tensors U and V of the polar decomposition of F ∈ Lin+, are linked by
the relation V = RURT , and have the same spectrum.

Exercise 14. Put n = 3. Given e1, e2 orthogonal vectors with norm 1, for
e3 = e1 ∧ e2 let W = e2 ⊗ e1 − e1 ⊗ e2 be the skew-symmetric tensor having e3
as axial vector. Compute the right polar decomposition of the tensor F = I+W.

Solution. We point out that

Fe1 = e1 + e2,

Fe2 = e2 − e1,

Fe3 = e3,

and that
detF = Fe1 · (Fe2 ∧ Fe3) = (e1 + e2) · (e1 + e2) = 2,

therefore F ∈ Lin+. Now, let us determine the spectral decomposition of FTF =
I−W2. From relations

FTFe1 = 2e1, FTFe2 = 2e2, FTFe3 = e3,

we get that
FTF = e3 ⊗ e3 + 2(I− e3 ⊗ e3),

from which we get the expression of U,

U = e3 ⊗ e3 +
√

2(I− e3 ⊗ e3),

and finally

R = FU−1 = e3 ⊗ e3 +
1√
2

(I− e3 ⊗ e3) +
1√
2
W.
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Exercise 15. For n = 3 let {e1, e2, e3} be an orthonormal basis of V. Given
the tensor F = I + γe2 ⊗ e1, γ ∈ R, compute its polar decomposition F = VR.

Solution. If γ = 0, then F = I e V = R = I. The, assume that γ 6= 0. The
eigenvalues of the tensor FFT = I + γ(e1 ⊗ e2 + e2 ⊗ e1) + γ2e2 ⊗ e2 are

ϕ1 =
2 + γ2 −

√
2γ2 + γ4

2
, (2.310)

ϕ2 =
2 + γ2 +

√
2γ2 + γ4

2
, (2.311)

ϕ3 = 1, (2.312)

and the corresponding eigenvectors are

q1 =
1

n1
e1 +

ϕ1 − 1

γn1
e2, (2.313)

q2 =
1

n2
e1 +

ϕ2 − 1

γn2
e2, (2.314)

and
q3 = e3 (2.315)

with

ni =

√
1 +

(
ϕi − 1

γ

)2

, i = 1, 2. (2.316)

Then, we have

V =
√
ϕ1q1 ⊗ q1 +

√
ϕ2q2 ⊗ q2 + e3 ⊗ e3

=
2√

4 + γ2
e1 ⊗ e1 +

γ√
4 + γ2

(e1 ⊗ e2 + e2 ⊗ e1)

+
2 + γ2√
4 + γ2

e2 ⊗ e2 + e3 ⊗ e3, (2.317)

and

R = V−1F = [(ϕ1)−2q1 ⊗ q1 + (ϕ2)−2q2 ⊗ q2 + e3 ⊗ e3] [I + γe2 ⊗ e1]

=
2√

4 + γ2
e1 ⊗ e1 +

2√
4 + γ2

e2 ⊗ e2

+
γ√

4 + γ2
(−e1 ⊗ e2 + e2 ⊗ e1) + e3 ⊗ e3. (2.318)

Exercise 16. For n = 3 let {e1, e2, e3} be an orthonormal basis of V. Compute
the polar decomposition F = VR of the tensor

F = δe1 ⊗ e1 + α(I− e1 ⊗ e1) + αγe2 ⊗ e1, (2.319)

con α, γ, δ ∈ R, α > 0, δ > 0.
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Exercise 17. For F ∈ Lin+, let F = RU = VR, U,V ∈ Psym and R ∈ Orth+

be the polar decompositions of F. Prove that R is the rotation closest to F in
the sense that

||F−R|| < ||F−Q||, for each Q ∈ Orth+, Q 6= R. (2.320)

Solution. For each Q ∈Orth+, Q 6= R, we have

||F−Q||2 = tr(FTF−QTF− FTQ + I) = ||F||2 + 3− 2Q ·F, (2.321)

||F−R||2 = ||F||2 + 3− 2U · I, (2.322)

from which we get

||F−Q||2 − ||F−R||2 = 2(U · I−Q ·F). (2.323)

Since
Q ·F = tr(FTQ) = tr(URTQ) = Q0 ·U, (2.324)

with Q0 = RTQ ∈Orth+,Q0 6= I, we have

||F−Q||2 − ||F−R||2 = 2U · (I−Q0), (2.325)

moreover

tr[(Q0 − I)TU(Q0 − I)] = U · [(Q0 − I)(Q0 − I)T ] =

U · (2I−Q0 −QT
0 ) = 2U · (I−Q0). (2.326)

Since (Q0−I)TU(Q0−I) ∈ Psym, from (2.326) it folloes that 2U · (I−Q0) > 0.

2.15 The Cayley-Hamilton theorem

Theorem 14. (Cayley-Hamilton theorem). Put n = 3. For A ∈ Lin we have

A3 − I1(A)A2 + I2(A)A− I3(A)I = 0. (2.327)

Proof. We prove the theorem by assuming that A has three linearly independent
eigenvectors v1,v2,v3

Avi = aivi, i = 1, 2, 3. (2.328)

Since from (2.328) it follows that

Ajvi = ajivi, i = 1, 2, 3, j = 1, 2, 3, (2.329)

in view of (2.236) we have

[A3 − I1(A)A2 + I2(A)A− I3(A)I]vi =

a3ivi − I1(A)a2ivi + I2(A)aivi − I3(A)vi =

[a3i − I1(A)a2i + I2(A)ai − I3(A)]vi = 0, i = 1, 2, 3. (2.330)

Since v1,v2,v3 are linearly independent, (2.327) follows directly from (2.330).
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Exercise 18. Put n = 3. Given A ∈ Lin, prove that

detA =
1

6
[(trA)3 − 3(trA)tr(A2) + 2tr(A3)]. (2.331)

Solution. Consider that from the Cayley-Hamilton it follows that

tr(A3) = I1(A)tr(A2)− I2(A)I1(A) + 3I3(A).

Exercise 19. Put n = 3. Show that A ∈ Lin is invertible, then

A−1 =
1

I3(A)
[A2 − I1(A)A + I2(A)I], (2.332)

and deduce that for each integer k, Ak can be expressed as linear combination
of I,A,A2 with coefficients that depend on the principal invariants of A.

Solution. For the Cayley-Hamilton theorem we have

A3 − I1(A)A2 + I2(A)A = I3(A)AA−1,

multiplying by A−1 we get the desired expression.

Exercise 20. Put n = 3. Let A ∈ Lin be invertible. Show that

(a) I1(A−1) = I2(A)
I3(A) ,

(b) I2(A−1) = I1(A)
I3(A) ,

(c) I3(A−1) = 1
I3(A) .

2.16 The generalized eigenvalue problem

Given the tensors A ∈ Sym, B ∈ Psym, we say that a (real) number a is a
generalized eigenvalue of (A,B) if there exists u ∈ V u 6= 0, such that

Au = aBu; (2.333)

u is called generalized eigenvector and problem (2.333) is called generalized
eigenvalue problem.

Vectors u1, ...,un are B-orthonormal if

ui ·Buj = δij =

{
1 i = j,
0 i 6= j.

(2.334)

Proposition 45. Given the tensors A ∈ Sym, B ∈ Psym, there exists a basis of
V constituted by B-orthonormal generalized eigenvectors u1, ...,un correspond-
ing to the generalized eigenvalues a1, ..., an of (A,B),

Aui = aiBui, i = 1, ..., n. (2.335)
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Proof. In virtue of the square root theorem there exists U ∈Psym such that
U2 = B. The problem (2.333) can be rewritten as

Âv = av, (2.336)

where we put
Â = U−1AU−1, v = Uu. (2.337)

From the spectral theorem, it follows that there exist an orthonormal basis of V
formed by eigenvectors v1, ...,vn of (2.336) and n real numbers a1, ..., an such
that

Âvi = aivi, i = 1, ..., n. (2.338)

It is easy to verify that the vectors ui = U−1vi, i = 1, ..., n are the eigenvectors
of the generalized problem (2.333) corresponding to the eigenvalues a1, ..., an
and satisfy (2.336). Moreover, the relations

δij = vi ·vj = Uui ·Uuj = ui ·U2uj = ui ·Buj , (2.339)

allow to conclude that vectors u1, ...,un are B−orthonormal.

a is a generalized eigenvalue if and only if A− aB is not invertible and then
a is a real root of the characteristic polynomial,

p(a) = det(A− aB). (2.340)

For each vector u ∈ V u 6= 0, the ratio

q(u) =
u ·Au

u ·Bu
, (2.341)

is the Rayleigh quotient of the generalized problem (2.333).

Proposition 46. Let
a1 ≤ a2 ≤ ... ≤ an (2.342)

be the generalized eigenvalues of the problem (2.333). The Rayleigh quotient
(2.341) satisfies the inequalities

a1 ≤ q(u) ≤ an, per ogni u ∈ V u 6= 0. (2.343)

Proof. Let u1, ...,un be the B−orthonormal eigenvectors of (2.333). For each
u ∈ V u 6= 0 we have

u = α1u1 + ...+ αnun, (2.344)

and

q(u) =
(α1u1 + ...+ αnun) · (α1a1Bu1 + ...+ αnanBun)

(α1u1 + ...+ αnun) · (α1Bu1 + ...+ αnBun)
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=
α2
1a1 + ...+ α2

nan
α2
1 + ...+ α2

n

. (2.345)

From (2.345), taking (2.342) into account, we get

a1 =
(α2

1 + ...+ α2
. )a1

α2
1 + ...+ α2

.

≤ q(u) ≤ (α2
1 + ...+ α2

. )an
α2
1 + ...+ α2

.

= an. (2.346)

2.17 Third and fourth-order tensors

A third-order tensor F can be considered a linear mapping from Lin to V or
a linear mapping from V to Lin. In particular, given u,v,w ∈ V, u ⊗ v ⊗ w
denotes the third-order tensor defined by

u⊗ v ⊗w[H] = (v ⊗w ·H)u, H ∈ Lin, (2.347)

u⊗ v ⊗w[h] = (w ·h)u⊗ v, h ∈ V. (2.348)

Example 11. Put n = 3. The mapping E from V to Skw that assigns to each
vector w the skew-symmetric tensor W having w as axial vector

E(w) = W with Wv = w ∧ v, for each v ∈ V, (2.349)

is a third-order tensor.
Let us put

εijk =

 1 se ijk is an even permutation of 1, 2, 3,
−1 se ijk is an odd permutation of 1, 2, 3,
0 otherwise

, i, j, k = 1, 2, 3.

(2.350)
Given an orthonormal basis {e1, e2, e3} of V and denoted by w1, w2, w3 the
components of w, in view of (2.155) the components of W are

Wij = −
3∑
k=1

εijkwk, (2.351)

therefore

W =

3∑
i,j=1

Wijei ⊗ ej = −
3∑

i,j,k=1

εijk(w · ek)ei ⊗ ej

= −
3∑

i,j,k=1

εijk(ei ⊗ ej ⊗ ek)w (2.352)
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and, finally,

E = −
3∑

i,j,k=1

εijk(ei ⊗ ej ⊗ ek). (2.353)

Analogously, the function F from Skw to V that assigns to each skew-symmetric
tensor W the corresponding axial vector w,

F (W) = w with Wv = w ∧ v, for each v ∈ V, (2.354)

is a third-order tensor. Given the components of W, the components of w are

wi = −1

2

3∑
j,k=1

εijkWjk, (2.355)

then

w =

3∑
i=1

wiei = −1

2

3∑
i,j,k=1

εijkWjkei = −1

2

3∑
i,j,k=1

εijk(ej ·Wek)ei

= −1

2

3∑
i,j,k=1

εijk[(ej ⊗ ek) ·W]ei = −1

2

3∑
i,j,k=1

εijk(ei ⊗ ej ⊗ ek)W, (2.356)

and, finally,

F = −1

2

3∑
i,j,k=1

εijk(ei ⊗ ej ⊗ ek). (2.357)

Also the function E2 from Lin to V that assigns to each tensor A the axial
vector of the skew-symmetric part (A−AT )/2 of A is a third-order tensor.

A fourth-order tensor A is a linear mapping from Lin to Lin. Let us denote
by I the fourth-order identity defined by I[H] = H for each H ∈ Lin. The tensor
product A⊗B of the second-order tensors A and B is the fourth order tensor
defined by

A⊗B[H] = (B ·H)A, H ∈ Lin. (2.358)

From tensors A and B it is possible to define the fourth-order tensor A�B,

A�B[H] = AHBT , H ∈ Lin.

Let us denote by Lin the vector space of all fourth-order tensors. Let us consider
the orthonormal basis {e1, ..., en} of V, the components of the fourth-order
tensor A are

Aijkl = (ei ⊗ ej) ·A[ek ⊗ el], i, j, k, l = 1, ..., n. (2.359)
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Putting K = A[H], from (2.46) we get that

Kij =

n∑
k,l=

AijklHkl.

From the linear independence of vectors {e1, ..., en} in V it follows that the
elements (ei⊗ ej)⊗ (ek ⊗ el), i, j, k, l = 1, ..., n in Lin are linearly independent,
moreover, for each A ∈ Lin the following representation holds,

A =

n∑
i,j,k,k=1

Aijkl(ei ⊗ ej)⊗ (ek ⊗ el). (2.360)

In fact,

A[U] =

n∑
i,j=1

(A[U])ij(ei ⊗ ej) =

n∑
i,j,k,k=1

AijklUklei ⊗ ej

=

n∑
i,j,k,k=1

Aijkl(ek ·Uel)ei ⊗ ej =

n∑
i,j,k,k=1

Aijkl((ek ⊗ el) ·U)ei ⊗ ej

=

n∑
i,j,k,k=1

Aijkl(ei ⊗ ej)⊗ (ek ⊗ el)[U]. (2.361)

Thus, the fourth-order tensors {(ei ⊗ ej)⊗ (ek ⊗ el)}i,j,k,l=1,...,n are a basis
of the vector space Lin, which has dimension n4 .

Lin is a normed space, with the natural norm

||A||N = sup
H∈Lin, H 6=0

||A[H]||
||H||

. (2.362)

The transpose of A is the unique fourth-order tensor AT such that

AT [H] ·K = A[K] ·H, for each H,K ∈ Lin. (2.363)

Exercise 21. Compute the transpose of the fourt order tensors A ⊗ B and
A�B.

Solution. Given H,∈ K ∈Lin, we have

H ·A⊗B[K] = H · (B ·K)A =(B ·K)(A ·H) =

K ·B⊗A[H],

then (A⊗B)T = B⊗A. Moreover, we have that

H ·A�B[K] = H ·AKBT = tr(BKTATH) =

tr(KTATHB) = K ·AT �BT [H],
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and then, (A�B)T = AT �BT .

The fourth-order tensor A has the major symmetry (or is symmetric) if
AT = A. In terms of indices, this means that Aijkl = Aklij .

The symmetry in the first couple of indices (Aijkl = Ajikl) means that A has
values in Sym

A[H]T = A[H], H ∈ Lin, (2.364)

and the symmetry in the second couple of indices (Aijkl = Aijlk) means that

A[HT ] = A[H], H ∈ Lin, (2.365)

or, equivalently, that A is zero on Skw,

A[W] = 0, W ∈ Skw.

We say that A has the minor symmetry if has the symmetries in both first and
second couples of indices.

Exercise 22. Prove that the components of the identity tensor I, defined by
I[A] = A, for each A ∈Lin, are

Iijhk =

{
1 se i = h e j = k,
0 otherwise,

, (2.366)

and that I� I = I, where I is the identity of Lin.

The mapping T : Lin→ Lin such that T[A] = AT , for each A ∈Lin is a
fourth-order tensor and the fourth-order tensors S and W defined by

S[A] =
A + AT

2
, W[A] =

A−AT

2
, for each A ∈ Lin, (2.367)

are called symmetrizer and skew-symmetrizer.

Exercise 23. Compute the components of the fourth-order tensors A ⊗ B,
A�B, T, S e W.

Exercise 24. Prove that A � B is symmetric if and only if A and B are
symmetric and that A⊗B is symmetric if and only if A = αB, α ∈ R.

Exercise 25. Given A,B,C,D ∈Lin and A ∈ Lin, prove the following compo-
sition rules

(A�B)(C�D) = AC�BD, (2.368)

(A⊗B)A =A⊗ AT [B], (2.369)

A(A⊗B)= A[A]⊗B. (2.370)
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Given Q ∈Orth, let us consider the fourth-order tensor Q =Q�Q, we have

Q[A] ·Q[B] = QAQT
·QBQT

= tr(QATQTQBQT ) = tr(ATB) = A ·B, per ogni A,B ∈ Lin, (2.371)

then Q ∈ Lin is an isometry (cfr. (1.67)).
Let us denote by Sym the vector space of all fourth-order tensors defined

from Sym into Sym and denote by ISym the restriction of I to Sym. Herein after
we shall limit ourselves to consider tensors A ∈ Sym

A symmetric tensor A ∈ Sym is called positive definite if

A ·A[A] > 0, for each A ∈ Sym, A 6= 0. (2.372)

A is called invertible if it is bijective. Tensor A−1 such that A−1A = AA−1 =
ISym is the inverse of A.

Let C ∈ Sym be a symmetric fourth-order tensor. The spectral problem rela-
tive to C consists in determining the pairs (γ,C) with γ ∈ R, C ∈Sym, ||C|| = 1
and C[C] = γC; γ is an eigenvalue of C and C the corresponding eigentensor.
As for the symmetric second-order tensors, for symmetric fourth-order tensors
the following spectral theorem [9] holds.

Theorem 15. Let C :Sym→Sym be a symmetric fourth-order tensor. There

exist γi ∈ R and Ci ∈Sym , i = 1, ..., n(n+1)
2 , such that

Ci ·Cj = δij , ,

n(n+1)
2∑
i=1

Ci ⊗Ci = ISym, (2.373)

and

C[Ci] = γiCi, C =

n(n+1)
2∑
i=1

γiCi ⊗Ci, (2.374)

Exercise 26. For n = 3, let {e1, e2, e3} be an orthonormal basis of V, and let
us consider the symmetric tensors

O1 = e1 ⊗ e1, O2 = e2 ⊗ e2, O3 = e3 ⊗ e3, (2.375)

O4 =
1√
2

(e1 ⊗ e2 + e2 ⊗ e1), O5 =
1√
2

(e1 ⊗ e3 + e3 ⊗ e1), (2.376)

O6 =
1√
2

(e2 ⊗ e3 + e3 ⊗ e1). (2.377)

Compute eigenvalues and eigentensors of the symmetric fourth-order tensor
A ∈ Sym

A = O1 ⊗O1 + O2 ⊗O2 + O1 ⊗O2 + O2 ⊗O1. (2.378)
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Solution. We have

A[O1] = O1 + O2, A[O2] = O1 + O2, A[Oi] = 0, i = 3, ..., 6, (2.379)

then, the eigenvalues of A are γ1 = 2 with eigentensor 1√
2
(O1 +O2) and γ2 = 0

with eigentensors 1√
2
(O1−O2),O3,O4,O5 e O6 and the spectral decomposition

of A is

A = 2
O1 + O2√

2
⊗ O1 + O2√

2
. (2.380)

Exercise 27. For n = 3, compute eigenvalues and eigentensors of the fourth-
order tensor

C = 2µISym + λI⊗ I, λ, µ ∈ R. (2.381)

Solution. We have C[I] = (2µ + 3λ)I and C[A] = 2µA for each A ∈Dev,
then the eigenvalues of C are γ1 = 2µ + 3λ with eigentensor C1 = 1√

3
I and

γ2 = 2µ with eigentensors orthogonal to I. The spectral decomposition of C is

C = (2µ+ 3λ)
I√
3
⊗ I√

3
+ 2µ(ISym −

I√
3
⊗ I√

3
). (2.382)

Exercise 28. Prove that a symmetric fourth-order tensor C is definite positive
if and only if its eigenvalues are positive.

Exercise 29. Prove that the tensor C defined in (2.381) is positive definite if
and only if

µ > 0, 2µ+ 3λ > 0. (2.383)

Prove that if µ and λ satisfy (2.383), the inverse of C is

C−1 =
1

2µ+ 3λ

I√
3
⊗ I√

3
+

1

2µ
(ISym −

I√
3
⊗ I√

3
). (2.384)

Exercise 30. For n = 3, and {e1, e2, e3} an orthonormal basis of V, compute
eigenvalues and eigenvector of the fourth-order tensor

A = αO1 ⊗O1 + βO2 ⊗O2 + γ(O1 ⊗O2 + O2 ⊗O1), (2.385)

with O1 = e1 ⊗ e1,O2 = e2 ⊗ e2, α, β, γ ∈ R.

2.18 Isotropic functions

In this section we limit ourselves to consider the case n = 3. Given I ⊂Orth,
a subset A ⊂Lin is invariant with respect to I if QAQT ∈ A for each A ∈ A,
Q ∈ I. QAQT is called the orthogonal conjugate of A with respect to Q.

The sets Lin, Lin+, Orth, Orth+, Sym, Skw, Sym−, Sym+, Psym e Nsym
are invariant with respect to Orth. In fact, by limiting ourselves to the case
Lin+ we have

det(QAQT ) = detA(detQ)2 = detA.
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For A ⊂Lin, a functional ϕ : A → R is invariant with respect to I if A is
invariant with respect to I and

ϕ(A) = ϕ(QAQT ), for each A ∈ A,Q ∈ I. (2.386)

A function G : A →Lin is invariant with respect to I if A is invariant with
respect to I and if

QG(A)QT = G(QAQT ), for each A ∈ A,Q ∈ I. (2.387)

A functional (a function) is called isotropic if it is invariant with respect to
Orth.

Proposition 47. Let φ be a function on Lin with scalar or tensorial values,
then φ is isotropic if and only if φ is isotropic with respect to Orth+.

Example 12. The functionals I1, I2 e I3 on Lin are isotropic. In particular,

η(A) = η(QAQT ), for each Q ∈ Orth. (2.388)

Let us denote by P(A) = {η(A) : A ∈ A} the set of all possible lists η(A)
of principal invariants, with A ∈ A.

We shall prove some important representation theorems for functions on
A ⊂Sym. Herein after, we shall assume that A is invariant with respect to
Orth.

Theorem 16. (Representation theorem for isotropic functionals). A functional
ϕ : A → R is isotropic if and only if there exists a function ϕ̃ : P(A)→ R such
that

ϕ(A) = ϕ̃(η(A)), for each A ∈ A. (2.389)

Proof. Assume that ϕ is isotropic, to show (2.389) it is sufficient to show that

ϕ(A) = ϕ(B) (2.390)

whenever
η(A) = η(B). (2.391)

Let A,B ∈ A satisfy (2.391), then A and B have the same spectrum and in
virtue of the spectral theorem there exist two orthonormal bases {e1, e2, e3}
and{f1, f2, f3} such that

A =

3∑
i=1

ωiei ⊗ ei, B =

3∑
i=1

ωifi ⊗ fi. (2.392)

Let Q be the orthogonal tensor such that

Qf i = ei; (2.393)

since Q(fi ⊗ fi)Q
T = (Qf i) ⊗ (Qf i), we have that QBQT = A. But, since ϕ

is isotropic we have , ϕ(A) = ϕ(QBQT ) = ϕ(B). The inverse implication is a
trivial consequence of the fact that η(A) = η(QAQT ) for each Q ∈Orth.
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Theorem 17. (Transfer theorem) Let G : A →Lin be an isotropic function.
Then, each eigenvector of A ∈ A is an eigenvector of G(A).

Proof. Let e be an eigenvector of A ∈ A and Q ∈Orth the reflection with
respect to the plane orthogonal to e,

Qe = −e, Qf = f , for each f ∈ Span(e)⊥, (2.394)

It is easy to prove that QAQT = A. Now, since G is isotropic

QG(A)QT = G(QAQT ) = G(A), (2.395)

then, Q commutes with G(A). Moreover,

QG(A)e = G(A)Qe = −G(A)e (2.396)

which, along with (2.394) implies that G(A)e ∈Span(e),

G(A)e = ωe, (2.397)

and then e is an eigenvector of G(A).

Proposition 48. (Wang’s lemma). Consider A ∈Sym.

(a) If the eigenvalues of A are distinct,

A =

3∑
i=1

ωiei ⊗ ei, (2.398)

then I, A e A2 are linearly independent and

Span(I,A,A2) = Span(e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3). (2.399)

(b) If A has two distinct eigenvalues,

A = ω1e⊗ e+ω2(I− e⊗ e), ||e|| = 1, (2.400)

then I and A are linearly independent and

Span(I,A) = Span(e⊗ e, I− e⊗ e). (2.401)

Proof. As far as (a) is concerned, to prove that I, A and A2 are linearly inde-
pendent we have to prove that if

αA2 + βA + γI = 0, (2.402)

then
α = β = γ = 0. (2.403)
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From (2.398) we get  αω2
1 + βω1 + γ = 0,

αω2
2 + βω2 + γ = 0,

αω2
3 + βω3 + γ = 0.

(2.404)

The matrix of the system (2.404) is the Vandermonde matrix, whose determi-
nant is given by

∏
1≤i<j≤3

(ωi − ωj). Since ωi are distinct, the solution to system

(2.404) is given by (2.403). The subspace H =Span(e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3)

has dimension 3, and since A2 =
∑3
i=1 ω

2
i ei ⊗ ei, we have that I,A,A2 belong

to H, then H =Span(I,A,A2). Point (b) can be proved analogously.

Theorem 18. (First representation theorem for isotropic functions) A func-
tion G : A →Sym (A ⊂Sym) is isotropic if and only if there exist functionals
ϕ0, ϕ1, ϕ2 : P(A)→ R such that

G(A) = ϕ0(η(A))I + ϕ1(η(A))A + ϕ2(η(A))A2 for each A ∈ A. (2.405)

Proof. Assume that G has the representation (2.405). Given A ∈ A and
Q ∈Orth, in view of (2.388) we have

G(QAQT ) = ϕ0(η(QAQT ))I + ϕ1(η(QAQT ))QAQT+

ϕ2(η(QAQT ))QAQTQAQT =

ϕ0(η(A))QQT + ϕ1(η(A))QAQT+

ϕ2(η(A))QA2QT = QG(A)QT , (2.406)

then G is isotropic. Vice versa assume that G is isotropic and take A ∈ A. The
following cases occur.

Case 1. A has three distinct eigenvalues. Let (2.398) be the spectral decom-
position of A, by virtue of theorem 17

G(A) =

3∑
i=1

βiei ⊗ ei, (2.407)

from (2.399) we conclude that there exist three scalar functions α0(A),
α1(A), α2(A) such that

G(A) = α0(A)I + α1(A)A + α2(A)A2. (2.408)

Case 2. The proof is similar to the proof of case 1.

Case 3. A has exactly one distinct eigenvalue , A = ωI. In particular, QAQT =
A for each Q ∈Orth, then from the isotropy of G(A) it follows that

QG(A)Q
T

= G(A) for each Q ∈Orth, then, in view of proposition 41
G(A) = βI e G(A) has the representation (2.408) con α0(A) = β e
α1(A) = α2(A) = 0.
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Now we have proved that if G is isotropic then has the representation (2.408).
By virtue of the representation theorem for isotropic functionals, to complete
the proof we have to prove that α0, α1, α2 are isotropic functionals

αk(QAQT ) = αk(A), k = 1, 2, 3 (2.409)

for each A ∈ A, Q ∈Orth. Then, consider A ∈ A, Q ∈Orth, from the isotropy
of G it follows that

G(A)−QTG(QAQT)Q = 0,

from which, taking both (2.408) and

QT (QAQT)2Q = A2, (2.410)

into account, we get

[α0(A)− α0(QAQT)]I + [α1(A)− α1(QAQT)]A+

[α2(A)− α2(QAQT)]A2 = 0. (2.411)

Now, we have to consider the three cases previously analyzed.

Case 1. By virtue of the Wang’s lemma, I, A e A2 are linearly independent
and (2.411) implies (2.409).

Case 2. In view of (2.388) and proposition 39 A and QAQT have the same
spectrum, then, QAQT as A has two distinct eigenvalues and from (??)
we get α2(A) = α2(QAQT) = 0. Moreover, due to the Wang’s lemma
I and A are linearly independent and once again from (2.411) we get
(2.409).

Case 3. In this case A = ωI and QAQT = A, then (2.409) is trivially verified.

If A is invertible, from the Cayley-Hamilton theorem it follows that

A2 = I1(A)A− I2(A)I + I3(A)A−1, (2.412)

thus, theorem 18 has the following corollary.

Theorem 19. (Second representation theorem for isotropic functions) Let A be
the set of all invertible symmetric tensors. A function G : A →Sym is isotropic
if and only if there exist functionals ψ0, ψ1, ψ2 : P(A)→ R such that

G(A) = ψ0(η(A))I + ψ1(η(A))A + ψ2(η(A))A−1 per ogni A ∈ A. (2.413)

For the linear applications (fourth-order tensors) the following result holds.
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Theorem 20. (Representation theorem for isotropic fourth-order tensors) A
fourth order tensor A :Sym→Sym is isotropic if and only if these exist two
scalars µ and λ such that

A[A] = 2µA + λ tr(A)I, for each A ∈ Sym. (2.414)

Proof. Clearly (2.414) defines an isotropic function. Let N be the set of all
vectors with 1 norm. For each e ∈ N , tensor e ⊗ e has spectrum {0, 0, 1} and
characteristic spaces Span(e)⊥ and Span(e). Then the same procedure used to
prove (??) implies the existence of two functionals µ, λ : N → R such that

A[e⊗ e] = 2µ(e)e⊗ e + λ(e)I, for each e ∈ N . (2.415)

Now, consider e, f ∈ N and let Q be the orthogonal tensor such that Qe = f .
Since

Qe⊗ eQT = f ⊗ f , (2.416)

and A is isotropic, we have

0 = QA[e⊗ e]QT − A[f ⊗ f ] =

2[µ(e)− µ(f)]f ⊗ f + [λ(e)− λ(f)]I. (2.417)

Since f ⊗ f and I are linearly independent, from (2.417) we get

µ(e) = µ(f), λ(e) = λ(f), (2.418)

then µ and λ are constant scalar quantities and from (2.415) we conclude that

A[e⊗ e] = 2µe⊗ e + λI, for each e ∈ N . (2.419)

Now, let us consider A ∈Sym, in view of the spectral theorem A has the repre-
sentation (2.398), and by virtue of (2.419) and the linearity of A, we have

A[A] = 2µA + λ(ω1 + ω2 + ω3)I. (2.420)

Corollary 1. Let A :Sym0 →Sym be a fourth-order tensor, with Sym0 =
{A ∈Sym : trA = 0}. A is isotropic if and only if it exists a scalar µ such
that

A[A] = 2µA, for each A ∈ Sym0. (2.421)

In particular, if A is isotropic, then A and A[A] commute, AA[A] = A[A]A,
and are coaxial.

Exercise 31. Prove that the function R :Psym→Psym which associates to each
C the tensor

√
C is isotropic.
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Solution. For each C ∈Psym, Q ∈Orth, we have

(Q
√
CQT )2 = Q

√
CQTQ

√
CQT = QCQT . (2.422)

Exercise 32. Let G :Sym→Sym be an invertible isotropic function, prove that
G−1 is isotropic.

Solution. For each A ∈Sym, Q ∈Orth, we have

G(QG−1(A)QT ) = QAQT , (2.423)

applying G−1 we get

QG−1(A)QT = G−1(QAQT ). (2.424)

Exercise 33. The function G :Lin→Lin defined by G(A) = Ak, k ∈ N is
isotropic.

Exercise 34. The function G :Lin+ →Lin+ defined by G(A) = A−1, is isotropic.

From exercises 31 and 34 it follows that the function S :Psym→Psym de-
fined by S(C) = (R(C))−1 = (

√
C)−1 is isotropic. Moreover, the function

that associates to each F ∈Lin+ the tensor FFT ∈Psym is isotropic; since the
composition of two isotropic functions is isotropic, the functions defined from
Lin+ into in Psym that assigns to each tensor F the tensor U of the right polar
decomposition of F and U−1 are isotropic. The function from Lin+ into Orth+

that assigns to each tensor F the tensor R of the right polar decomposition of
F is isotropic.

2.19 Convergence of tensors

Let us consider the natural norm on Lin (cfr. (1.104)),

||A||N = sup
u6=0

||Au||
||u||

, A ∈ Lin. (2.425)

The natural norm is submultiplicative

||AB||N ≤ ||A||N ||B||N , A,B ∈ Lin, (2.426)

and ||I||N = 1.
Given A ∈Lin, from (2.80) it follows that

||A|| ≥ ||A||N (2.427)

where ||A|| is given in (2.71). In particular, if n = 3, we have

||A||2 = tr(ATA) = λ1 + λ2 + λ3, (2.428)
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where 0 ≤ λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the tensor ATA ∈Sym+ and

||Au||2

||u||2
=

ATAu ·u

u ·u
(2.429)

is the Rayleigh quotient of the tensor ATA which satisfies the inequalities

λ1 ≤
ATAu ·u

u ·u
≤ λ3, (2.430)

from which it follows that
||A||2N = λ3. (2.431)

In particular,
||A||2N ≤ ||A||2 ≤ 3||A||2N . (2.432)

Now we want to define the convergence of a sequence of tensors {Ak}k∈N to a
tensor A ∈Lin. We say that {Ak}k∈N converges to A if if for each ε > 0 there

exists k > 0 such that

‖Ak −A‖ < ε for each k ≥ k. (2.433)

Proposition 49. The following conditions are equivalent.

(i) ||Ak −A|| → 0 for k →∞.

(ii) ||Aku−Au|| → 0 when k →∞, for each fixed u ∈ V.

(iii) |Aku ·v −Au ·v| → 0 quando k →∞, for each u,v ∈ V.

Proof. If (i) holds, then, for each u ∈ V we have

||Aku−Au|| = ||(Ak −A)u|| ≤ ||Ak −A|| ||u|| → 0, (2.434)

then (i)⇒(ii). In section 1.8 we have proved that (ii)⇒(iii) and that in finite-
dimensional vector spaces (iii)⇒(ii). Thus, we have to prove that in a finite-
dimensional vector space (ii)⇒(i). Let {u1,u2,u3} be an orthonormal basis of
V, if (ii) holds, then for each ε > 0 there is k0 = k(ε) such that ||Akui−Aui|| < ε

for k ≥ k0 and for i = 1, 2, 3. Given u ∈ V, we have u =
∑3
i=1(u ·ui)ui and

then

||(Ak −A)u|| = ||
3∑
i=1

(u ·ui)(Ak −A)ui|| ≤

3∑
i=1

||u|| ||(Ak −A)ui|| ≤ 3ε||u||, (2.435)

therefore ||Ak −A||N → 0, which, along with (2.432) gives (i).
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The inner product on V and the vector product, as bilinear functions, are
continuous. In fact, given uk → u, vk → v, we have

|uk ·vk − u ·v| ≤ |uk ·vk − u ·vk|+ |u ·vk − u ·v|,

||uk ∧ vk − u ∧ v|| ≤ ||uk ∧ vk − u ∧ vk||+ ||u ∧ vk − u ∧ v|| ≤

||(uk − u) ∧ vk||+ ||u ∧ (vk − v)|| ≤

||uk − u|| ||vk||+ ||vk − v|| ||u||.

Exercise 35. Prove that

(a) ϕ1 :Lin→ R, ϕ1(A) = ||A||,

(b) T1 :Lin×V → V, T1(A,u) = Au,

(c) ϕ3 :Lin×V × V → R, ϕ3(A,u,v) = Au ·v,

(d) ϕ2 :Lin×V → R, ϕ2(A,u) = ||Au||,

(e) T2 :Lin×Lin→Lin, T2(A,B) = A + B,

(f) T3 :Lin×R→Lin, T3(A, α) = αA,

(g) T4 :Lin×Lin→Lin, T4(A,B) = AB,

(h) T5 :Lin→Lin, T5(A) = AT ,

(i) ϕ4 :Lin→ R, ϕ4(A) = trA,

(j) ϕ5 :Lin→ R, ϕ5(A) = detA,

(l) T6 :Inv→Inv, T5(A) = A−1, with Inv the set of all invertible tensors,

are continuous functions.

Solution.
(a) Given Ak → A, from the second triangle inequality (1.35) it follows that

|||Ak|| − ||A||| ≤ ||Ak −A||.
(b) Given Ak → A and uk → u,

||Akuk −Au|| ≤ ||Akuk −Aku||+ ||Aku−Au|| ≤

||Ak|| ||uk − u||+ ||Aku−Au||.

(c) Given Ak → A, uk → u, vk → v, we have

|Akuk ·vk −Au ·v| ≤ |Akuk ·vk −Auk ·vk|+

|Auk ·vk −Au ·vk|+ |Au ·vk −Au ·v|.
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(j) Let {e1, e2, e3} be an orthonormal basis of V with e3 = e1 ∧ e2 and
Ak → A, in view of (2.175) we have

|detAk − detA| = |Ake1 · (Ake2 ∧Ake3)−Ae1 · (Ae2 ∧Ae3)|.

The thesis follows from (d) and from the continuity of the vector product and
inner product on V.

(l) By virtue of the Cayley-Hamilton theorem, T6(A) = 1
det(A) [A

2−I1(A)A+

I2(A)I], therefore T6 is continuous because it is sum, product and quotient of
continuous functions.

2.20 Derivatives of functionals and vector and
tensor-valued functions

Put n = 3.

Exercise 36. Compute the derivative of the following functions.

(a) ϕ : V → R defined by
ϕ(v) = v ·v, v ∈ V.

(b) F :Lin→Lin defined by

G(A) = A2, A ∈ Lin. (2.436)

(c) F :Lin→Lin defined by

F (A) = A3, A ∈ Lin. (2.437)

Solution.
(a) For v ∈ V we have

ϕ(v + u) = (v + u) · (v + u) = v ·v + 2v ·u + u ·u =

ϕ(v) + 2v ·u + o(u) u→ 0, (2.438)

from which
Dϕ(v)[u] = 2v ·u, u ∈ V.

(b) For A ∈Lin we have

G(A + U) = (A + U)(A + U) =

A2 + AU + UA + U2 = G(A) + AU + UA + o(U), U→ 0, (2.439)

where the last equality follows from the fact that the norm is submultiplicative,

||U2|| ≤ ||U||2.
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From (2.439) we obtain

DG(A)[U] = AU + UA, U ∈ Lin, (2.440)

and then DG(A) = A � I + I �AT . The function DG :Lin→ L(Lin,Lin) that
assigns to each A ∈Lin the fourth-order tensor DG(A) is continuous. To prove
the continuity, given Ak → A, we have to prove that DG(Ak) converges to
DG(A). In view of (2.440) we have

||DG(Ak)−DG(A)|| = sup
H∈Lin
H 6=0

||DG(Ak)[H]−DG(A)[H]||
||H||

=

sup
H∈Lin
H6=0

||AkH + HAk −AH−HA||
||H||

≤ sup
H∈Lin
H 6=0

||AkH−AH||+ ||HAk −HA||
||H||

≤

sup
H∈Lin
H 6=0

||AkH−AH||
||H||

+ sup
H∈Lin
H 6=0

||HAk −HA||
||H||

≤ 2||Ak −A||. (2.441)

This allows to conclude that G is of class C1.
(c)For A ∈Lin we have

F (A + U) = A3 + A2U + UA2 + AUA+

AU2 + U2A + UAU + U3 =

F (A) + A2U + UA2 + AUA + o(U), U→ 0, (2.442)

where we have taken into account the fact that

||AU2 + U2A + UAU + U3|| ≤ 3||A|| ||U||2 + ||U||3,

and then AU2 + U2A + UAU + U3 = o(U), U→ 0.
From (2.442) it follows that DF (A) is the fourth order tensor defined by

DF (A)[U] = A2U + UA2 + AUA, U ∈ Lin, (2.443)

with DF (A) = A2 � I + I� (A2)T + A�AT .

Exercise 37. Compute the derivative of the following functions from Lin to
Lin:

(a) G(A) = (trA)A, for each A ∈Lin.

(b) G(A) = ABA, for each A ∈Lin, B ∈Lin fixed.

(c) G(A) = ATA, for each A ∈Lin.

(d) G(A) = (u ·Au)A, for each A ∈Lin, u ∈ V fixed.
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Solution.
(a) For every U ∈Lin we have

G(A + U) = tr(A + U)(A + U) =

tr(A)A + tr(U)A + tr(A)U + tr(U)U,

since ||tr(U)U|| = |I ·U| ||U|| ≤
√

3||U||2, we have that tr(U)U = o(U) per
U→ 0, then,

DG(A)[U] = tr(U)A + tr(A)U, for each U ∈ Lin

and
DG(A) = A⊗ I + (A · I)I.

(b) For every U ∈Lin we have

G(A + U) = (A + U)B(A + U) =

G(A) + UBA + ABU + UBU,

Since UBU = o(U), U→ 0, we have

DG(A)[U] = UBA + ABU, for each U ∈ Lin,

and
DG(A) = AB� I + I� (BA)T .

(c) For every U ∈Lin we have

G(A + U) = (AT + UT )(A + U) =

G(A) + ATU + UTA + UTU.

Since UTU = o(U), U→ 0, we have

DG(A)[U] = ATU + UTA, for each U ∈ Lin.

Theorem 21. Let ϕ be the functional defined on the subset Inv of Lin consti-
tuted by all invertible tensors

ϕ(A) = detA. (2.444)

ϕ is of class C1 and

Dϕ(A)[U] = (detA)tr(UA−1), for each U ∈ Lin. (2.445)

Proof. Let us start by remarking that the set Inv= {A ∈Lin : detA 6= 0} is
open in Lin because it is the complement of the set Ninv= {A ∈Lin : detA = 0}
which is closed as it is the inverse image of the closed set {0} in R under the
continuous function det. Given B ∈Lin, from (2.235) and (2.236) with a = −1
we obtain

det(B + I) = 1 + I1(B) + I2(B) + I3(B). (2.446)
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From the relation detB = 1
6 [(trB)3 − 3(trB)tr(B2) + 2tr(B3)], it follows that

|detB| ≤ 1

6
[|trB|3 + 3|trB| |tr(B2)|+ 2|tr(B3)|] ≤

√
3

6
[3||B||3 + 9|B||2 + 2||B||3], (2.447)

then detB = o(B), B→ 0 e

det(B + I) = 1 + I1(B) + o(B), B→ 0. (2.448)

Thus, for A ∈Inv fixed, for each U ∈Lin, we have

det(A + U) = det[(I + UA−1)A] =

(detA) det(I + UA−1) = (detA)[1 + tr(UA−1) + o(U)], U→ 0. (2.449)

Since the function U 7→ tr(UA−1) is linear, from (2.449), (2.445) follows. More-
over, the continuity of the function Dϕ from Inv to L(Lin,R), follows from the
continuity of the determinant and of the inverse. In particular, we have to prove
that if Ak → A, in Inv, then Dϕ(Ak)→ Dϕ(A) in L(Lin,R),

||Dϕ(Ak)−Dϕ(A)||N = sup
H∈Lin
H6=0

|Dϕ(Ak)[H]−Dϕ(A)[H]|
||H||

=

sup
H∈Lin
H6=0

|(detAk)tr(HA−1k )− (detA)tr(HA−1)|
||H||

=

sup
H∈Lin
H 6=0

|(detAk)HT
·A−1k − (detA)HT

·A−1|
||H||

≤

sup
H∈Lin
H6=0

|HT
· [(detAk)A−1k − (detA)A−1]|

||H||
≤

||(detAk)A−1k − (detAk)A−1||+

||(detAk)A−1 − (detA)A−1|| ≤

|detAk| ||A−1k −A−1||+ ||A−1|| | detAk − detA|,

and the thesis follows from the continuity of the determinant (exercise 35 (j))
and the function T6 (exercise 35 (l)).

From (2.445) and (2.192) it follows that the derivative of the determinant of
a tensor A ∈Inv coincides with its cofactor A∗.

Exercise 38. Consider G :Inv→Lin such that G(A) = A−1. Assuming that G
is differentiable, prove that

DG(A)[H] = −A−1HA−1, A ∈ Lin. (2.450)
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Solution. Let us consider the linear function F :Inv→Inv such that F (A) =
A. Let us consider the function product

F (A)G(A) = I, A ∈ Inv. (2.451)

From the product rule it follows that

DF (A)[H]G(A) + F (A)DG(A)[H] = 0, H ∈ Lin, (2.452)

from which
HA−1 + ADG(A)[H] = 0, (2.453)

and then (2.450) is satisfied.

Exercise 39. Given ψ :Inv→ R such that ψ(A) = det(A2), compute Dψ(A)
for each A ∈Inv.

Solution. Consider ϕ :Inv→ R such that ϕ(A) = det(A) and G :Inv→Inv
such that G(A) = A2. Taking into account that ψ = ϕ ◦G, for each H ∈Lin we
have

Dψ(A)[H] = Dϕ(G(A))[DG(A)[H]] =

det(A2)tr(DG(A)[H]A−2) =

det(A2)tr((AH + HA)A−2) = 2 det(A2)tr(HA−1). (2.454)

Exercise 40. Consider ψ :Inv→ R such that ψ(A) = (detA)tr(A−1), A ∈Inv.
Compute Dψ(A).

Solution. Consider ϕ :Inv→ R such that ϕ(A) = det(A) and G :Inv→Inv
such that G(A) = A−1, then, we have ψ(A) = ϕ(A)tr(G(A)). Therefore

Dψ(A)[H] = Dϕ(A)[H]tr(G(A)) + ϕ(A)Dtr(G(A))[DG(A)[H]] =

(detA)tr(HA−1)tr(A−1)+

(detA)tr(−A−1HA−1) =

(detA){tr(A−1)tr(HA−1)− tr(HA−2)} =

(detA){tr(A−1)A−T −A−2T } ·H, H ∈ Lin. (2.455)

Exercise 41. Let I2 :Lin→ R be the functional defined by I2(A) = 1
2 [(trA)2 −

tr(A2)]. Compute DI2(A).

Solution.

I2(A + H) =
1

2
[(tr(A + H))2 − tr((A + H)2)] =

I2(A) + tr(A)tr(H)− tr(AH) + o(H), H→ 0,

then
DI2(A)[H] = {tr(A)I−AT } ·H, H ∈ Lin

and
DI2(A) = tr(A)I−AT .
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Exercise 42. Consider f :Lin→ R defined by

f(K) = ||K0||2 − ρ2(trK), (2.456)

with K0 = K − (trK)I/3 the deviator of K and ρ : R → R a continuous and
differentiable function. Compute Df(K).

Solution. Let us remark that DK0(K)[U] = U0; having in mind that
||K0||2 = K0 ·K0, exploiting the chain rule, we obtain

Df(K)[U] = 2(K0 − 2ρ(trK)ρ′(trK)I) ·U, for each U ∈ Lin, (2.457)

where ρ′ denotes the derivative of ρ with respect to the independent variable.

Exercise 43. For each integer k ≥ 1 let us consider the functional τk :Lin→ R
defined by τk(A) = tr(Ak), with Ak given in (2.9). Prove that

Dτk(A) = k(Ak−1)T . (2.458)

Solution. We can prove the following relation by induction

(A + H)k = Ak +

k−1∑
i=0

AiHAk−1−i + o(H), H→ 0. (2.459)

Calculating the trace of both sides of (2.459) we get that

Dτk(A)[H] = k tr(HAk−1), H ∈ Lin, (2.460)

from which the thesis follows.

Exercise 44. Given a second-order tensor L, for each integer k ≥ 1 consider
the functional ψk :Lin→ R defined by ψk(A) = tr(AkL). Compute Dψk(A).

Solution. In view of (2.459) we have

ψk(A + H) = ψk(A) + tr(

k−1∑
i=0

AiHAk−1−iL) + o(H), H→ 0, (2.461)

from which it follows that

Dψk(A)[H] =

k−1∑
i=0

(AiLAk−1−i)T ·H, H ∈ Lin. (2.462)

Now, we can prove the following proposition, which expresses the invariance
of the derivative of a function invariant with respect to a subset I ⊂Orth.
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Proposition 50. Let I be a subset of Orth, A an open set contained in a
subspace U of Lin, with A invariant with respect to I. Assume that G : A →Lin
is invariant with respect to I and of class C1. Then,

QDG(A)[U]QT = DG(QAQT )[QUQT ], (2.463)

for each A ∈ A,U ∈ U ,Q ∈ I.

Proof. Let us start by proving that U is invariant with respect to I. Take
U ∈ U ,A ∈ A,Q ∈ I, since A is open, there exists α > 0 such that A+αU ∈ A.
From

Q(A + αU)QT = QAQT + αQUQT ∈ A ⊂ U (2.464)

taking into account that U is a subspace, we get that QUQT ∈ U .
Given A ∈ A,U ∈ U ,Q ∈ I, we ha

G(Q(A + U)QT ) = G(QAQT + QUQT )

= G(QAQT ) +DG(QAQT )[QUQT ] + o(U), U→ 0; (2.465)

on the other hand, since G is invariant with respect to I we have

G(Q(A + U)QT ) = QG(A + U)QT , (2.466)

and

QG(A + U)QT = QG(A)QT + QDG(A)[U]QT + o(U), U→ 0. (2.467)

Comparing the relations (2.465) and (2.467) we finally get (2.463).

Exercise 45. Let T :Inv→Inv be the function defined by

T (V) = µ(VVT − I) + λ[(detV)2 − 1]I, con µ, λ ∈ R; (2.468)

compute DT (V).

Solution. We have

DT (V)[H] = µ(VHT + HVT ) + 2λ(detV)2I⊗V−T [H], H ∈ Lin. (2.469)

Let T :Lin→Lin be a differentiable function. For {e1, ..., en} an orthonormal
basis of V and A ∈ Lin, we want to calculate the components of the fourth-order
tensor DT [A]. Taking into account that

A =

n∑
i,j=1

Aijei ⊗ ej (2.470)

from the differentiability of T , we get

T (A + αek ⊗ el) = T (A) + αDT (A)[ek ⊗ el] + o(α), α→ 0, (2.471)
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and,
(ei ⊗ ej) ·T (A + αek ⊗ el) = (ei ⊗ ej) ·T (A)

+α(ei ⊗ ej) ·DT (A)[ek ⊗ el] + o(α), α→ 0, (2.472)

from which we get

ei ⊗ ej ·DT (A)[ek ⊗ el] = lim
α→0

T (A + αek ⊗ el)ij − T (A)ij
α

, (2.473)

and finally,

DT (A)ijkl =
∂T (A)ij
∂Akl

. (2.474)

2.21 Derivatives of functions defined over an open
set of R

The following proposition follows directly from (1.159).

Proposition 51. Given an open set D of R let

ϕ : D →R,

v,w : D → V,

A,B : D →Lin,

be functions of class C1. Then

(ϕv) · = ϕ
·

v +
·

ϕv, (2.475)

(v ·w) · = v ·

·

w +
·

v ·w, (2.476)

(AB) · = A ·

·

B +
·

A ·B, (2.477)

(A ·B) · = A ·

·

B +
·

A ·B, (2.478)

(Av) · = A
·

v +
·

Av, (2.479)

(v ∧w) · = v ∧ ·

w +
·

v ∧w, (2.480)

(v ⊗w) · = v ⊗ ·

w +
·

v ⊗w, (2.481)

(ϕA) · = ϕ
·

A +
·

ϕA. (2.482)
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For n = 3, let {e1, e2, e3} be an orthonormal basis of V, given the vector
function v(t) and the tensor function A(t), we have

·

v(t) =

3∑
i=1

·

vi(t)ei, A(t) =

3∑
i,j=1

·

Aij(t)ei ⊗ ej . (2.483)

If A(t) is a non-null tensor function, for ϕ(t) = ||A(t)||, we have

·

ϕ(t) =
A(t)

||A(t)||
·

·

A(t), (2.484)

from which we get the identity

(||A(t)||) · =
A(t)

||A(t)||
·

·

A(t). (2.485)

Proposition 52. Let D be on open set of R and B : D →Lin be a function of
class C1. We have

(BT ) · = (
·

B)T . (2.486)

Moreover, if B(t) is invertible for each t ∈ D, we have

(detB) · = (detB)tr(
·

BB−1), (2.487)

and

(B−1) · = −B−1
·

BB−1. (2.488)

Proof. Let L :Lin→Lin be the linear function defined by L(A) = AT , A ∈Lin.
Since DL(A) = L, from the chain rule ir follows that

(BT ) · = (L(B)) · = L(
·

B) = (
·

B)T .

From the relations (1.161) and (2.445), for ϕ(B) = detB we have

(ϕ(B(t)))
·

= Dϕ(B(t))[
·

B(t)] = (detB(t))tr

(
·

B(t)B(t)−1
)
.

Exercise 46. Assume that Q : R→Orth is differentiable. Show that

Q(t)
·

Q(t)T ∈ Skw for each t ∈ R. (2.489)

Solution. Consider L :Lin→Lin such that L(A) = AT , since Q(t)Q(t)T = I
for each t ∈ R, differentiating with respect to t we get

0 =
·

QQT + QDL(Q)[
·

Q] =
·

QQT + Q
·

Q
T

, (2.490)

from which the thesis follows.
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